
Spectral Graph Theory Lecture 5

Rings, Paths, and Paley Graphs

Daniel A. Spielman September 12, 2012

5.1 About these notes

These notes are not necessarily an accurate representation of what happened in class. The notes
written before class say what I think I should say. The notes written after class way what I wish I
said.

All statements in these notes that can be made mathematically rigorous should be taken with a
grain of salt and a shot of Tequila.

5.2 Overview

This lecture is devoted to an examination of some special graphs and their eigenvalues.

5.3 The Ring Graph

The ring graph on n vertices, Rn, may be viewed as having a vertex set corresponding to the
integers modulo n. In this case, we view the vertices as the numbers 0 through n − 1, with edges
(i, i+ 1), computed modulo n.

Lemma 5.3.1. The Laplacian of Rn has eigenvectors

x k(u) = cos(2πku/n), and

yk(u) = sin(2πku/n),

for 0 ≤ k ≤ n/2, ignoring y0 which is the all-zero vector, and for even n ignoring yn/2 for the
same reason. Eigenvectors x k and yk have eigenvalue 2− 2 cos(2πk/n).

Note that x 0 is the all-ones vector. When n is even, we only have xn/2, which alternates ±1.

Proof. We will first see that x 1 and y1 are eigenvectors by drawing the ring graph on the unit
circle in the natural way: plot vertex u at point (cos(2πu/n), sin(2πu/n)).

You can see that the average of the neighbors of a vertex is a vector pointing in the same direction
as the vector associated with that vertex. This should make it obvious that both the x and y
coordinates in this figure are eigenvectors of the same eigenvalue. The same holds for all k.
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(a) The ring graph on 9 vertices.
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(b) The eigenvectors for k = 2.

Figure 5.1:

Alternatively, we can verify that these are eigenvectors by a simple computation.

(LRnx k) (u) = 2x k(u)− x k(u+ 1)− x k(u− 1)

= 2 cos(2πku/n)− cos(2πk(u+ 1)/n)− cos(2πk(u− 1)/n)

= 2 cos(2πku/n)− cos(2πku/n) cos(2πk/n) + sin(2πku/n) sin(2πk/n)

− cos(2πku/n) cos(2πk/n)− sin(2πku/n) sin(2πk/n)

= 2 cos(2πku/n)− cos(2πku/n) cos(2πk/n)− cos(2πku/n) cos(2πk/n)

= (2− 2 cos(2πk/n)) cos(2πku/n)

= (2− cos(2πk/n))x k(u).

The computation for yk follows similarly.

5.4 The Path Graph

We will derive the eigenvalues and eigenvectors of the path graph from those of the ring graph. To
begin, I will number the vertices of the ring a little differently, as in Figure 5.2.

It should be clear by now that re-naming the vertices does not change the eigenvalues of the graphs
and merely permutes the eigenvectors appropriately. To see this in a mathematically formal way,
observe that any permutation can be represented by a permutation matrix Π. That is, a matrix
that is all zeros except for exactly one 1 in each row and column. Permutation matrices are
orthonormal, so ΠΠT = I. If we permute the vertices according to the permutation encoded by Π,
we must permute the rows and columns of the corresponding matrix. That is, we multiply by ΠT

on the left and by Π on the right. So, what I said at the beginning of the paragraph amounts to

Lψ = λψ ⇐⇒ (ΠTLΠ)(ΠTψ) = λ(ΠTψ).
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Figure 5.2: The ring on 8 vertices, numbered differently

Lemma 5.4.1. Let Pn = (V,E) where V = {1, . . . , n} and E = {(i, i+ 1) : 1 ≤ i < n}. The
Laplacian of Pn has the same eigenvalues as R2n, namely 2(1− cos(πk/n)), and eigenvectors

vk(u) = cos(πku/n− πk/2n).

for 0 ≤ k < n

Proof. We derive the eigenvectors and eigenvalues by treating Pn as a quotient of R2n: we will
identify vertex u of Pn with vertices u and u+ n of R2n (under the new numbering of R2n). These
are pairs of vertices that are above each other in the figure that I drew.

Let I n be the n-dimensional identity matrix. You should check that(
I n I n

)
LR2n

(
I n

I n

)
= 2LPn .

