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15.1 Overview

In this lecture, I will explain how to make graphs from linear error-correcting codes. These will
come close to being expanders, except that their degrees are logarithmic rather than constant.

In preparation for constructing expanders in the next lecture, I will show how one can improve the
expansion of a graph by squaring it. If there is time, I will say a little about Cayley graphs in
general.

15.2 Graphs from Linear Codes

Consider a linear code over {0, 1} from m bits to n bits. We may assume that such a code is
encoded by an n-by-m matrix G, and that its codewords are the vectors

Gb,

where b ∈ {0, 1}m. Let d be the minimum distance of this code (warning: in this section d is not
degree). We will use this code to construct an n-regular graph on 2m vertices with λ2 = 2d. The
construction will be a generalization of the hypercube, and we in fact obtain the hypercube we set
G = Im.

We will take as the vertex set V = {0, 1}m. Thus, I will also write vertices as vectors, such as x
and y . Two vertices x and y will be connected by an edge if their sum modulo 2 is a row of G.

Let me say that again. Let g1, . . . , gn be the rows of G. Then, the graph has edge set{
(x ,x + g j) : x ∈ V, 1 ≤ j ≤ n

}
.

Of course, this addition is taken modulo 2. You should now verify that if G is the identity matrix,
we get the hypercube. In the general case, it is like a hypercube with extra edges.

This graph is a Cayley graph over the additive group (Z/2Z)m: that is the set of strings in
{0, 1}m under addition modulo 2. Other Cayley graphs that we have seen in this class include
the hypercubes, the ring graphs, and the Payley graphs. In fact, these are all Cayley graphs over
Abelian groups. The great thing about Cayley graphs over Abeliean groups is that their eigenvectors
are determined just from the group1. They do not depend upon the choice of generators. Knowing

1More precisely, the characters always form an orthonromal set of eigenvectors, and the characters just depend
upon the group. When two different characters have the same eigenvalue, we obtain an eigenspace of dimension
greater than 1. These eigenspaces do depend upon the choice of generators.
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the eigenvectors makes it much easier to compute the eigenvalues.

15.3 Analyzing the Eigenvectors and Eigenvalues

For each b ∈ {0, 1}m, define the function vb from V to the reals given by

vb(x ) = (−1)b
T x .

When I write bTx , you might wonder if I mean to take the sum over the reals or modulo 2. As
both b and x are {0, 1}-vectors, you get the same answer either way you do it.

While it is natural to think of b as being a vertex, that is the wrong perspective. Instead, you
should think of b as indexing a Fourier coefficient (if you don’t know what a Fourier coefficient is,
just don’t think of it as a vertex).

The eigenvectors and eigenvalues of the graph are determined by the following theorem.

Theorem 15.3.1. For each b ∈ {0, 1}m the vector vb is a Laplacian matrix eigenvector with
eigenvalue

2 |Gb| .

Recall that |Gb| is the Hamming-weight of Gb. That is, the number of 1s in the vector. This is
the number of j for which gT

j b is 1.

Proof of Theorem 15.3.1. We begin by observing that

vb(x + y) = (−1)b
T (x+y) = (−1)b

T x (−1)b
T y = vb(x )vb(y).

Let L be the Laplacian matrix of the graph. For any vector vb for b ∈ {0, 1}m and any vertex
x ∈ V , we compute

(Lvb)(x ) = nvb(x )−
n∑

i=1

vb(x + g i)

= nvb(x )−
n∑

i=1

vb(x )vb(g i)

= vb(x )

(
n−

n∑
i=1

vb(g i)

)
.

So, vb is an eigenvector of eigenvalue

n−
n∑

i=1

vb(g i) =

n∑
i=1

(1− vb(g i))

= 2 |Gb| ,
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as

1− vb(g i) =

{
2 if gT

i b = 1

0 otherwise.

So, if d is the minimum weight of a non-zero codeword, then λ2 = 2d.

15.4 The Quality of Expanders

Either I defined, or I should have defined, an ε-expander to be a d-regular graph G on n vertices
such that

(1− ε)d
n
LKn 4 LG 4 (1 + ε)

d

n
LKn .

That is, it is a graph for which λi ∈ [d−εd, d+εd] for all i ≥ 2. This is the definition I will use when
I am talking about a single graph. When I talk about a family, ε and d should remain constant as
n grows. For many of the uses of expanders, our first concern is the value of ε. While we would
also like for d to be small, it is often a secondary concern.

The construction of the previous section turns an asymptotically good family of error-correcting
codes into a family of near-expanders: they can have constant ε but the degree grows logarithmically
with the number of vertices. Recall that for r and δ such that

r +H(δ) < 1, where H(δ)
def
= −(δ log2 δ + (1− δ) log2(1− δ)),

there exist codes of rate r and minimum relative distance at least δ for sufficiently large block
lengths n. If we take δ = 1/2 − ε/2, then we obtain a graph on 2m vertices with degree n = m/r
and

λ2 ≥ 2(1/2− ε/2)n = (1− ε)n.
That is half of what we need for the graph to be an ε-expander. We also need an upper bound
on the largest eigenvalue. There are a few ways to address this. The first is to observe that we
can bound the largest weight of a codeword in the same way that we did the smallest weight, with
a negligible loss of rate. In the next lecture, we will see how to make graphs with good largest
eigenvalues just from graphs with good smallest eigenvalues.

