
Spectral Graph Theory Lecture 2

The Laplacian

Daniel A. Spielman August 31, 2012

2.1 About these notes

These notes are not necessarily an accurate representation of what happened in class. The notes
written before class say what I think I should say. The notes written after class way what I wish I
said.

Be skeptical of all statements in these notes that can be made mathematically rigorous.

2.2 The Laplacian Matrix

Recall that the Laplacian Matrix of a weighted graph G = (V,E,w), w : E → IR+, is designed to
capture the Laplacian quadratic form:

xTLGx =
∑

(u,v)∈E

w(u, v)(x (u)− x (v))2. (2.1)

We will now use this quadratic form to derive the structure of the matrix. To begin, consider a
graph with just two vertices and one edge. Let’s call it G1,2. We have

xTLG1,2x = (x (1)− x (2))2. (2.2)

Consider the vector e1− e2, where by e i I mean the elementary unit vector with a 1 in coordinate
i. We have

x (1)− x (2) = (e1 − e2)
Tx ,

so

(x (1)− x (2))2 =
(
(e1 − e2)

Tx
)2

= xT (e1 − e2) (e1 − e2)
T x = xT

[
1 −1
−1 1

]
x .

So,

LG1,2 =

[
1 −1
−1 1

]
.

Now, let Gu,v be the graph with just one edge between u and v. It can have as many other vertices
as you like. The Laplacian of Gu,v can be written in the same way: it is the matrix that in the
intersection of rows and columns indexed by u and v looks like[

1 −1
−1 1

]
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and is zero elsewhere. So,

LG =
∑

(u,v)∈E

w(u, v)(eu − ev)(eu − ev)T =
∑

(u,v)∈E

w(u, v)LGu,v .

You should check that this agrees with the definition of the Laplacian from last class:

LG = DG −AG,

where
DG(u, u) =

∑
v

w(u, v).

This formula turns out to be useful when we view the Laplacian as an operator. For every vector
x we have

(LGx )(u) = d(u)x (u)−
∑

(u,v)∈E

w(u, v)x (v) =
∑

(u,v)∈E

w(u, v)(x (u)− x (v)).

2.3 Drawing with Laplacian Eigenvalues

I will now explain the motivation for the pictures of graphs that I drew last lecture using the
Laplacian eigenvalues. Well, the real motivation was just to convince you that eigenvectors were
cool. The following is the technical motivation. It should come with the caveat that it does not
produce nice pictures of all graphs. In fact, it produces bad pictures of most graphs. But, it is still
the first thing I always try when I encounter a new graph that I want to understand.

This approch to using eigenvectors to draw graphs was suggested by Hall [Hal70] in 1970. Hall first
considered the problem of assigning a real number x (u) to each vertex u so that (x (u) − x (v))2

is small for most edges (u, v). This led him to consider the problem of minimizing (2.1). So as
to avoid the degenerate solutions in which every vertex is mapped to one value, he introduced the
restriction that x be orthogonal to 1. As the utility of the embedding does not really depend upon
its scale, he suggested the normalization ‖x‖ = 1. As we saw last class, the solution to the resulting
optimization problem is precisely an eigenvector of the second-smallest eigenvalue of the Laplacian.

But, what if we want to assign the vertices to points in IR2? The obvious approach is to solve for
x and y minimizing

min
x ,y∈IRV

∑
(u,v)∈E

‖(x (u),y(u))− (x (v),y(v))‖2

such that ∑
u

(x (u),y(u)) = (0, 0).

However, doing so typically results in the degenerate solution x = y = ψ2, as∑
(u,v)∈E

‖(x (u),y(u))− (x (v),y(v))‖2 =
∑

(u,v)∈E

(x (u)− x (v))2 +
∑

(u,v)∈E

(y(u)− y(v))2 .



Lecture 2: August 31, 2012 2-3

To ensure that the two coordinates are different, Hall introduced the restriction that x be orthogonal
to y . One can use the characterization of eigenvalues that we derived last lecture to prove that the
solution is then given by setting x = ψ2 and y = ψ3, or by taking a rotation of this solution (I
will probably make this a problem on the first problem set) .