If there is an eigenvector ψ of R2n with eigenvalue λ for which ψ(u) = ψ(u + n) for 1 ≤ u ≤ n,
then the above equation gives us a way to turn this into an eigenvector of Pn: Let φ ∈ IRn be the
vector for which

φ(u) = ψ(u), for 1 ≤ u ≤ n.
Then, (

I n

I n

)
φ = ψ, LR2n

(
I n

I n

)
ψ = λψ, and

(
I n I n

)
LR2n

(
I n

I n

)
ψ = 2λφ.

So, if we can find such a vector ψ, then the corresponding φ is an eigenvector of Pn of eigenvalue
λ.

As you’ve probably guessed, we can find such vectors ψ. I’ve drawn one in Figure 5.2. For each of
the two-dimensional eigenspaces of R2n, we get one such a vector. These provide eigenvectors of
eigenvalue

2(1− cos(πk/n)),
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for 1 ≤ k < n. Thus, we now know n− 1 distinct eigenvalues. The last, of course, is zero.

5.5 Cayley Graphs

The ring graph is a type of Cayley graph. In general, the vertices of a Cayley graph are the elements
of some group Γ. In the case of the ring, the group is the set of integers modulo n. The edges of
a Cayley graph are specified by a set S ⊂ Γ, which are called the generators of the Cayley graph.
Vertices u, v ∈ Γ are connected by an edge if there is an s ∈ S such that

u ◦ s = v,

where ◦ is the group operation. In the case of Abelian groups, like the integers modulo n, this
would usually be written u + s = v. To guarantee that the graph is undirected, we must insist
that the inverse of every s ∈ S also appear in S. In the case of the ring graph, the generators are
{1,−1}.

Many of the most interesting graphs are Cayley graphs. We have seen at least one other: the
hybercube.

5.6 Paley Graphs

The Paley graph are Cayley graphs over the group of integer modulo a prime, p, where p is equivalent
to 1 modulo 4. Such a group is often written Z/p.

I should begin by reminding you a little about the integers modulo p. The first thing to remember
is that the integers modulo p are actually a field, written Fp. That is, they are closed under
both addition and multiplication (completely obvious), have identity elements under addition and
multiplication (0 and 1), and have inverses under addition and multiplication. It is obvious that
the integers have inverses under addition: −x modulo p plus x modulo p equals 0. It is a little less
obvious that the integers modulo p have inverses under multiplication. That is, for every x 6= 0,
there is a y such that xy = 1 modulo p. When we write 1/x, we mean this element y. I’ll quickly
explain to some of you why these inveses exist. Recall that the greatest common divisor of p and
a number x that is not divisible by p is equal to 1. If we use the extended version of Euclid’s
algorithm to compute the gcd of x and p, we obtain an a and b such that

ax+ bp = 1 =⇒ ax ≡p 1.

The generators of the Paley graphs are the quadratic residues modulo p. That is, the set of numbers
s such that there exits an x for which x2 ≡p s. That is, the vertex set is {0, . . . , p− 1}, and there
is an edge between vertices u and v if u − v is a square modulo p. I should now prove that −s is
a quadratic residue if and only if s is. This will hold provided that p is equivalent to 1 modulo 4.
To prove that, I need to tell you one more thing about the integers modulo p: their multiplicative
group is cyclic.
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Fact 5.6.1. For every prime p, there exists a number g such that for every number x between 1
and p− 1, there is an i between 1 and p− 1 such that

x ≡ gi mod p.

In particular, gp−1 ≡ 1.

Corollary 5.6.2. If p is a prime equivalent to 1 modulo 4, then −1 is a square modulo p.

Proof. We know that 4 divides p− 1. Let s = g(p−1)/4. I claim that s2 = −1. This will follow from
s4 = 1.

To see this, consider the equation
x2 − 1 ≡ 0 mod p.

As the numbers modulo p are a field, it can have at most 2 solutions. Moreover, we already know
two solutions, x = 1 and x = −1. As s4 = 1, we know that s2 must be one of 1 or −1. However,
it cannot be the case that s2 = 1, because then the powers of g would begin repeating after the
(p− 1)/2 power, and thus could not represent every number modulo p.

