
Spectral Graph Theory Lecture 19

Preconditioning

Daniel A. Spielman November 7, 2012

19.1 About these notes

These notes are not necessarily an accurate representation of what happened in class. The notes
written before class say what I think I should say. The notes written after class way what I wish I
said.

Eigen style.

19.2 Overview

Preconditioning is an approach to solving linear equations in a matrix A by finding a matrix B
that is approximates A, but such that it is easy to solve linear equations in B . In this lecture, I
explain

1. how this works when B is a very good approximation of A,

2. how one can precondition the Chebyshev and Conjugate Gradient methods, and

3. how one can use low-stretch spanning tree preconditioners to solve linear equations in Lapla-
cian matrices in time O(m4/3 logm).

19.3 Strong Approximations

For this lecture1, I will say that a positive definite matrix B is an ε-approximation of a positive
definite matrix A if

(1− ε)B 4 A 4 (1 + ε)B .

We will now see that if B is an ε-approximation of A then we can use solutions in linear systems
in B to find solutions to linear systems in A. Assume that we want to solve the system Ax = b.
We will see that B−1b is not too far from x , at least in the A-norm. To start, we will need to
obtain bounds on the eigenvalues of

I −AB−1. (19.1)

1I tend to use slightly different definitions of this concept in different lectures.

19-1

Lecture 19: November 7, 2012 19-2

The first issue we need to deal with is that this matrix is not necessarily symmetric, so it is not
immediately clear that it is diagonalizable. This will not be a problem, as every positive-definite
matrix has a square root. Let

ΨΛΨT = A

be the spectral factorization of A with eigenvectors contained in the columns of Ψ and the eigen-
values on the diagonals of Λ. Then,

A1/2 def
= ΨΛ1/2ΨT

is the square root of A, and it is well-defined if all the eigenvalues of A are positive. The square
root is also a symmetric, positive definite matrix. So, we can multiply the expression in (19.1)
on the left by A−1/2 and on the right by A1/2 to see that it is similar to, and thus has the same
eigenvalues as, the symmetric matrix

I −A1/2B−1A1/2.

We could have just as well showed that it is similar to

I −B−1/2AB−1/2.

Let me first relate the eigenvalues of B−1A to our 4 notation.

Lemma 19.3.1. Let A and B be positive definite matrices such that

αB 4 A 4 βB.

Then all the eigenvalues of B−1A lie between α and β.

Proof. We will just prove the upper bound. We have

λmax(B−1A) = λmax(B−1/2AB−1/2)

= max
x

xTB−1/2AB−1/2x

xTx

= max
y

yTAy

yTBy
, settting y = B−1/2x ,

≤ β.

So, if B is an ε-approximation of A then all of the eigenvalues of

I −AB−1

have absolute value at most ε.

Lecture 19: November 7, 2012 19-3

Now, let’s see that B−1b is a good approximation of x in the A-norm. We have∥∥B−1b − x
∥∥

A
=
∥∥∥A1/2B−1b −A1/2x

∥∥∥
=
∥∥∥A1/2B−1Ax −A1/2x

∥∥∥
=
∥∥∥A1/2B−1A1/2(A1/2x)−A1/2x

∥∥∥
≤
∥∥∥A1/2B−1A1/2 − I

∥∥∥∥∥∥A1/2x
∥∥∥

≤ ε
∥∥∥A1/2x

∥∥∥
= ε ‖x‖A .

Remark: This result crucially depends upon the use of the A-norm. It fails under the Euclidean
norm.

If we want a better solution, we can just compute the residual and solve the problem in the residual.
That is, we set

x 1 = B−1b,

and compute
r1 = b −Ax 1 = A(x − x 1).

We then use one solve in B to compute a vector x 2 such that

‖(x − x 1)− x 2‖A ≤ ε ‖x − x 1‖A ≤ ε
2 ‖x‖A .

So, x 1 + x 2, our new estimate of x , differs from x by at most an ε2 factor. Continuing in this way,
we can find an εk approximation of x after solving k linear systems in B . This procedure is called
iterative refinement.

For an example of how one might use a technique like this, consider solving a system in the
Laplacian of a graph that is close to a hypercube. To be concrete, let H be the hypercube and
let G be a weighted hypercube in which all the edge weights are between 1 and 2. Then, LH is a
1/2-approximation of LG. Last class we saw that we could solve systems in H in time O(m log n),
where m is the number of edges in H. This means that we can get 2−k-approximate solutions to
systems in LG in time O(km log n).

That said, this is not necessarily a good idea. As all of the eigenvalues of LG will be between 2 and
4 log2 n, directly applying Chebyshev or CG to this matrix would probably be faster.

19.4 Preconditioned Chebyshev

Preconditioning is usually applied with much weaker approximations. In this case, the running
time of preconditioned solvers is determined by the eigenvalues of AB−1, which are the same as
the eigenvalues of B−1/2AB−1/2. Let 0 < λ1 < · · · < λn be the eigenvalues of AB−1. The

Lecture 19: November 7, 2012 19-4

preconditioned Chebyshev method can solve a system of equations in A to ε-accuracy in the A-
norm in approximately

√
λn/λ1 ln ε−1 iterations (the same bound as before). In each iteration it

will perform one multiplication by A and one linear solve in B .

