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Spectral Partitioning in the Planted Partition Model
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21.1 Introduction

In this lecture, we will perform a crude analysis of the performance of spectral partitioning algo-
rithms in the planted partition model. In this model, we build a random graph that has a natural
partition.

The simplest model of this form is for the graph bisection problem. This is the problem of partition-
ing the vertices of a graph into two equal-sized sets while minimizing the number of edges bridging
the sets. To create an instance of the planted bisection problem, we first choose a paritition of the
vertices into equal-sized sets V 1 and V 2. When then choose probabilities p > q, and place edges
between vertices with the following probabilities:

Pr [(u, v) ∈ E] =


p if u ∈ V 1 and v ∈ V 1

p if u ∈ V 2 and v ∈ V 2

q otherwise.

The expected number of edges crossing between V 1 and V 2 will be q
∣∣V 1
∣∣ ∣∣V 2

∣∣. If p is sufficiently
larger than q, then every other bisection will have more crossing edges.

In this lecture, we will show that this partition can be recovered from the second eigenvector of the
adjacency matrix of the graph. This will be a crude version of an analysis of McSherry [McS01]

There have been many analyses of graph partitioning algorithms under planted partition models
such as this. The model is motivated by the idea that vertices (or general items) belong to certain
categories, and that vertices in the same categories are more likely to be connected. Such models
also arise in the analysis of clustering algorithms. However, it is not clear that these models
represent practice very well.

21.2 The Perturbation Approach

As long as we don’t tell our algorithm, we can choose V 1 = {1, . . . , n/2} and V 2 = {n/2 + 1, . . . , n}.
Let’s do this for simplicity.
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Define the matrix

M =



p · · · p q · · · q
...

...
p · · · p q · · · q
q · · · q p · · · p
...

...
q · · · q p · · · p


=
[
pJn/2 qJn/2

qJn/2 pJn/2

]
,

where we write Jn/2 for the square all-1s matrix of size n/2.

The adjacency matrix of the planted partition graph is obtained by setting A(i, j) = 1 with proba-
bility M(i, j), subject to A(i, j) = A(j, i). So, this is a random graph, but the probabilities of some
edges are different from others.

We will study a very simple algorithm for finding an approximation of the planted bisection: com-
pute v2, the eigenvector of the second-largest eigenvalue of A. Then, set S = {i : v2(i) < 0}. We
guess that S is one of the sets in the bisection. We will show that under reasonable conditions on
p and q, S will be mostly right. Intuitively, the reason is that A is a slight perturbation of M , and
so the eigenvectors of A should look like the eigenvectors of M .

For that to make sense, I should have said what the eigenvectors M look like. Of course, the
constant vectors are eigenvectors of M . We have

M1 =
n

2
(p+ q)1.

The second eigenvector of M has two values: one on V 1 and one on V 2. Let’s be careful to make
this a unit vector. We take

w2(i) =

{
1√
n

i ∈ V 1

− 1√
n

i ∈ V 2.

Then,
Mv2 =

n

2
(p− q)w2.

So, the second-largest eigenvalue of M is (n/2)(p− q). As M has rank 2, all the other eigenvalues
of M are zero.

Now, let R = A−M . For (u, v) in the same component,

Pr [R(u, v) = 1− p] = p and
Pr [R(u, v) = −p] = 1− p,

and for (u, v) in different components,

Pr [R(u, v) = 1− q] = q and
Pr [R(u, v) = −q] = 1− q.

As in the last lecture, we can bound the probability that the norm of R is large. While I’m not yet
sure if we can bound it using the same technique, we can appeal to a result of Vu [Vu07, Theorem
1.4], which implies the following.
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Theorem 21.2.1. There exist constants c1 and c2 such that with probability approaching 1,

‖R‖ ≤ 2
√
pn+ c1(pn)1/4 lnn,

provided that

p ≥ c2
ln4 n

n
.

We apply the following corollary.

Corollary 21.2.2. There exists a constant c0 such that with probability approaching 1,

‖R‖ ≤ 3
√
pn,

provided that

p ≥ c0
ln4 n

n
.

In fact, Krivelevich and Vu [?, Theorem ??] prove that the probability that the norm of R exceeds
this value by more than t is exponentially small in t. However, we will not need that fact for this
lecture.

Ignoring the details of the asymptotics, let’s just assume that ‖R‖ is small, and investigate the
consequences.

21.3 Perturbation Theory for Eigenvectors

Let α1 ≥ α2 ≥ · · · ≥ αn be the eigenvalues of A, and let µ1 > µ2 > µ3 = · · · = µn be the eigenvalues
of M . We know from a problem set that

|αi − µi| ≤ ‖R‖ .

