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25.1 Introduction

In this and the next lecture, we will explore spectral properties of planar graphs. I’ll also spend
some time telling you other important facts about planar graphs. Planar graphs relate to some of
the most exciting parts of graph theory, and it would be a shame for you not to know something
about them.

A graph is planar if it can be drawn in the plane without any crossing edges. That is, each vertex
is located at one point of the plane, and a curve from one point to another is drawn between the
points corresponding to vertices connected by an edge. None of these curves interesect each other,
and may only touch at the points representing the vertices at which they start or end.

(a) A planar graph (b) A non-planar
graph

These figures suggest that even more is true. Each vertex can be represented by a circle, such that
the interiors of all these circles are disjoint. The edges can be represented by totally disjoint line
segments connecting the boundaries of the circles of which they are endpoints.

Planar graphs originated with the studies of polytopes and of maps. The skeleton (edges) of a three-
dimensional polytope provide a planar graph. We obtain a planar graph from a map by representing
countries by vertices, and placing edges between countries that touch each other. Assuming each
country is contiguous, this gives a planar graph. While planar graphs were introduced for practical
reasons, they posess many remarkable mathematical properties. This is one reason we will study
them.

A more practical reason for studying planar graphs is that they, and their relatives, appear in many
practical applications. The study of two-dimensional images often results in problems related to
planar graphs, as does the solution of many problems on the two-dimensional surface of our earth.
Many natural three-dimensional graphs arise in scientific and engineering problems. These often
come from well-shaped meshes, which share many properties with planar graphs.

25-1



Lecture 25: December 2, 2009 25-2

25.2 Planar Graphs

Here’s a formal definition of a planar graph.

Definition 25.2.1. A graph is planar if there exists an embedding of the vertices in IR2, f : V → IR2

and a mapping of edges e ∈ E to simple curves in IR2, fe : [0, 1] → IR2 such that the endpoints of

the curves are the vertices at the endpoints of the edge, and no two curves intersect except possibly

at their endpoints.

Definition 25.2.2. A graph is planar if there exists an embedding of the vertices in IR2, f : V → IR2

such that for all pairs of edges (a, b) and (c, d) in E, with a, b, c, and d distinct, the line segment

from f(a) to f(b) does not cross the line segment from f(c) to f(d).

It is a theorem that these two definitions are equivalent.

There are many things that you should know about planar graphs. Given an embedding of a planar
graph in the plane, we call every region of the plane that is connected when the edges are removed
a face. The outside is also a face.
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Figure 25.1: In this figure, each face has been marked with an “F”.

Theorem 25.2.3 (Euler’s Theorem). Let G = (V,E) be a connected planar graph, and let F be

the set of faces of G in some planar embedding. Then,

|V | − |E| + |F | = 2.

This is a wonderful theorem. You can prove it by induction on the number of vertices and edegs.
Verify that it holds for the graph with 1 vertex, 1 face, and no edges. Then, see what happens
when you add edges and vertices.

If we place a few restrictions on a planar graph, then the faces become fixed. Recall that a graph
is said to be k-vertex-connected if after the removal of any set of fewer than k vertices the graph
remains connected. In a planar graph that is 3-vertex-connected, the faces are fixed.

If you add as many edges as possible to a planar graph, subject to its remaining planar, you obtain
a graph in which every face is a triangle. The resulting graph is called a “fully triangulated planar
graph”. By combining Euler’s theorem with simple counting, you can prove an upper bound on
the number of edges in a fully triangulated planar graph.

Corollary 25.2.4. If G is a fully-triangulated planar graph with n ≥ 3 vertices, then it has m =
3n − 6 edges. Moreover, every planar graph with n ≥ 3 vertices has at most 3n − 6 edges.
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(a) A planar graph (b) A fully triangulated pla-
nar graph

This enables us to prove that the complete graph on five vertices is not planar, as it has 5 vertices
and 10 edges.

25.3 Planar Separators

The famous Planar Separator Theorem of Lipton and Tarjan [LT79] tells us that it is possible to
remove O(

√
n) vertices of a planar graph so that no component of the remaining graph has more

than 2n/3 vertices. We will prove a result which shows that eigenvectors can be used to find such
separators (after a little work that I will not discuss here).

Theorem 25.3.1 ([ST07]). Let G be a planar graph with n vertices of maximum degree d, and let

λ2 be the second-smallest eigenvalue of its Laplacian. Then,

λ2 ≤ 8d

n
.

This theorem helps explain the success of spectral partitioning methods. The proof will involve
almost no calculation, but will use some special properties of planar graphs. However, this proof has
been generalized to many planar-like graphs, including the graphs of well-shaped 3d meshes [ST07].
This theorem has been extended to graphs of bounded genus by Kelner [Kel06], to graph excluding
bounded minors [BLR10]. Bounds on the higher eigenvalues have been obtained in [KLPT09].

