
Spectral Graph Theory Lecture 22

Testing Isomorphism of Graphs with Distinct Eigenvalues

Daniel A. Spielman November 13, 2009

22.1 Introduction

I will present an algorithm of Leighton and Miller [?] for testing isomorphism of graphs in which all
eigenvalues have multiplicity 1. This algorithm was never published, as the results were technically
subsumed by those in a paper of Babai, Grigoriev and Mount [?], which gave a polynomial time
algorithm for testing isomorphism of graphs in which all eigenvalues have multiplicity bounded by
a constant.

I present the weaker result in the interest of simplicity.

Testing isomorphism of graphs is a notorious problem. The fastest-known algorithm for it takes

time time 2
√

O(n log n) (See [?, ?, ?]). However, it seems easy in almost all practical instances.
Today’s lecture and one next week will give you some idea as to why.

22.2 Graph Isomorphism

Recall that two graphs G = (V,E) and H = (V, F ) are isomorphic if there exists a permutation π

of V such that
(a, b) ∈ E ⇐⇒ (π(a), π(b)) ∈ F.

Of course, we can express this relation in terms of matrices associated with the graphs. It doesn’t
matter much which matrices we use. So for this lecture we will use the adjacency matrices.

Every permutation may be realized by a permutation matrix. For the permutation π, this is the
matrix Π with entries given by

Π(a, b) =

{

1 if π(b) = a

0 otherwise.

For a vector v , we see1 that
(Πv ) (a) = v(π(b)).

Let A be the adjacency matrix of G and let B be the adjacency matrix of H. We see that G and
H are isomorphic if and only if there exists a permutation matrix Π such that

ΠAΠT = B.

1I hope I got that right. It’s very easy to confuse the permutation and its inverse.
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22.3 Using Eigenvalues and Eigenvectors

If G and H are isomorphic, then A and B must have the same eigenvalues. However, there are
many pairs of graphs that are non-isomorphic but which have the same eigenvalues. We will see
some next week. But, for now, we note that if A and B have different eigenvalues, then we know
that the corresponding graphs are non-isomorphic, and we don’t have to worry about them.

For the rest of this lecture, we will assume that A and B have the same eigenvalues, and that each
of these eigenvalues has multiplicity 1. We will begin our study of this situation by considering
some cases in which testing isomorphism is easy.

Recall that we can write
A = V ΛV T ,

where Λ is the diagonal matrix of eigenvalues of A and V is an orthnormal matrix holding its
eigenvectors. If B has the same eigenvalues, we can write

B = UΛUT .

If Π is the matrix of an isomorphism from G to H, then

ΠV ΛV T ΠT = UΛUT .

As each entry of Λ is distinct, this implies

ΠV = US,

where S is a diagonal matrix with ±1 entries on its diagonal. Our algorithm for testing isomorphism
will determine all such matrices S. That is, we will find diagonal ±1 matrices S such that the set
of rows of US is the same as the set of rows of V . Equivalentaly, we search for s1, . . . , sn ∈ {±1}n

for which S = diag(s1, . . . , sn) satisfies this condition. In this case, for each vertex a ∈ G there will
be a vertex b ∈ H for which

v1(a), . . . , vn(a) = s1u1(b), . . . , snvn(b).

I will say that an eigenvector v i is helpful if for all a 6= b ∈ V , |v i(a)| 6= |v i(b)|. In this case, it
is very easy to test if G and H are isomorphic, because this helpful vector gives us a cannonical
name for every vertex. If Π is an isomorphism from G to H, then Πv i must be an eigenvector of
B. We can then determine the sign si by considering the vertex of largest absolute value in v i and
u i. In particular, we must choose si so that these entries are the same. We could then find the
isomorphism, if it exists, by mapping a to the vertex b for which v i(a) = siu i(b).

The reason that I put absolute values in the definition of helpful, rather than just taking values, is
that eigenvectors are only determined up to sign. On the other hand, a single eigenvector determines
the isomorphism if v i(a) 6= v i(b) for all a 6= b and there is a cannonical way to choose a sign for
the vector v i. For example, if the sum of the entries in v i is not zero, we can choose its sign to
make the sum positive. In fact, unless v i and −v i have exactly the same set of values, there is a
cannonical choice of the sign for this vector.

Even if there is no cannonical choice of sign for this vector, it leaves at most two choices for the
isomorphism.
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22.4 All the Isomorphisms

The graph isomorphism problem is complicated by the fact that there can be many isomorphisms
from one graph to another. So, any algorithm for finding isomorphisms must be able to find many
of them.

Recall that an automorphism of a graph is an isomorphism from the graph to itself. If G and H

are isomorphic, then the number of isomorphisms from G to H will be equal to the number of
automorphisms of G. In particular, if Π is a permutation matrix such that ΠAΠT = B and if Θ is
a permutation matrix such that ΘAΘT = A, then

ΠΘAΘT ΠT = (ΠΘ)A(ΠΘ)T = B.

If Π and Θ are an automorphisms of G, then we can write

Π = V S1V
T and Θ = V S2V

T .

