
Spectral Graph Theory Lecture 22

Sparsification by Random Sampling

Daniel A. Spielman November 26, 2012

22.1 About these notes

These notes are not necessarily an accurate representation of what happened in class. The notes
written before class say what I think I should say. The notes written after class way what I wish I
said.

22.2 Overview

I am going to prove that every graph on n vertices has an ε-approximation with only O(ε−2n log n)
edges (a result of myself and Srivastava [SS11]) Along the way, I will prove the matrix Chernoff
bound of Ahlswede and Winter [AW02] and a special case of a concentration result of Rudel-
son [Rud99].

Fix references!

22.3 Sparsification

We say that a graphs G and H are ε-approximations of each other if

(1 + ε)−1LH 4 LG 4 (1 + ε)LH .

Note that this relation is symmetric.

In this lecture, we will show that every graph G has a good approximation by a sparse graph.
This is a very strong statement, as graphs that approximate each other have a lot in common. For
example,

1. the effective resistance between all pairs of vertices are similar in the two graphs,

2. the eigenvalues of the graphs are similar,

3. the boundaries of all sets are similar, as these are given by χTSLGχS , and

4. the solutions of linear equations in the two matrices are similar.
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We will see how to construct sparse approximations of graphs (called sparsifiers) by random sam-
pling. We will do this by creating a probability distribution on the edges, and then repeatedly using
this distribution to choose edges to include in the graph. If we include an edge, we will increase its
weight by dividing by the probability that we choose it.

Symbolically, our distribution is specified by letting pe be the probability that we choose edge e.
We require that ∑

e

pe = 1.

If we do choose edge e, we multiply its weight by 1/pe.

Let Le be the elementary Laplacian for edge e. If we draw just one edge from this distribution, its
expected Laplacian is given by ∑

e

pe(Le/pe) =
∑
e

Le = LG.

Let R be a random matrix with this distribution. That is,

Pr [R = Le/pe] = pe.

To create a sparsifier H with q edges, we will draw q edges from this distribution, with replacement,
and divide the result by q. That is, we independently sample matrices R1, . . . ,Rq, each distributed
as R, and set

LH
def
=

1

q

q∑
i=1

Ri.

So, LH will equal LG in expectation. To make H be close to G with reasonable probability, we
need to sample enough edges and choose the probabilities pe carefully.

22.4 A Little Transformation

From our study of preconditioning, we know that H is an ε-approximation of G if and only if∥∥∥L−1/2G LHL
−1/2
G −Π

∥∥∥ ≤ ε′,
where we need to use an ε′ that is slightly different from ε as we are dealing with slightly different
definitions. When ε is small, it will be approximately equal to ε. Also recall that Π is the projection
orthogonal to the nullspace, and that

ER1,...,Rq

[
L
−1/2
G LHL

−1/2
G

]
= L

−1/2
G LGL

−1/2
G = Π.

We will analyze H under this transformation. So, define

M i = L
−1/2
G RiL

−1/2
G .
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We have
E
[
M i
]

= Π.

I will tell you now how we will choose the probabilities pe. While this choice was initially based on
intutition, we will eventually see that it optimizes the application of the concentration inequalities
that we will apply. We set

pe
def
=

1

n− 1

∥∥∥L−1/2G LeL
−1/2
G

∥∥∥ .
To see that these sum to 1, first let be be a vector that is one at one endpoint of e and −1 at the
other, so that Le = beb

T
e . Then,∥∥∥L−1/2G LeL

−1/2
G

∥∥∥ =
∥∥∥L−1/2G beb

T
e L
−1/2
G

∥∥∥
= bTe L

−1/2
G L

−1/2
G be

= bTe L
−1
G be,

which you will recall is the effective resistance in G between the endpoints of edge e.

To see that these probabilities sum to 1, note that

∑
e

bTe L
−1
G be =

∑
e

Tr
(
L−1G beb

T
e

)
= Tr

(
L−1G

(∑
e

beb
T
e

))
= Tr

(
L−1G LG

)
= Tr (Π) = n− 1.

The advantage of these choices is that our distribution is a distribution over the matrices

L
−1/2
G LeL

−1/2
G

pe
,

all of which have the same norm, n − 1. Concentration inequalities work best when all the items
being summed have the same magnitude.

22.5 The Matrix Chernoff Bounds

We now prove the main concentration inequality that we will use in this lecture: the matrix Chernoff
bound of Ahlswede and Winter [AW02]. The bound applies to a sum of random symmetric matrices.
It tells us that such a sum is unlikely to have too large a norm.

Standard proofs of the Chernoff bounds in random variables X work by applying Markov’s inequal-
ity to eX . The proof of Ahlswede and Winter does this too, but with matrices. I should begin with
a few observations about eX for a symmetric matrix X .

