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23.1 Introduction

In this and the next lecture, I will discuss strongly regular graphs. Strongly regular graphs are
extremal in many ways. For example, their adjacency matrices have only three distinct eigenvalues.
If you are going to understand spectral graph theory, you must have these in mind.

In many ways, strongly-regular graphs can be thought of as the high-degree analogs of expander
graphs. However, they are much easier to construct.

Many times someone has asked me for a matrix of 0s and 1s that “looked random”, and strongly
regular graphs provided a resonable answer.

Warning: I will use the letters that are standard when discussing strongly regular graphs. So λ
and µ will not be eigenvalues in this lecture.

23.2 Definitions

Formally, a graph G is strongly regular if

1. it is k-regular, for some integer k;

2. there exists an integer λ such that for every pair of vertices x and y that are neighbors in G,
there are λ vertices z that are neighbors of both x and y;

3. there exists an integer µ such that for every pair of vertices x and y that are not neighbors
in G, there are µ vertices z that are neighbors of both x and y.

These conditions are very strong, and it might not be obvious that there are any non-trivial graphs
that satisfy these conditions. Of course, the complete graph and disjoint unions of complete graphs
satisfy these conditions.

For the rest of this lecture, we will only consider strongly regular graphs that are connected and
that are not the complete graph. I will now give you some examples.
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23.3 The Pentagon

The simplest strongly-regular graph is the pentagon. It has parameters

n = 5, k = 2, λ = 0, µ = 1.

23.4 Lattice Graphs

For a positive integer n, the lattice graph Ln is the graph with vertex set {1, . . . n}2 in which vertex
(a, b) is connected to vertex (c, d) if a = c or b = d. Thus, the vertices may be arranged at the points
in an n-by-n grid, with vertices being connected if they lie in the same row or column. Alternatively,
you can understand this graph as the line graph of a bipartite complete graph between two sets of
n vertices.

It is routine to see that the parameters of this graph are:

k = 2(n− 1), λ = n− 2, µ = 2.

23.5 Latin Square Graphs

A Latin Square is an n-by-n grid, each entry of which is a number between 1 and n, such that no
number appears twice in any row or column. For example,1 2 3

2 3 1
3 1 2


Let me remark that the number of different latin squares of size n grows very quickly, at least as
fast as n!(n− 1)!(n− 2)! . . . 2!.

From such a latin square, we construct a Latin Square Graph. It will have n2 nodes, one for each
cell in the square. Two nodes are joined by an edge if

1. they are in the same row,

2. they are in the same column, or

3. they hold the same number.

So, such a graph has degree k = 3(n− 1). Any two nodes in the same row will both be neighbors
with every other pair of nodes in their row. They will have two more common neighors: the nodes in
their columns holding the other’s number. So, they have n common neighbors. The same obviously
holds for columns, and is easy to see for nodes that have the same number. So, every pair of nodes
that are neighbors have exactly λ = n common neighbors.
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On the other hand, consider two vertices that are not neighbors, say (1, 1) and (2, 2). They lie
in different rows, lie in different columns, and hold different numbers. The vertex (1, 1) has two
common neighbors of (2, 2) in its row: the vertex (1, 2) and the vertex holding the same number
as (2, 2). Similarly, it has two common neighbors of (2, 2) in its column. Finally, we can find two
more common neighbors of (2, 2) that are in different rows and columns by looking at the nodes
that hold the same number as (1, 1), but which are in the same row or column as (2, 2). So, µ = 6.

23.6 The Eigenvalues of Strongly Regular Graphs

We will consider the adjacency matrices of strongly regular graphs. Let A be the adjacency matrix
of a strongly regular graph with parameters (k, λ, µ). We already know that A has an eigenvalue
of k with multiplicity 1. We will now show that A has just two other eigenvalues.

To prove this, first observe that the (u, v) entry of A2 is the number of common neighbors of vertices
u and v. For u = v, this is just the degree of vertex u. We will use this fact to write A2 as a linear
combination of A, I and J . To this end, observe that the adjacency matrix of the complement of
A (the graph with non-edges where A has edges) is J − I −A. So,

A2 = λA+ µ(J − I −A) + kI = (λ− µ)A+ µJ + (k − µ)I.

For every vector v orthogonal to 1,

A2v = (λ− µ)Av + (k − µ)v .

So, every eigenvalue θ of A other than k satisfies

θ2 = (λ− µ)θ + k − µ.

The eigenvalues of A other than k are those θ that satisfy this quadratic equation, and so are given
by

λ− µ±
√

(λ− µ)2 + 4(k − µ)
2

.

These eigenvalues are always denoted r and s, with r > s. By convention, the multiplicty of the
eigenvalue r is always denoted f , and the multiplicty of s is always denoted g.

For example, for the pentagon we have

r =
√

5− 1
2

, s = −
√

5 + 1
2

.

For the lattice graph Ln, we have
r = n− 2, s = −2.

For the latin square graphs of order n, we have

r = n− 3, s = −3.
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23.7 Regular graphs with three eigenvalues

We will now show that every regular connected graph with at most 3 eigenvalues must be a strongly
regular graph. Let G be k-regular, and let its eigenvalues other than k be r and s. As G is connected,
its adjacency eigenvalue k has multiplicty 1.

Then, for every vector orthogonal to 1, we have

(A− rI)(A− sI)v = 0.