2.4 Isoperimetry and λ2

Computer Scientists are often interested in cutting, partitioning, and clustering graphs. Their
motivations range from algorithm design to data analysis. We will see that the second-smallest
eigenvalue of the Laplacian is intimately related to the problem of dividing a graph into two pieces
without cutting too many edges.

Let S be a subset of the vertices of a graph. One way of measuring how well S can be separated
from the graph is to count the number of edges connecting S to the rest of the graph. These edges
are called the boundary of S, which we formally define by

∂(S)
def
= {(u, v) ∈ E : u ∈ S, v 6∈ S} .

We are less interested in the total number of edges on the boundary than in the ratio of this number
to the size of S itself. For now, we will measure this in the most natural way–by the number of
vertices in S. We will call this ratio the isoperimetric ratio of S, and define it by

θ(S)
def
=
|∂(S)|
|S|

.

The isoperimetric number of a graph is the minimum isoperimetric number over all sets of at most
half the vertices:

θG
def
= min
|S|≤n/2

θ(S).

We will now derive a lower bound on θG in terms of λ2. We will present an upper bound, known
as Cheeger’s Inequality, in a later lecture.

Theorem 2.4.1. For every S ⊂ V
θ(S) ≥ λ2(1− s),

where s = |S| / |V |.

Proof. As

λ2 = min
x :xT1=0

xTLGx

xTx
,

for every non-zero x orthogonal to 1 we know

xTLGx ≥ λ2xTx .
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To exploit this inequality, we need a vector related to the set S. A natural choice is χS , the
characteristic vector of S,

χS(u) =

{
1 if u ∈ S
0 otherwise.

We find
χT
SLGχS =

∑
(u,v)∈E

(χS(u)− χS(v))2 = |δ(S)| .

However, χS is not orthogonal to 1. To fix this, use

x = χS − s1.

We have xT1 = 0, and

xTLGx =
∑

(u,v)∈E

((χS(u)− s)− (χS(v)− s))2 = |δ(S)| .

To finish the proof, we compute

xTx = |S| (1− s)2 + (|V | − |S|)s2 = |S| (1− 2s+ s2) + |S| s− |S| s2 = |S| (1− s).

This theorem says that if λ2 is big, then G is very well connected: the boundary of every small set
of vertices is at least λ2 times something just slightly smaller than the number of vertices in the
set.

2.5 The Animals in the Zoo

We now examine the eigenvalues and eigenvectors of the Laplacians of some fundamental graphs.
It is important to see many examples like these. They will help you develop your intuition for how
eigenvalues behave. As you encounter new graphs, you will compare them to the graphs that you
already know and hope that they behave similarly.

Today we will examine

• The complete graph on n vertices, Kn, which has edge set {(u, v) : u 6= v}.

• The star graph on n vertices, Sn, which has edge set {(1, u) : 2 ≤ u ≤ n}.

• The hypercube, which we defined last lecture.

As all these graphs are connected, they all have eigenvalue zero with multiplicity one.

Lemma 2.5.1. The Laplacian of Kn has eigenvalue 0 with multiplicity 1 and n with multiplicity
n− 1.
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Proof. To compute the non-zero eigenvalues, let ψ be any non-zero vector orthogonal to the all-1s
vector, so ∑

u

ψ(u) = 0. (2.3)

We now compute the first coordinate of LKnψ. We find

(LKnψ) (1) =
∑
v≥2

(ψ(1)−ψ(v)) = (n− 1)ψ(1)−
n∑

v=2

ψ(v) = nψ(1), by (2.3).

As the choice of coordinate was arbitrary, we have Lψ = nψ. So, every vector orthogonal to the
all-1s vector is an eigenvector of eigenvalue n.

Alternative approach. Observe that LKn = nI − 11T .

To determine the eigenvalues of Sn, we first observe that each vertex i ≥ 2 has degree 1, and that
each of these degree-one vertices has the same neighbor. Whenever two degree-one vertices share
the same neighbor, they provide an eigenvector of eigenvalue 1.

Lemma 2.5.2. Let G = (V,E) be a graph, and let v and w be vertices of degree one that are both
connected to another vertex z. Then, the vector ψ given by

ψ(u) =


1 u = v

−1 u = w

0 otherwise,

is an eigenvector of the Laplacian of G of eigenvalue 1.

