
Spectral Graph Theory Lecture 10

Random Walks on Graphs

Daniel A. Spielman October 1, 2012

10.1 About these notes

These notes are not necessarily an accurate representation of what happened in class. The notes
written before class say what I think I should say. The notes written after class way what I wish I
said.

There are probably typos inthese notes.

10.2 Overview

We will examine how the eigenvalues of a graph govern the convergence of a random walk on the
graph.

10.3 Random Walks

In this lecture, we will consider random walks on undirected graphs. Let’s begin with the definitions.
Let G = (V,E,w) be a weighted undirected graph. A random walk on a graph is a process
that begins at some vertex, and at each time step moves to another vertex. When the graph is
unweighted, the vertex the walk moves to is chosen uniformly at random among the neighbors of the
present vertex. When the graph is weighted, it moves to a neighbor with probability proportional
to the weight of the corresponding edge. While the transcript of a particular random walk is
sometimes of interest (as we will see next lecture), it is often more productive to reason about the
expected behavior of a random walk. To this end, we will investigate the probability distribution
over vertices after a certain number of steps.

We will let the vector pt ∈ IRn denote the probability distribution at time t. I will sometimes write
pt ∈ IRV to emphasize that pt is a vector indexed by the vertices of the graph, or I may even write
pt : V → IR. I will write pt(u) to indicate the value of pt at a vertex u–that is the probability of
being at vertex u at time t. A probability vector p is a vector such that p(u) ≥ 0, for all u ∈ V ,
and ∑

u

p(u) = 1.

Our initial probability distribution, p0, will typically be concentrated one vertex. That is, there
will be some vertex v for which p0(v) = 1. In this case, we say that the walk starts at v.
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To derive a pt+1 from pt, note that the probability of being at a vertex u at time t+ 1 is the sum
over the neighbors v of u of the probability that the walk was at v at time t, times the probability
it moved from v to u in time t+ 1. Algebraically, we have

pt+1(u) =
∑

v:(u,v)∈E

w(u, v)

d(v)
pt(v), (10.1)

where d(v) =
∑

uw(u, v) is the weighted degree of vertex v.

We will often consider lazy random walks, which are the variant of random walks that stay put
with probability 1/2 at each time step, and walk to a random neighbor the other half of the time.
These evolve according to the equation

pt+1(u) = (1/2)pt(u) + (1/2)
∑

v:(u,v)∈E

w(u, v)

d(v)
pt(v). (10.2)

10.4 Diffusion

There are a few types of diffusion that people study in a graph, but the most common is closely
related to random walks. In a diffusion process, we imagine that we have some substance that can
occupy the vertices, such as a gas or fluid. At each time step, some of the substance diffuses out
of each vertex. If we say that half the substance stays at a vertex at each time step, and the other
half is distributed among its neighboring vertices, then the distribution of the substance will evolve
according to equation (10.2). That is, probability mass obeys this diffusion equation.

I remark that often people consider finer time steps in which smaller fractions of the mass leave
the vertices. In the limit, this results in continuous random walks. These are in many ways more
natural than discrete time random walks. But, I do not think we will discuss them in this course.

10.5 Matrix form

The right way to understand the behavior of random walks is through linear algebra.

Equation (10.2) is equivalent to:

pt+1 = (1/2)
(
I + AD−1

)
pt. (10.3)

You can verify this by checking that it is correct for any entry pt+1(u), and you should do this
yourself. It will prevent much confusion later.

For the rest of the course, I will let W G denote the lazy walk matrix of the graph G, where

W G
def
= (1/2)

(
I + AGD−1G

)
. (10.4)
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This is the one asymmetric matrix that we will deal with in this course. Fortunately, it is similar
to a symmetric matrix. We have

W = I − 1

2

(
I −AD−1

)
= I − 1

2
D1/2

(
I −D−1/2AD−1/2

)
D−1/2

= I − 1

2
D1/2N D−1/2,

where I recall that
N = I −D−1/2AD−1/2

is the normalized Laplacian.

So, we know that W is diagonalizable, and that for every eigenvector ψi of N with eigenvalue νi,
the vector D1/2ψi is a right-eigenvector of W of eigenvalue 1− νi/2:

W
(

D1/2ψi

)
=

(
I − 1

2
D1/2N D−1/2

)
D1/2ψi

= D1/2ψi −
1

2
D1/2Nψi

= D1/2ψi −
νi
2

D1/2ψi

= (1− νi/2)D1/2ψi.

The key thing to remember in the asymmetric case is that the eigenvectors of W are not necessarily
orthogonal.

You may be wonder why I have decided to consider only lazy walks, rather than the more natural
walk given by AD−1. There are two equivalent reasons. The first is that all the eigenvalues of W
are between 1 and 0. The second reason is explained in the next section.

For the rest of the semester, we will let the eigenvalues of W be:

1 = ω1 ≥ ω2 ≥ · · · ≥ ωn ≥ 0, where ωi = (1− νi/2).

