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26.1 Introduction

In this lecture, I will introduce the Colin de Verdière number of a graph, and sketch the proof that
it is three for planar graphs. Along the way, I will recall two important facts about planar graphs:

1. Three-connected planar graphs are the skeletons of three-dimensional convex polytopes.

2. Planar graphs are the graphs that do not have K5 or K3,3 minors.

26.2 Colin de Verdière invariant

The Colin de Verdière graph paramater essentially measures the maximum multiplicity of the
second eigenvalue of a generalized Laplacian matrix of the graph. It is less than or equal to three
precisely for planar graphs.

We say that M is a Generalized Laplacian Matrix of a graph G = (V,E) if M can be expressed as
M = L + D where L is a the Laplacian matrix of a weighted version of G and D is an arbitrary
diagonal matrix. That is, we impose the restrictions:

M(i, j) < 0 if (i, j) ∈ E

M(i, j) = 0 if (i, j) 6∈ E and i 6= j

M(i, i) is arbitrary.

The Colin de Verdière graph paramater, which we denote cdv(G) is the maximum multiplicty of
the second-smallest eigenvalue of a Generalized Laplacian Matrix M of G satisfying the following
condition, known as the Strong Arnold Property.

For every non-zero n-by-n matrix X such that X(i, j) = 0 for i = j and (i, j) ∈ E,
MX 6= 0.

That later restriction will be unnecessary for the results we will prove in this lecture.

Colin de Verdière [dV90] proved that cdv(G) is at most 2 if and only if the graph G is outerplanar.
That is, it is a planar graph in which every vertex lies on one face. He also proved that it is at
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most 3 if and only if G is planar. Lovàsz and Schrijver [LS98] proved that it is at most 4 if and
only if the graph is linkless embeddable.

In this lecture, I will sketch proofs from two parts of this work:

1. If G is a three-connected planar graph, then cdv(G) ≥ 3.

2. If G is a three-connected planar graph, then cdv(G) ≤ 3.

The first requires the construction of a matrix, which we do using the representation of the graph
as a convex polytope. The second requires a proof that no Generalized Laplacian Matrix of the
graph has a second eigenvalue of high multiplicity. We prove this by using graph minors.

26.3 Polytopes and Planar Graphs

Let me begin by giving two definitions of convex polytopes: as the convex hull of a set of points
and as the intersection of half-spaces.

Let x 1, . . . ,xn ∈ IRd (think d = 3). Then, the convex hull of x 1, . . . ,xn is the set of points

{

∑

i

aix i :
∑

ai = 1 and all ai ≥ 0

}

.

Every convex polytope is the convex hull of its extreme vertices.

A convex polytope can also be defined by its faces. For example, given vectors y1, . . . ,y l, the set
of points

{

x : yT
i x ≤ 1, for all i

}

is a convex polytope. Moreover, every convex polytope containing the origin in its interior can be
described in this way. Each vector y i defines a face of the polytope consisting of those points x in
the polytope such that y

T
i x = 1.

The vertices of a convex polytope are those points x in the polytope that cannot be expressed
non-trivially as a convex combination of any points other than themselves. The edges (or 1-faces)
of a convex polytope are the line segments on the boundary of the polytope that go between two
vertices of the polytope and such that every point on the edge cannot be expressed non-trivially as
the convex hull of any vertices other than these two.

Theorem 26.3.1 (Steinitz’s Theorem). For every three-connected planar graph G = (V,E), there

exists a set of vectors x 1, . . . ,xn ∈ IR3 such that the line segment from x i to x j is an edge of the

convex hull of the vectors if and only if (i, j) ∈ E.

That is, every planar graph may be represented by the edges of a three-dimensional convex polytope.
We will use this representation to construct a Generalized Laplacian Matrix M whose second-
smallest eigenvalue has multiplicity 3.
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26.4 The Colin de Verdière Matrix

Let G = (V,E) be a planar graph, and let x 1, . . . ,xn ∈ IR3 be the vectors given by Steinitz’s
Theorem. For 1 ≤ i ≤ 3, let v i ∈ IRn be the vector given by

v i(j) = x j(i).

So, the vector v i contains the ith coordinate of each vector x 1, . . . ,xn.

We will now see how to construct a generalized Laplacian matrix M having the vectors v 1, v 2 and
v3 in its nullspace. One can also show that the matrix M has precisely one negative eigenvalue.
But, we won’t have time to do that in this lecture. You can find the details in [Lov01].

Our construction will exploit the vector cross product. Recall that for two vectors x and y in IR3

that it is possible to define a vector x × y that is orthogonal to both x and y , and whose length
is the area of the parallelogram with sizes x and y . This determines the cross product up to sign.
You should recall that the sign is determined by an ordering of the basis of IR3, or by the right

hand rule. Also recall that

x × y = −y × x ,

(x 1 + x 2) × y = x 1 × y + x 2 × y , and

x × y = 0 if and only if x and y are parallel.

We will now specify the entries M(i, j) for (i, j) ∈ E. An edge (i, j) is on the boundary of two faces
of the polytope. Let’s say that the vectors defining these faces are ya and yb. So,

y
T
a x i = y

T
a x j = y

T
b x i = y

T
b x j = 1.