Let qt be a polynomial that is 1 at 0 and that has absolute value less than ε at each of the eigenvalues
λi, and let pt be the polynomial such that qt = 1 − xpt(x). To use this polynomial to solve the
system, we set

x t = pt(B
−1A)B−1b.

To bound the error in the A-norm of this vector, we compute

‖x − x t‖A =
∥∥∥A1/2x −A1/2x t

∥∥∥
=
∥∥∥A1/2x −A1/2pt(B

−1A)B−1b
∥∥∥

=
∥∥∥A1/2x −A1/2pt(B

−1A)B−1Ax
∥∥∥

=
∥∥∥A1/2x −A1/2pt(B

−1A)B−1A1/2(A1/2x)
∥∥∥

≤
∥∥∥I −A1/2pt(B

−1A)B−1A1/2
∥∥∥∥∥∥(A1/2x)

∥∥∥ .
We now prod this matrix into a more useful form:

I −A1/2pt(B
−1A)B−1A1/2 = I − pt(A1/2B−1A1/2)A1/2B−1A1/2 = qt(A

1/2B−1A1/2).

So, we find

‖x − x t‖A ≤
∥∥∥qt(A1/2B−1A1/2)

∥∥∥∥∥∥(A1/2x)
∥∥∥ ≤ ε ‖x‖A .

19.5 Preconditioned Conjugate Gradient

We can apply the same idea to precondition the conjugate gradient method. In each iteration, the
method will mutliply a vector by A and solve a system of equations in B . After t iterations, it will
find the vector x t that minimizes

‖x − x t‖A
that is in the span of {

B−1b,B−1AB−1b, . . . , (B−1A)tB−1b
}
.

If there is a polynomial q of degree t+1 that is one at zero and that has absolute value less than ε at
each of the eigenvalues of B−1A, then the error of the tth solution produced by the Preconditioned
Conjugate Gradient (PCG) will be less than ε.

The code for the PCG is almost identical to that for CG, it finds an A-orthogonal basis of the
Krylov space generated by B−1A. Alternatively, one can view the algorithm as running the ordinary
Conjugate Gradient on the matrix B−1/2AB−1/2 and with right-hand side B−1/2b. However, it
never needs to actually compute the square roots.

Lecture 19: November 7, 2012 19-5

19.6 Preconditioning by Trees

Vaidya [Vai90] had the remarkable idea of preconditioning the Laplacian matrix of a graph by the
Laplacian matrix of a subgraph. If H is a subgraph of G, then

LH 4 LG,

so all eigenvalues of L−1H LG are at least 1. Thus, it remsinds for use to find subgraphs that are easy
to invert and such that the largest eigenvalue of L−1H LG is not too big.

It is relatively easy to show that linear equations in the Laplacian matrices of trees can be solved
exactly in linear time. One can either do this by finding an LU -factorization with a linear number
of non-zeros, or by viewing the process of solving the linear equation as a dynamic program that
passes up once from the leaves of the tree to a root, and then back down.

We will now show that a special type of tree, called a low-stretch spanning tree provides a very
good preconditioner. To begin, let T be a spanning tree of G. Write

LG =
∑

(u,v)∈E

wu,vLu,v =
∑

(u,v)∈E

wu,v(χu − χv)(χu − χv)
T .

We will actually consider the trace of L−1T LG. As the trace is linear, we have

Tr
(
L−1T LG

)
=

∑
(u,v)∈E

wu,vTr
(
L−1T Lu,v

)
=

∑
(u,v)∈E

wu,vTr
(
L−1T (χu − χv)(χu − χv)

T
)

=
∑

(u,v)∈E

wu,vTr
(
(χu − χv)

TL−1T (χu − χv)
)

=
∑

(u,v)∈E

wu,v(χu − χv)
TL−1T (χu − χv).

To see why the last step is true, recall that Tr (AB) = Tr (BA) for all matrices A and B. To evalue
this last term, we need to know the value of (χu−χv)

TL−1T (χu−χv). You already know something
about it: it is the effective resistance in T between u and v, and you proved that this equals the
distance in T between u and v. Let T (u, v) denote the path in T from u to v, and let w1, . . . , wk
denote the weights of the edges on this path. We view the weight of an edge as the reciprocal of
its length. So,

(χu − χv)
TL−1T (χu − χv) =

k∑
i=1

1

wi
. (19.2)

Even better, the term (19.2) is something that has been well-studied. It was defined by Alon, Karp,
Peleg and West [AKPW95] to be the stretch of the unweighted edge (u, v) with respect to the tree
T . Moreover, the stretch of the edge (u, v) with weight wu,v with respect to the tree T is defined
to be exactly

wu,v

k∑
i=1

1

wi
,

Lecture 19: November 7, 2012 19-6

where again w1, . . . , wk are the weights on the edges of the unique path in T from u to v. A
sequence of works, begining with [AKPW95], has shown that every graph G has a spanning tree
in which the sum of the stretches of the edges is low. The best result so far is due to [AN12], who
prove the following theorem.