Thus, for some β,
(A− rI)(A− sI) = βJ,

which gives

A2 − (r + s)A+ rsI = βJ =⇒
A2 = (r + s)A− rsI + βJ

= (r + s+ β)A+ β(J −A− I) + (rs+ β)I.

So, the number of common neighbors of two nodes just depends on whether or not they are neigh-
bors, which implies that A is strongly regular.

23.8 Integrality of the eigenvalues

We will now see that, unless f = g, both r and s must be integers. We do this by observing a few
identities that they both must satisfy. First, from the quadratic equation above, we know that

r + s = λ− µ (23.1)

and
rs = µ− k. (23.2)

As the trace of an adjacency matrix is zero, and is also the sum of the eigenvalues times their
multiplicites, we know

k + fr + gs = 0. (23.3)

So, it must be the case that s < 0. Equation 23.1 then gives r > 0.

If f 6= g, then equations (23.3) and (23.1) provide independent constraints on r and s, and so
together they determine r and s. As the coefficients in both equations are integers, they tell us
that both r and s are rational numbers. From this, and the fact that r and s are the roots of a
quadratic equation with integral coefficients, we may conclude that r and s are in fact integers. Let
me remind you as to why.

Lemma 23.8.1. If θ is a rational number that satisfies

θ2 + bθ + c = 0,

where b and c are integers, then θ must be an integer.
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Proof. Write θ = x/y, where the greatest common divisor of x and y is 1. We then have

(x/y)2 + b(x/y) + c = 0,

which implies
x2 + bxy + cy2 = 0,

which implies that y divides x2. As we have assumed the greatest common divisor of x and y is 1,
this implies y = 1.

23.9 The Eigenspaces of Strongly Regular Graphs

It is natural to ask what the eigenspaces can tell us about a strongly regular graph. But, we will
find that they don’t tell us anything we don’t already know.

Let u1, . . .uf be an orthonormal set of eigenvectors of the eigenvalue r, and let U be the ma-
trix containing these vectors as columns. Recall that U is only determined up to an orthnormal
transformation. That is, we could equally take UQ for any f -by-f orthnormal matrix Q.

To the ith vertex, we associate the vector

x i
def= (u1(i), . . . ,uf (i)).

While the vectors U are determined only up to orthogonal transformations, these transformations
don’t effect the geometry of these vectors. For example, for vertices i and j, the distance between
x i and x j is

‖x i − x j‖ ,

and
‖x i − x j‖2 = ‖x i‖2 + ‖xxj‖2 − 2x ix

T
j .

On the other hand,

‖x iQ− x jQ‖2 = ‖x iQ‖2+‖xxjQ‖2−2(x iQ)(x jQ)T = ‖x iQ‖2+‖xxjQ‖2−2x iQQ
TxT

j = ‖x i‖2+‖xxj‖2−2x ix
T
j .

In fact, all the geometrical information about the vectors x i is captured by their Gram matrix,
whose (i, j) entry is x ix

T
j . This matrix is also given by

UUT .

Let W be the analogous matrix for the eigenvalue s. We then have

A = rUUT + sWW T + k
1
n
J.

As each of the matrices UUT , WW T and 1
nJ are projections (having all eigenvalues 0 or 1), and

are mutually orthogonal, we also have

A2 = r2UUT + s2WW T + k2 1
n
J.
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Consider the polynomial

P (X) =
(X − s)(X − k)
(r − s)(r − k)

.

We have

P (X) =


1 if X = r

0 if X = s, and
0 if X = k.

So,

P (A) = P (r)UUT + P (s)WW T + P (k)
1
n
J = UUT .

That is, the Gram matrix of the point set x 1, . . . ,xn is a linear combination of the identity, A and
A2. So, the distance between any pair of points in this set just depends on whether or not the
corresponding vertices are neighbors in G.

In particular, this means that the point set x 1, . . . ,xn is a two-distance point set : a set of points
such that there are only two different distances between them. Next lecture, we will use this fact
to prove a lower bound on the dimensions f and g.

23.10 Triangular Graphs

For a positive integer n, the triangular graph Tn may be defined to be the line graph of the complete
graph on n vertices. To be more concrete, its vertices are the subsets of size 2 of {1, . . . , n}. Two
of these sets are connected by an edge if their intersection has size 1.

You are probably familiar with some triangular graphs. T3 is the triangle, T4 is the skeleton of the
octahedron, and T5 is the complement of the Petersen graph.

Let’s verify that these are strongly-regular, and compute their parameters. As the construction
is competely symmetric, we may begin by considering any vertex, say the one labeled by the set
{1, 2}. Every vertex labeled by a set of form {1, i} or {2, i}, for i ≥ 3, will be connected to this set.
So, this vertex, and every vertex, has degree 2(n− 2).

For any neighbor of {1, 2}, say {1, 3}, every other vertex of from {1, i} for i ≥ 4 will be a neighbor of
both of these, as will the set {2, 3}. Carrying this out in general, we find that λ = (n−3)+1 = n−2.

Finally, any non-neighbor of {1, 2}, say {3, 4}, will have 4 common neighbors with {1, 2}:

{1, 3} , {1, 4} , {2, 3} , {2, 4} .

So, µ = 4.

23.11 Paley Graphs

Probably next lecture.