Yes, I know that ω is not a greek equivalent of w, but it sure looks like it.

10.6 The stable distribution

Regardless of the starting distribution, the lazy random walk on a connected graph always converges
to one distribution: the stable distribution. This is the other reason that we forced our random walk
to be lazy. Without laziness, there can be graphs on which the random walks never converge. For
example, consider a non-lazy random walk on a bipartite graph. Every-other step will bring it to
the other side of the graph. So, if the walk starts on one side of the graph, its limiting distribution
at time t will depend upon the parity of t.
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In the stable distribution, every vertex is visited with probability proportional to its weighted
degree. We denote the vector encoding this distribution by π, where

π = d/(1Td)

and we recall that d is the vector of degrees. We can see that π is a right-eigenvector of W of
eigenvalue 1:

AD−1π = AD−1 d/(1Td) = A1/(1Td) = d/(1Td) = π,

so
Wπ = (1/2)Iπ + (1/2)AD−1π = (1/2)π + (1/2)π = π.

This agrees with the translation we have established between eigenvectors of W and eigenvectors of
N . For a connected graph the nullspace of N is spanned by d1/2, and π is a multiple of D1/2d1/2.

To see that the walk converges to π, we expand D−1/2 times the initial distribution in the eigen-
vectors ψ1, . . . ,ψn of N . Let

D−1/2p0 =
∑
i

ciψi.

Note that

c1 = ψT1 (D−1/2p0) =
(d1/2)T

‖d1/2‖
(D−1/2p0) =

1Tp0

‖d1/2‖
=

1

‖d1/2‖
,

as p0 is a probability vector. We have

pt = W tp0

= (D1/2(I −N /2)D−1/2)tp0

= (D1/2(I −N /2)tD−1/2)p0

= D1/2(I −N /2)t
∑
i

ciψi

= D1/2
∑
i

(1− νi/2)tciψi

= D1/2c1ψ1 + D1/2
∑
i≥2

(1− νi/2)tciψi.

As 0 < νi < 2 for i ≥ 2, the right-hand term must go to zero. On the other hand, ψ1 = d1/2/‖d1/2‖,
so

D1/2c1ψ1 = D1/2

(
1

‖d1/2‖

)
d1/2

‖d1/2‖
=

d

‖d1/2‖2
=

d∑
j d(j)

= π.

This is a perfect example of one of the main uses of spectral theory: to understand what happens
when we repeatedly apply an operator.

10.7 The Rate of Convergence

The rate of convergence to the stable distribution is dictated by ω2. There are many ways of saying
this. We will do so point-wise. Assume that the random walk starts at some vertex a ∈ V . For
every vertex b, we will bound how far pt(b) can be from π(b).
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Theorem 10.7.1. For all a, b and t, if p0 = ea, then

|pt(b)− π(b)| ≤

√
d(b)

d(a)
ωt2.

Proof. Observe that
pt(b) = eTb pt.

From the analysis in the previous section, we know

pt(b) = eTb p = π(b) + eTb D1/2
∑
i≥2

ωticiψi.

We need merely prove an upper bound on the magnitude of the right-hand term. To this end, recall
that

ci = ψTi D−1/2ea.

So,

eTb D1/2
∑
i≥2

ωticiψi =

√
d(b)

d(a)
eTb
∑
i≥2

ωtiψiψ
T
i ea.

Analyzing the right-hand part of this last expression, we find∣∣∣∣∣∣eTb
∑
i≥2

ωtiψiψ
T
i ea

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i≥2

ωti
(
eTb ψi

) (
ψTi ea

)∣∣∣∣∣∣
≤
∑
i≥2

ωti
∣∣eTb ψi∣∣ ∣∣ψTi ea

∣∣
≤ ωt2

∑
i≥2

∣∣eTb ψi∣∣ ∣∣ψTi ea
∣∣ .

To prove an upper bound on this last term, let Ψ be the matrix having the eigenvectors ψ1, . . . ,ψn
in its columns. This is an orthonormal matrix, and so its rows must be orthonormal as well. Thus,∑

i≥2

∣∣eTb ψi∣∣ ∣∣ψTi ea
∣∣ ≤∑

i≥1

∣∣eTb ψi∣∣ ∣∣ψTi ea
∣∣

≤
√∑

i≥1

(
eTb ψi

)2√∑
i≥1

(eTaψi)
2

= ‖Ψ(b, :)‖ ‖Ψ(a, :)‖
= 1.

As ω2 = 1− ν2, and
ωt2 = (1− ν2)t ≈ e−tν2 ,

we should expect random walks to converge once t reaches the order of (log n)/ν2 or 1/ν2.
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10.8 Examples

We should now do some examples. I’d like to understand each in two ways: by examining ν2 for
each graph and by thinking about how a random walk on each graph should behave. While we
have explicitly worked out λ2 for many graphs, we have not done this for ν2. The following lemma
will allow us to transform bounds on λ2 into bounds on ν2:

Lemma 10.8.1. Let L be the Laplacian matrix of a graph, with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn,
and let N be its normalized Laplacian, with eigenvalues ν1 ≤ ν2 ≤ · · · ≤ ν2. Then, for all i

λi
dmin

≥ νi ≥
λi
dmax

,

where dmin and dmax are the minimum and maximum degrees of vertices in the graph.