So,
(ya − y b)

T
x i = (ya − y b)

T
x j = 0.

This implies that ya − y b is parallel to x i × x j.

Assume ya comes before y b in the clockwise order about vertex x i. So, y b − ya points the same
direction as x i × x j. Set M(i, j) so that

M(i, j)x i × x j = ya − yb

and M(i, j) < 0.

I will now show that we can choose the diagonal entries M(i, i) so that the coordinate vectors are
in the nullspace of M . First, set

x̂ i =
∑

j∼i

M(i, j)x j .

We will show that x̂ i is parallel to x i by observing that x̂ i × x i = 0. We compute

x i × x̂ i = x i ×
∑

j∼i

M(i, j)x j =
∑

j∼i

M(i, j)x i × x j .
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This sum counts the difference yb−ya between each adjacent pair of faces that touch x i. By going
around x i in counter-clockwise order, we see that each of these vectors occurs once positively and
once negatively in the sum, so the sum is zero.

Thus, x i and x̂ i are parallel, and we may set M(i, i) so that

M(i, i)x i + x̂ i = 0.

This implies that the coordinate vectors are in the nullspace of M , as











M











x 1

x 2

...
xn





















i

= M(i, i)x i +
∑

j∼i

M(i, j)x j = M(i, i)x i + x̂ i.

One can also show that the matrix M has precisely one negative eigenvalue, so the multiplicity of
its second-smallest eigenvalue is 3.

26.5 Minors of Planar Graphs

I will now show you that cdv(G) ≤ 3 for every 3-connected planar graph G. To begin, I mention
one other characterization of planar graphs.

First, observe that if G is a planar graph, it remains planar when we remove an edge. Also observe
that if (u, v) is an edge, then the graph obtained by contracting (u, v) to one vertex is also planar.
Any graph H that can be obtained by removing and contracting edges from a graph G is called
a minor of G. It is easy to show that every minor of a planar graph is also planar. Kuratowski’s
Theorem tells us that a graph is planar if and only if it does not have K5 or K3,3 (the complete
bipartite graph between two sets of 3 vertices) as a minor. We will just use the fact that a planar
graph does not have K3,3 as a minor.

26.6 cdv(G) ≤ 3

We will now prove that if G is a 3-connected planar graph, then cdv(G) ≤ 3. Assume, by way of
contradiction, that there is generalized Laplacian matrix M of G whose second eigenvalue λ2 has
multiplicity greater than or equal to 4. We will do this by showing that if G is three-connected and
cdv(G) ≥ 4, then G contains a K3,3 minor. Without loss of generality, we can assume λ2 = 0 (by
just adding a diagonal matrix).

Our proof will exploit a variant of Fiedler’s Nodal Domain Theorem, which we proved back in the
beginning of the semester. That theorem considered any eigenvector v of λ2 (of a Laplacian), and
proved that the set of vertices that are non-negative in v is connected. The variant we use is due
to van der Holst [Van95], which instead applies to eigenvectors v of λ2 of minimal support. These
are the eigenvectors of v of λ2 for which there is no other eigenvector w of λ2 such that the zeros
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of v are a subset of the zeros of w . That is, v has as many zero entries as possible. One can then
prove that the set of vertices that are positive in v is connected. And, one can of course do the
same for the vertices that are negative.

Now, let F be any face of G, and let a, b and c be three vertices in F . As λ2 has multiplicty at
least 4, it has some eigenvector that is zero at each of a, b and c. Let v be an eigenvector of λ2

with minimal support that is zero at each of a, b, and c. Let d be any vertex for which v(d) > 0.
As the graph is three-connected, it contains three vertex-disjoint paths from d to a, b, and c (this
follows from Menger’s Theorem, which I have not covered). As v (d) > 0 and v(a) = 0, there is
some vertex a′ on the path from d to a for which v (a′) = 0 but a′ has a neighbor a+ for which
v(a+) > 0. As λ2 = 0, a′ must also have a neighbor a− for which v (a−) < 0. Construct similar
vertices for b and c.

a

d

b

c

c
−

b
+

b’

a
+

c
′

c
+

a
′

a
−

b
−

Figure 26.1: Vertices a, b, c, d, and the paths.

Now, contract every edge on the path from a to a′, on the path from b to b′ and on the path from c

to c′. Also, contract all the vertices for which v is positive and contract all the vertices for which v

is negative (which we can do because these sets are connected). Finally, contract every edge in the
face F that does not involve one of a, b, or c. We obtain a graph with a triangular face abc such
that each of a, b, and c have an edge to the positive supervertex and the negative supervertex. We
would like to say that this graph cannot be planar.

To do this, we add one additional vertex f inside the face and connected to each of a, b, and c.
This does not violate planarity because a, b, and c were contained in a face. In fact, we can add
f before we do the contractions. By throwing away all other edges, we have constructed a K3,3

minor, so the graph cannot be planar.
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Figure 26.2: The set of positive and negative vertices that will be contracted. Vertex f has been
inserted.
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Combin. Theory Ser. B, 50:11–21, 1990.
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Figure 26.3: The edges in the cycle have been contracted, as have all the positive and negative
vertices. After contracting the paths between a and a′, between b and b′ and between c and c′, we
obtain a K3,3 minor.