We now understand a lot about the squares modulo p (formally called quadratic residues). The
squares are exactly the elements gi where i is even. As gigj = gi+j , the fact that −1 is a square
implies that s is a square if and only if −s is a square. So, S is closed under negation, and the
Cayley graph of Z/p with generator set S is in fact a graph. As |S| = (p − 1)/2, it is regular of
degree

d =
p− 1

2
.

5.7 Eigenvalues of the Paley Graphs

It will prove simpler to compute the eigenvalues of the adjacency matrix of the Paley Graphs. Since
these graphs are regular, this will immediately tell us the eigenvalues of the Laplacian. Let A be
the adjacency matrix of the Paley graph on p vertices. We will prove that

A2 =
p− 1

4
(I + J )−A, (5.1)

where J is the all-1’s matrix. This gives us a quadratic equation that every eigenvalue other than
d must obey. Let φ be an eigenvector of A of eigenvalue µ 6= 0. As φ is orthogonal to the all-1s
vector, Jφ = 0. So,

µ2φ = A2φ =
p− 1

4
Iφ−Aφ = (

p− 1

4
− µ)φ.

So, we find

µ2 + µ− p− 1

4
= 0.

This gives

µ =
1

2
(−1±√p) .
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Let’s prove it. It will be easiest to think in terms of the quadratic character :

χ(x) =


1 if x is a quadratic residue modulo p

0 if x = 0, and

−1 otherwise.

This is called a character because it satisfies χ(xy) = χ(x)χ(y). We will use this to define a matrix
M by

M (u, v) = χ(u− v).

Note that

A =
1

2
(M + J − I ) . (5.2)

Lemma 5.7.1.
M 2 = pI − J .

When combined with (5.2), this lemma immediately implies (5.1).

Proof. The diagonal entries of M 2 are the squares of the norms of the columns of M . As each
contains (p − 1)/2 entries that are 1, (p − 1)/2 entries that are −1, and one entry that is 0, its
squared norm is p− 1.

To handle the off-diagonal entries, we observe that M is symmetric, so the off-diagonal entries are
the inner products of columns of M . That is,

M (u, v) =
∑
x

χ(u− x)χ(v − x) =
∑
y

χ(y)χ((v − u) + y),

where we have set y = u − x. For convenience, set w = v − u, so we can write this more simply.
As we are considering a non-diagonal entry, w 6= 0. The term in the sum for y = 0 is zero. When
y 6= 0, χ(y) ∈ ±1, so

χ(y)χ(w + y) = χ(w + y)/χ(y) = χ(w/y + 1).

Now, as y varies over {1, . . . , p− 1}, w/y varies over all of {1, . . . , p− 1}. So, w/y − 1 varies over
all elements other than 1. This means that

∑
y

χ(y)χ((v − u) + y),=

(
p−1∑
z=0

χ(z)

)
− χ(1) = 0− 1 = −1.

So, every off-diagonal entry in M is −1.

5.8 Implications

Let’s see what the eigenvalues of A tell us about the graph. First, let’s examine Hoffman’s bound
on the size of the largest independent set. If G is a Paley graph and S is an independent set,
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Hoffman’s bound tells us that

|S| ≤ n −µn
d− µn

= p
(
√
p+ 1)/2

(p− 1)/2 + (
√
p+ 1)/2

= p

√
p+ 1

p+
√
p

=
√
p.

Until recently, there were no significantly better upper bounds on the sizes of independent sets in
any explicitly constructed graphs whose degree was half its number of vertices.

In Lecture 2, we proved that for every subset of vertices S,

|∂(S)| ≥ λ2 |S| (|V | − |S|)/n.

For a Paley graph, we have

λ2 = d− µ2 =
p− 1

2
− 1

2
(
√
p− 1).

For now, I just want to point out that this number is very close to d, which is close to p/2. To
interpret the lower bound we obtain on the size of the boundary of S, consider how many edges we
would expect to find on the boundary of S if we chose a graph uniformly at random, with every
edge appearing with probability 1/2. There are |S| |V − S| edges that could possibly appear on
the boundary, and we would expect half of them to appear in a random graph. So, the number of
edges on the boundary of every set in a Paley graph is at least a number just slightly lower than
what we could expect to find in a random graph. This is one of the reasons that Paley graphs have
been called quasi-random graphs [?].
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