Proof. Verify this for the path graph with three vertices, and then check that it holds in general.

The existence of this eigenvector implies that ψ(i) = ψ(j) for every eigenvector ψ of a different
eigenvalue.

Lemma 2.5.3. The graph Sn has eigenvalue 0 with multiplicity 1, eigenvalue 1 with multiplicity
n− 2, and eigenvalue n with multiplicity 1.

Proof. Applying Lemma 2.5.2 to vertices i and i+1 for 2 ≤ i < n, we find n−2 linearly independent
eigenvectors of eigenvalue 1. To determine the last eigenvalue, recall that the trace of a matrix
equals both the sum of its diagonal entries and the sum of its eigenvalues. We know that the trace
of LSn is 2n − 2, and we have identified n − 1 eigenvalues that sum to n − 2. So, the remaining
eigenvalue must be n. Knowing this, and the fact that the corresponding eigenvector must be
constant across vertices 2 through n, make it an easy exercise to compute the last eigenvector.
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2.6 The Hypercube

The hypercube graph is the graph with vertex set {0, 1}d, with edges between vertices whose names
differ in exactly one bit. The hypercube may also be expressed as the product of the one-edge graph
with itself d− 1 times, with the proper definition of graph product.

Definition 2.6.1. Let G = (V,E) and H = (W,F ) be graphs. Then G×H is the graph with vertex
set V ×W and edge set (

(v, w), (v̂, w)

)
where (v, v̂) ∈ E and(

(v, w), (v, ŵ)

)
where (w, ŵ) ∈ F .

Let G = ({0, 1} , {(0, 1)}), and let Hd be the d-dimensional hypercube graph. You should check
that H1 = G and that Hd = Hd−1 ×G.

Figure 2.1: The product of a star graph on 4 vertices with a path on 3.

Theorem 2.6.2. Let G = (V,E) and H = (W,F ) be graphs with Laplacian eigenvalues λ1, . . . , λn
and µ1, . . . , µm, and eigenvectors α1, . . . ,αn and β1, . . . ,βm, respectively. Then, for each 1 ≤ i ≤ n
and 1 ≤ j ≤ m, G×H has an eigenvector γi,j of eigenvalue λi + µj such that

γi,j(v, w) = αi(v)βj(w).

Proof. Let α be an eigenvector of LG of eigenvalue λ, let β be an eigenvector of LH of eigenvalue
µ, and let γ be defined as above.

To see that γ is an eigenvector of eigenvalue λ+ µ, we compute

(Lγ)(u, v) =
∑

(û,v):(u,û)∈E

(γ(u, v)− γ(û, v)) +
∑

(u,v̂):(v,v̂)∈F

(γ(u, v)− γ(u, v̂))

=
∑

(û,v):(u,û)∈E

(α(u)β(v)−α(û)β(v)) +
∑

(u,v̂):(v,v̂)∈F

(α(u)β(v)−α(u)β(v̂))

=
∑

(û,v):(u,û)∈E

β(v) (α(u)−α(û)) +
∑

(u,v̂):(v,v̂)∈F

α(u) (β(v)− β(v̂))

=
∑

(û,v):(u,û)∈E

β(v)λα(u) +
∑

(u,v̂):(v,v̂)∈F

α(u)µβ(v)

= (λ+ µ)(α(u)β(v)).
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As the non-zero eigenvector of G is (1,−1) and has eigenvalue 2, we see that Hd has eigenvalue 2k
with multiplicity

(
d
k

)
, for 0 ≤ k ≤ d. Using the above theorem, you should also confirm that the

eigenvectors of Hd are given by the functions

ψa(b) = (−1)a
T b,

where a ∈ {0, 1}d, and we view vertices b as length-d vectors of zeros and ones. The eigenvalue of
which ψa is an eigenvector is the number of ones in a.

Using Theorem 2.4.1 and our knowledge of the eigenvalues of the hypercube, we can immediately
prove the following isoperimetric theorem for the hypercube.

Corollary 2.6.3. Let S be a subset of {0, 1}d of size at most 2d−1. Then,

|δ(S)| ≥ |S| .

It is possible to prove this by more concrete combinatorial means. But, this proof is simpler.
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