Theorem 19.6.1. Every weighted graph G has a spanning tree subgraph T such that the sum of
the stretches of all edges of G with respect to T is at most

O(m log n log log n),

where m is the number of edges G. Moreover, one can compute this tree in time O(m log n log logn).

Thus, if we choose a low-stretch spanning tree T , we will ensure that

Tr
(
L−1T LG

)
=

∑
(u,v)∈E

wu,v(χu − χv)
TL−1T (χu − χv) ≤ O(m log n log log n).

In particular, this tells us that λmax(L−1T LG) is at most O(m log n log logn), and so the Precondi-
tioned Conjugate Gradient will require at most O(m1/2 log n) iterations, each of which requires one
multiplication by LG and one linear solve in LT .

This result is due to Boman and Hendrickson [BH01].

19.7 Improving the Bound on the Running Time

We can show that the Preconditioned Conjugate Gradient will actually run in closer to O(m1/3)
iterations. Since the trace is the sum of the eigenvalues, we know that for every β > 0, L−1T LG has
at most

Tr
(
L−1T LG

)
/β

eigenvalues that are larger than β.

To exploit this fact, we use the following lemma.

Lemma 19.7.1. Let λ1, . . . , λn be positive numbers such that all of them are at least α and at most
k of them are more than β. Then, for every t ≥ k, there exists a polynomial p(X) of degree t such
that p(0) = 1 and

|p(λi)| ≤ 2

(
1 +

2√
β/α

)−(t−k)
,

for all λi.

Proof. Let r(X) be the polynomial we constructed using Chebyshev polynomials of degree t − k
for which

|r(X)| ≤ 2

(
1 +

2√
β/α

)−(t−k)
,

Lecture 19: November 7, 2012 19-7

for all X between α and β. Now, set

p(X) = r(X)
∏

i:λi>β

(1−X/λi).

This new polynomial is zero at every λi greater than β, and for X between α and β

|p(X)| = |r(X)|
∏

i:λi>β

|(1−X/λi)| ≤ |r(X)| ,

as we always have X < λi in the product.

Applying this lemma to the analysis of the Preconditioned Conjugate Gradient, with β = Tr
(
L−1T LG

)2/3
and k = Tr

(
L−1T LG

)1/3
, we find that the algorithm produces ε-approximate solutions within

O(Tr
(
L−1T LG

)1/3
ln(1/ε)) = O(m1/3 log n ln 1/ε)

iterations.

This result is due to Spielman and Woo [SW09].

19.8 Further Improvements

In fact, by combining low-stretch spanning trees and sparse high-quality graph approximations
(called sparsifiers), one can get algorithms that solve linear systems in Laplacians in timeO(m log n log log n log ε−1)
[ST09, KMP11].

19.9 Questions

The eigenvalues of L−1H LG are called generalized eigenvalues. The relation between generalized
eigenvalues and stretch is the first result of which I am aware that establishes a combinatorial
interpretation of generalized eigenvalues. Can you find any others?

I conjecture that it is possible to construct spanning trees of even lower stretch. Does every graph
have a spanning tree of average stretch 2 log n?

References

[AKPW95] Noga Alon, Richard M. Karp, David Peleg, and Douglas West. A graph-theoretic game
and its application to the k-server problem. SIAM Journal on Computing, 24(1):78–
100, February 1995.

Lecture 19: November 7, 2012 19-8

[AN12] Ittai Abraham and Ofer Neiman. Using petal-decompositions to build a low stretch
spanning tree. In Proceedings of the 44th Annual ACM Symposium on the Theory of
Computing (STOC ’12), pages 395–406, 2012.

[BH01] Erik Boman and B. Hendrickson. On spanning tree preconditioners. Manuscript,
Sandia National Lab., 2001.

[KMP11] I. Koutis, G.L. Miller, and R. Peng. A nearly-mlogn time solver for sdd linear systems.
In Foundations of Computer Science (FOCS), 2011 52nd Annual IEEE Symposium on,
pages 590–598, 2011.

[ST09] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for pre-
conditioning and solving symmetric, diagonally dominant linear systems. CoRR,
abs/cs/0607105, 2009. Available at http://www.arxiv.org/abs/cs.NA/0607105.

[SW09] Daniel A. Spielman and Jaeoh Woo. A note on preconditioning by low-stretch spanning
trees. CoRR, abs/0903.2816, 2009. Available at http://arxiv.org/abs/0903.2816.

[Vai90] Pravin M. Vaidya. Solving linear equations with symmetric diagonally dominant ma-
trices by constructing good preconditioners. Unpublished manuscript UIUC 1990. A
talk based on the manuscript was presented at the IMA Workshop on Graph Theory
and Sparse Matrix Computation, October 1991, Minneapolis., 1990.