In particular, if
‖R‖ < n

4
(p− q),

then
n

4
(p− q) < α2 <

3n
4

(p− q)

and, assuming q > p/3, we have

α1 >
3n
4

(p− q).

So, we can view α2 as a perturbation of µ2. The natural question is whether we can view w2 as a
perturbation of v2.

Here is the theory that says we can.
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Theorem 21.3.1. Let A and M be symmetric matrices. Let R = M − A. Let α1 ≥ · · · ≥ αn be
the eigenvalues of A with corresponding eigenvectors v1, . . . , vn and let Let µ1 ≥ · · · ≥ µn be the
eigenvalues of M with corresponding eigenvectors w1, . . . ,wn. Let θi be the angle between v i and
w i. Then,

sin θi ≤
2 ‖R‖

minj 6=i |αi − αj |
,

and
sin θi ≤

2 ‖R‖
minj 6=i |µi − µj |

.

We remark that this bound may be tightened slightly, essentially eliminating the 2. We defer the
proof of this theorem for a few minutes, and first see what it implies.

21.4 Partitioning

Consider
δ = v2 −w2.

For every vertex i that is mis-classified by v2, we have |δ(i)| ≥ 1√
n

. So, if v2 mis-classifies k vertices,
then

‖δ‖ ≥
√
k

n
.

As w and v are unit vectors, we may apply the crude inequality

‖δ‖ ≤
√

2 sin θ2

(the
√

2 disappears as θ2 gets small).

To combine this with the perturbation bound, we assume q > p/3, and find

min
j 6=2
|µ2 − µj | =

n

2
(p− q).

Assuming that ‖R‖ ≤ 3
√
pn, we find

sin θ2 ≤
3
√
pn

n
2 (p− q)

=
6
√
p

√
n(p− q)

.

So, the number k of misclassified vertices satisfies√
k

n
≤

6
√
p

√
n(p− q)

,

which implies

k ≤ 36p
(p− q)2

.



Lecture 21: November 11, 2009 21-5

So, if p and q are both constants, we expect to misclassify at most a constant number of vertices.
If p = 1/2, and q = p− 12/

√
n, then we get

36p
(p− q)2

=
n

8
,

so we expect to mis-classify at most a constant fraction of the vertices.

21.5 Proof of Eigenvector Perturbation

Proof of Theorem 21.3.1. By considering the matrices M − λiI and A− µiI instead of M and A,
we can assume that µi = 0. As the theorem is vacuous if µi has multiplicity more than 1, we may
also assume that µi has multiplicity 1 as an eigenvalue, and that w i is a unit vector in the nullspace
of M .

Our assumption that µi = 0 also leads to |λi| ≤ ‖R‖.

Expand v i in the eigenbasis of M , as

v i =
∑

j

cjw j , where cj = wT
j v i.

Setting
δ = min

j 6=i
|µj | ,

we may compute

‖Mv i‖2 =
∑

j

c2jµ
2
j

≥
∑
j 6=i

c2jδ
2

= δ2
∑
j 6=i

c2j

= δ2(1− c2i )

= δ2 sin2 θi.

On the other hand,
‖Mv i‖ ≤ ‖Av i‖+ ‖Rv i‖ = λi + ‖Rv i‖ ≤ 2 ‖R‖ .

So,

sin θi ≤
2 ‖R‖
δ

.
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It may seem surprising that the amount by which eigenvectors move depends upon how close their
respective eigenvalues are to the other eigenvalues. However, this dependence is necessary. To see
why, first consider a matrix with a repeated eigenvalue, such as

A =
[
1 0
0 1

]
.

Now, let v be any unit vector, and consider

B = A+ εvvT .

The matrix B will have v as an eigenvector of eigenvalue 1 + ε as well as an eigenvalue of 1. So, by
making an arbitrarily small perturbation, we were able to select which eigenvalue of B was largest.

To make this effect clearer, let w be any other unit vector, and consider the matrix

C = A+ εwwT .

So, w is the eigenvector of C of eigenvalue (1 + ε), and the other eigenvalue is 1. On the other
hand,

‖C −B‖ ≤
∥∥εwwT

∥∥+
∥∥εwwT

∥∥ = 2ε.

So, while B and C differ very little, their dominant eigenvectors can be completely different. This
is because the eigenvalues were close together.

21.6 Improving the Partition

If I get a chance, I’ll describe how one improves such a partition in practice, and how McSherry did
it in theory. I’ll begin by observing that the analysis we performed is very pessimistic. It relies on
an upper bound on ‖w2 − v2‖. But, v2 was produced by a random process. So, it seems unlikely
that all of its weight would be concentrated on a few vertices.
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