Proof. The Courant-Fischer theorem tells us that

νi = min
dim(S)=i

max
x∈S

xTN x

xTx
.

As the change of variables y = D−1/2x is non-singular, this equals

min
dim(T )=i

max
y∈T

yTLy

yTDy
.

So,

min
dim(T )=i

max
y∈T

yTLy

yTDy
≥ min

dim(T )=i
max
y∈T

yTLy

dmaxyTy
=

1

dmax
min

dim(T )=i
max
y∈T

yTLy

yTy
=

λi
dmax

.

The other bound may be proved similarly.

10.8.1 The Path

As every vertex in the path on n vertices has degree 1 or 2, ν2 is approximately λ2, which is
approximately c/n2 for some constant c.

To understand the random walk on the path, think about what happens when the walk starts in
the middle. Ignoring the steps on which it stays put, it will either move to the left or the right with
probability 1/2. So, the position of the walk after t steps is distributed as the sum of t random
variables taking values in {1,−1}. Recall that the standard deviation of such a sum is

√
t. So, we

need to have
√
t comparable to n/4 for there to be a reasonable chance that the walk is on the left

or right n/4 vertices.

10.8.2 The Complete Binary Tree

As with the path, ν2 for the tree is within a constant of λ2 for the tree, and so is approximately
c/n for some constant c. To understand the random walk on Tn, first note that whenever it is at a
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vertex, it is twice as likely to step towards a leaf as it is to step towards the root. So, if the walk
starts at a leaf, there is no way the walk can mix until it reaches the root. The height of the walk
is like a sum of ±1 random variables, except that they are twice as likely to be −1 as they are to
be 1, and that their sum never goes below 0. One can show that we need to wait approximately n
steps before such a walk will hit the root. Once it does hit the root, the walk mixes rapidly.

10.8.3 The Dumbbell

Now, let’s consider another one of my favorite graphs, the dumbbell. The dumbell graph Dn

consists of two complete graphs on n vertices, joined by one edge. So, there are 2n vertices in total.
The conductance of this graph is

φDn ∼
1

n2
.

Using the test vector that is 1 on one complete graph and −1 on the other, we can show that

ν2(Dn) / 1/n2.

To prove that this bound is almost tight, we use the following lemma.

Lemma 10.8.2. Let G be an unweighted graph of diameter at most r connecting u to v. Then,

λ2(G) ≥ 2

r(n− 1)
.

Proof. For every pair of vertices (u, v), let P (u, v) be a path in G of length at most r. We have

L(u,v) 4 r · LP (u,v) 4 rLG.

So,

Kn 4 r

(
n

2

)
G,

and

n ≤ r
(
n

2

)
λ2(G),

from which the lemma follows.

The diameter of Dn is 3, so we have λ2(Dn) ≥ 2/3(n − 1). As every vertex of Dn has degree at
least n− 1, we may conclude ν2(Dn) ' 2/3(n− 1)2.

To understand the random walk on this graph, consider starting it at some vertex that is not
attached to the bridge edge. After the first step the walk will be well mixed on the vertices in the
side on which it starts. Because of this, the chance that it finds the edge going to the other side is
only around 1/n2: there is only a 1/n chance of being at the vertex attached to the bridge edge,
and only a 1/n chance of choosing that edge when at that vertex. So, we must wait some multiple
of n2 steps before there is a reasonable chance that the walk reaches the other side of the graph.



Lecture 10: October 1, 2012 10-8

10.8.4 The Bolas Graph

I define the bolas1 graph Bn to be a graph containing two n-cliques connected by a path of length
n. The bolas graph has a value of ν2 that is almost as small as possible. Equivalently, random
walks on a bolas graph mix almost as slowly as possible.

The analysis of the random walk on a bolas is similar to that on a dumbbell, except that when the
walk is on the first vertex of the path the chance that it gets to the other end before moving back
to the clique at which we started is only 1/n. So, we must wait around n3 steps before there is a
reasonable chance of getting to the other side.

To prove an upper bound on ν2, form a test vector that is n/2 on one clique, −n/2 on the other,
and increases by 1 along the path. We can use the symmetry of the construction to show that
this vector is orthogonal to d . The numerator of the generalized Rayleigh quotient is n, and the
denominator is the sum of the squares of the entries of the vectors times the degrees of the vertices,
which is some constant times n4. This tells us that ν2 is at most some constant over n3.

To see that ν2 must be at least some constant over n3, and in fact that this must hold for every
graph, apply Lemmas 10.8.1 and 10.8.2.

1A bolas is a hunting weapon consisting of two balls or rocks tied together with a cord.