We then have that
ΠΘ = V S1V

T V S2V
T = V S1S2V

T

is also an automorphism of G. So, the group of automorphisms of G is isomorphic to a subgroup
of the diagonal matrices with ±1 entries under multiplication.

The form of our final solution will be as follows. We will determine a set of eigenvectors, T {1, . . . , n},
for which the signs (si)i∈T may be set arbitrarily. For every j 6∈ T , sj will be set to a function of
the signs of vectors in T . In particular, there will be a constant αj ∈ ±1 and a subset Tj such that

sj = αj

∏

i∈Tj

si.

All settings of signs that obey these rules will result in isomorphisms. In particular, there will be
2|T | isomorphisms.

22.5 Example

An example will be very helpful. Consider the house graph:

It has five distinct eigenvalues, with the following eigenvectors (to two digits of precsion, and not
necessarily scaled to be unit vectors)

v1 =













0
−1
1
−1
1













v 2 =













−.74
.43
.43
−.2
−.2













v3 =













0
1
−1
−1
1













v 4 =













−.52
−.18
−.18
.58
.58













v 5 =













.43

.53

.53

.36

.36













.
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1

2

4 5

3

We see that none of these vectors is helpful, which must be the case as this graph has an automor-
phism. If we apply this automorphism to these vectors, we get the vector set

u1 =













0
1
−1
1
−1













u2 =













−.74
.43
.43
−.2
−.2













u3 =













0
−1
1
1
−1













u4 =













−.52
−.18
−.18
.58
.58













u5 =













.43

.53

.53

.36

.36













.

The signs of vectors u3 and v3 are different, as are the signs of vectors u1 and v 1.

If we were given the same graph, but with different vertex labels, these eigenvectors would help us
establish the isomorphism. For example, the graph could be presented as

3

2 4

51

with eigenvectors

u1 =













−1
1
0
1
−1













u2 =













.43

.43
−.74
−.2
−.2













u3 =













1
−1
0
1
−1













u4 =













−.18
−.18
−.52
.58
.58













u5 =













.53

.53

.43

.36

.36













.

As u5(3) and v 5(1) are the only vertices that have value .43 in the fifth eigenvector, we could
conclude that any isomorphism must map one of these to the other. Still using the fifth eigenvector,
we could conclude that any isomorphism must map vertices {2, 3} in G to vertices {1, 2} in H, and
vertices {4, 5} in G to vertices {4, 5} in H.

22.6 Equivalence Classes of Vertices

We say that a vertices a, b ∈ V are equivalent if there exists an automorphism of G that maps a to
b. Our algorithm will begin by determining that certain pairs of vertices are not equivalent. That



Lecture 22: November 13, 2009 22-5

is, it breaks the vertices into classes in such a way that we are guaranteed that vertices in different
classes are not equivalent. It will use the same division in G as in H.

We may begin by dividing vertices according to the absolute values of their entries in eigenvectors.
That is, if |v i(a)| 6= |v i(b)|, then we may place vertices a and b in different classes, as there can be
no automorphism that maps a to b. We may label these classes by the absolute values achieved.
For example, we may label a class by α1, . . . , αn if it contains the vertices a for which

|v i(a)| = αi.

We may do the same in H, using the same set of labels. Of course, if we get different classes in
H, or the classes in H have different sizes then they do in G, then we will have determined that G

and H are non-isomorphic.

22.7 Refining Unbalanced Classes

It is possible to refine the vertex classes further. Let C be a class containing 3 vertices and imagine
that v i is an eigenvector that takes the values (β,−β,−β) on C. Even though the absolute value
of v i on C is constant, it is clear that one of these vertices is different from the other two, as it
is the only vertex of its sign. Generally, if an eigenvector v i takes values ±β on a class C but the
number of positive values is different from the number of negative values, then we may split this
class in two pieces. No automorphism of the graph will map a vertex from one part to the other.
We may label these classes consistently in G and H by recording the index of the eigenvector used
to split, and by recording which new class had the minority of the values. If a vector v i has the
same number of positive as negative values on C, then we way that v i is balanced with respect to
C.

We can extend this idea further by using products of eigenvectors. For example, imagine that C is
a class with 6 vertices, and that eigenvectors v i and v j have the following values on C:













β

β

β

−β

−β − β













and

















γ

−γ

−γ

−γ

γ

γ

















.

While both vectors are balanced with respect to C, their product is not. The product of v i and v j

takes one value twice and another value four times. Again, no automorphism of G will mix these
two classes. So, we can split these classes.

Of course, we can carry out this procedure with products of more eigenvectors. We say that a class
C is balanced with respect to the set T of eigenvectors if none of these eigenvectors is zero on any
element of C, if

∏

i∈T v i is uniform in absolute value on C, and takes the same number of positive
as negative values on C.
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22.8 Balancing with all products

We will split classes until they are balanced with respect to every product of eigenvectors. If this
results in every vertex being in its own class, then that is wonderful: it means that G has no non-
trivial automorphisms and that the classes determine the isomorphism from G to H, if it exists. If
some class C is bigger, it will turn out that all vertices in C are in fact equivalent.
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