25.4 Geometric Embeddings

We typically upper bound λ2 by evidencing a test vector. Here, we will upper bound λ2 by
evidencing a test embedding. The bound we apply is:

Lemma 25.4.1. For any d ≥ 1,

λ2 = min
v1,...,vn∈IRd:

P

v i=0

∑

(i,j)∈E ‖v i − v j‖2

∑

i ‖v i‖2 .
(25.1)

Proof. Let v i = (xi, yi, . . . , zi). We note that
∑

(i,j)∈E

‖v i − v j‖2 =
∑

(i,j)∈E

(xi − xj)
2 +

∑

(i,j)∈E

(yi − yj)
2 + · · · +

∑

(i,j)∈E

(zi − zj)
2.
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Similarly,
∑

i

‖v i‖2 =
∑

i

x2
i +

∑

i

y2
i + · · · +

∑

i

z2
i .

It is now trivial to show that λ2 ≥ RHS: just let xi = yi = · · · = zi be given by an eigenvector of
λ2. To show that λ2 ≤ RHS, we apply my favorite inequality: A+B+···+C

A′+B′+···+C′ ≥ min
(

A
A′ ,

B
B′ , . . . ,

C
C′

)

,
and then recall that

∑

xi = 0 implies

∑

(i,j)∈E(xi − xj)
2

∑

i x
2
i

≥ λ2.

For an example, consider the natural embedding of the square with corners (±1,±1).

The key to applying this embedding lemma is to obtain the right embedding of a planar graph.
Usually, the right embedding of a planar graph is given by Koebe’s embedding theorem, which I
will now explain. I begin by considering one way of generating planar graphs. Consider a set of
circles {C1, . . . , Cn} in the plane such that no pair of circles intersects in their interiors. Associate
a vertex with each circle, and create an edge between each pair of circles that meet at a boundary.
The resulting graph is clearly planar. Koebe’s embedding theorem says that every planar graph

results from such an embedding.

Theorem 25.4.2 (Koebe). Let G = (V,E) be a planar graph. Then there exists a set of circles

{C1, . . . , Cn} in IR2 that are interior-disjoint such that circle Ci touches circle Cj if and only if

(i, j) ∈ E.

This is an amazing theorem, which I won’t prove today. You can find a proof at

http://math.mit.edu/~spielman/course/lect3.html

Such an embedding is often called a kissing disk embedding of the graph. From a kissing disk
embedding, we obtain a natural choice of v i: the center of disk Ci. Let ri denote the radius of this
disk. We now have an easy upper bound on the numerator of (25.1): ‖v i − v j‖2 = (ri + rj)

2 ≤
2r2

i + 2r2
j . On the other hand, it is trickier to obtain a lower bound on

∑ ‖v i‖2. In fact, there are
graphs whose kissing disk embeddings result in

(25.1) = Θ(1).

These graphs come from triangles inside triangles inside triangles. . . Such a graph is depicted below:



Lecture 25: December 2, 2009 25-5

Discs

Graph

We will fix this problem by lifting the planar embeddings to the sphere by stereographic projection.
Given a plane, IR2, and a sphere S tangent to the plane, we can define the stereographic projection
map, Π, from the plane to the sphere as follows: let s denote the point where the sphere touches the
plane, and let n denote the opposite point on the sphere. For any point x on the plane, consider
the line from x to n . It will intersect the sphere somewhere. We let this point of intersection be
Π(x ).

The fundamental fact that we will exploit about stereographic projection is that it maps circles

to circles! So, by applying stereographic projection to a kissing disk embedding of a graph in the
plane, we obtain a kissing disk embedding of that graph on the sphere. Let Di = Π(Ci) denote the
image of circle Ci on the sphere. We will now let v i denote the center of Di, on the sphere.

If we had
∑

i v i = 0, the rest of the computation would be easy. For each i, ‖v i‖ = 1, so the
denominator of (25.1) is n. Let ri denote the straight-line distance from v i to the boundary of Di.
We then have

‖v i − v j‖2 ≤ (ri + rj)
2 ≤ 2r2

i + 2r2
j .

So, the denominator of (25.1) is at most 2d
∑

i r
2
i . On the other hand, the area of the cap encircled

by Di is at least πr2
i . As the caps are disjoint, we have

∑

i

πr2
i ≤ 4π,

which implies that the denominator of (25.1) is at most

2d
∑

i

r2
i ≤ 8d.

Putting these inequalities together, we see that

min
v1,...,vn∈IRd:

P

v i=0

∑

(i,j)∈E ‖v i − v j‖2

∑

i ‖v i‖2 .
≤ 8d

n
.

Thus, we merely need to verify that we can ensure that

∑

i

v i = 0. (25.2)



Lecture 25: December 2, 2009 25-6

Note that there is enough freedom in our construction to believe that we could prove such a thing:
we can put the sphere anywhere on the plane, and we could even scale the image in the plane before
placing the sphere. By carefully combining these two operations, it is clear that we can place the
center of gravity of the v is close to any point on the boundary of the sphere. It turns out that this
is sufficient to prove that we can place it at the origin.

I think I’ll skip the details of this argument, and tell you other things about planar graphs instead.
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