I also observe that many of the applications of expanders actually only need bounds on λ2. In the
proof of Theorem 10.2.1 and 10.3.1 (numbering as in 2009), we assumed an upper bound on λmax

as well. It turns out that an upper bound on λmax is unnecessary for Theorem 10.3.1, and for one
side of Theorem 10.2.1.

Before we proceed, let’s see how the degree of these graphs scales with ε. Using a Taylor expansion,
we see that

H(1/2− ε/2) ≈ 1− ε2

2 ln 2
.

So, the degree of the corresponding graph would be

(2 ln 2)m/ε2 = (2 ln 2)(log2 |V |)/ε2.
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Except for the log2 |V | term, this is the right rate of growth in ε.

15.5 Non-Abelian Groups

In the homework, you will show that it is impossible to make constant-degree expander graphs from
Cayley graphs of Abelian groups. The best expanders are constructed from Cayley graphs of 2-by-2
matrix groups. In particular, the Ramanujan expanders of Margulis [Mar88] and Lubotzky, Phillips
and Sarnak [LPS88] are Cayley graphs over the Projective Special Linear Groups PSL(2, p), where
p is a prime. These are the 2-by-2 matrices modulo p with determinant 1, in which we identify A
with −A.

They provided a very concrete set of generators. For a prime q modulo to 1 modulo 4, it is known
that there are p+ 1 solutions to the equation

a21 + a22 + a23 + a24 = p,

where a1 is odd and a2, a3 and a4 are even. For each such solution we obtain a generator of the
form:

1
√
p

[
a0 + ia1 a2 + ia3
−a2 + ia3 a0 − ia1

]
,

where i is an integer that satisfies i2 = −1 modulo p.

Even more explicit constructions, which do not require solving equations, may be found in [ABN+92].

The Ramanujan expanders have all their eigenvalues in the range [d− 2
√
d− 1, d+ 2

√
d− 1]. So,

they are 2
√
d− 1/d-expanders. In terms of ε, this gives

d ≈ 4/ε2.

Note, again, that this is quadratic in 1/ε2.

15.6 Squaring a graph

We can improve the expansion of a graph by squaring it, at the cost of increasing its degree. Given
a graph G, we define the graph G2 to be the graph in which vertices u and v are connected if they
are at distance 2 in G. Formally, G2 should be a weighted graph in which the weight of an edge is
the number of such paths. We may form the adjacency matrix of G2 from the adjacency matrix of
G. Let A be the adjacency matrix of G. Then A2(u, v) is the number of paths of length 2 between
u and v in G, and A2(v, v) is always d. We will eliminate those self-loops. So,

AG2 = A2
G − dIn.

If G has no cycles of length up to 4, then all of the edges in its square will have weight 1.
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Lemma 15.6.1. Let G be a d-regular graph with Laplacian eigenvalues is λ1, . . . , λn. Then, G2 is
a d(d− 1)-regular graph with Laplacian eigenvalues

2dλi − λ2i .

In particular, the largest Laplacian eigenvalue of G2 is at most d2.

Proof. First, let’s handle the largest Laplacian eigenvalue. As A2
G is positive semi-definite, the

smallest eigenvalue of AG2 is at least −d, and so the largest Laplacian eigenvalue of G2 is at most

d(d− 1)− d = d2.

As for the other eigenvalues, we find that

λi is an eigenvalue of LG =⇒
d− λi is an eigenvalue of AG =⇒
(d− λi)2 − d is an eigenvalue of AG2 =⇒
d(d− 1)− (d− λi)2 + d is an eigenvalue of LG2 ,

and
d(d− 1)− (d− λi)2 + d = d2 − (d− λi)2 = 2dλi − λ2i .

Note that if λn is large, then the second-smallest eigenvalue of G could be 2dλn − λ2n. For an
extreme example, consider the case in which G is bipartite. In this case, λn = 2d, and this becomes
an extra eigenvalue of 0 in G2. The square of a bipartite graph is not a connected graph.

Let’s see what the squaring of a graph does to the quality of an expander. To begin, assume that
G is an ε-expander. So, all of the eigenvalues satisfy λi = (1 + α)d, where |α| ≤ ε. The squaring of
the graph then produces an eigenvalue that is equal to

2dλi − λ2i = d2(2(1 + α)− (1 + α)2)

= d2(2 + 2α− 1− 2α− α2)

= d2(1− α2).

So, G2 is essentially an ε2-expander. In fact, it is slightly better as the ratio of eigenvalue to degree
is

d2(1− α2)

d(d− 1)
.

15.7 Foreshadowing

We also observe that squaring can turn a weak expander into a better expander. As this is in the
regime in which ε is near 1, we will instead write the condition as

λ2 ≥ δd.
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Assuming this, squaring the graph gives λ2(G
2) equal to

2dλ2 − λ22 = d2(2δ − δ2) ≈ 2δd2 ≈ 2δd(d− 1).

So, when δ is small the ratio of the second eigenvalue to the degree approximately doubles.

This might not seem so useful, as the degree of the graph squares. But, it is possible to get the
same effect while increasing the degree by less. Observe that the square of a graph can be written
as a sum of cliques, one on the neighbors of each vertex. We know that we can approximate a
clique by an expander, so we will approximate each small clique by a small expander. This is part
of the idea behind how we will build expander graphs. This is analogous to how we build expander
codes. Where expander codes combined a big graph and a small code, we will combine a big graph
with small expanders.
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