First, one can define eX by the power series:

eX =
∑
i≥0

1

i!
X i.
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Second, every eigenvetor of X is an eigenvector of eX . So, the eigenvalues of eX are just the
exponentials of the eigenvalues of X . In particular, this means that eX is positive definite whenever
X is symmetric.

Our analysis will rely on a fundamental fact about matrix exponentials that we will unfortunately
not have time to prove in this class, the Golden-Thompson inequality:

Theorem 22.5.1. For symmetric matrices A and B ,

Tr
(
eA+B

)
≤ Tr

(
eAeB

)
.

We will also use a fact about traces that I will defer to the last problem set:

Claim 22.5.2. For positive definite matrices A and B ,

Tr (AB) ≤ ‖A‖Tr (B) .

Theorem 22.5.3. Let X 1, . . . ,X q be independent random symmetric n-dimensional matrices.
Then, for every t > 0 and every λ > 0,

Pr

[∥∥∥∥∥
q∑
i=1

X i

∥∥∥∥∥ > t

]
≤ ne−λt

(
q∏
i=1

∥∥∥E [eλX i

]∥∥∥+

q∏
i=1

∥∥∥E [e−λX i

]∥∥∥) .
The term λ in the theorem is a parameter that we typically set to optimize the bound after we
have chosen t. The utility of this bound clearly depends upon the terms E

[
eλX i

]
. We get stronger

bounds when they are small.

We will apply this theorem to the matrices

X i = M i − E
[
M i
]

= M i −Π.

Proof of Theorem 22.5.3. Let S =
∑

iX
i. We being with the observation that ‖S‖ is greater than

t if and only the largest eigenvalue of S is greater than t or the smallest eigenvalue is less than −t.
Exponentiating, we have

λmax(S) ≥ t iff λmax(eS ) ≥ et.

We then observe that
λmax(eS ) ≥ et =⇒ Tr

(
eS
)
≥ et.

So,
Pr [λmax(S) ≥ t] ≤ Pr

[
Tr
(
eS
)
≥ et

]
≤ e−tE

[
Tr
(
eS
)]
,

where the last inequality follows from Markov’s inequality. As we will sometimes want a parameter
λ in the proof, we use the more general form

Pr [λmax(S) ≥ t] ≤ e−λtE
[
Tr
(
eλS
)]
.

The goal of the rest of the proof is to prove an upper bound on

E
[
Tr
(
eλS
)]
.
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For all k let Sk =
∑k

i=1X
i. We have

E
[
Tr
(
eλS

k
)]

= E
[
Tr
(
eλX

k+λSk−1
)]

≤ E
[
Tr
(
eλX

k

eλS
k−1
)]

(by Golden-Thompson)

= EX 1,...,X k−1

[
Tr
(
EX k

[
eλX

k
]
eλS

k−1
)]

(as trace is linear)

≤ EX 1,...,X k−1

[∥∥∥EX k

[
eλX

k
]∥∥∥Tr

(
eλS

k−1
)]

(by Claim 22.5.2)

=
∥∥∥EX k

[
eλX

k
]∥∥∥ · EX 1,...,X k−1

[
Tr
(
eλS

k−1
)]

=
∥∥∥EX k

[
eλX

k
]∥∥∥ · E [Tr

(
eλS

k−1
)]
.

By induction on k, we conclude that

E
[
Tr
(
eλS

q
)]
≤

q∏
i=1

∥∥∥EX i

[
eλX

i
]∥∥∥Tr (I ) = n

q∏
i=1

∥∥∥E [eλX i
]∥∥∥ .

So,

Pr [λmax(S) ≥ t] ≤ e−λtn
q∏
i=1

∥∥∥EX i

[
eλX

i
]∥∥∥ .

We may treat the smallest eigenvalue of S similarly.

As I mentioned before, we will set

X i = M i − E
[
M i
]

= M i −Π,

and we will take
q

def
= 4n log(2n)/ε2

samples. We need to prove an upper bound on∥∥∥E [eλX ]∥∥∥ .
To this end, recall that we chose our probability distribution so that M is a random matrix that
always satisfies

‖M ‖ = n− 1

So,
‖X ‖ = ‖M −Π‖ ≤ ‖M ‖ = n− 1,

assuming n ≥ 2. We will also use the fact that

E [M ] = 0.

Lemma 22.5.4. Let X be a random symmetric matrix such that E [X ] = 0, and let ν be a number
so that it is always true that ‖X ‖ ≤ ν and λmax

(
E
[
X 2
])
≤ ν2. Then, for λ ≤ 1/ν we have∥∥∥E [eλX ]∥∥∥ ≤ ∥∥∥eλ2E[X 2]
∥∥∥ .
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Proof. We use two inequalities on the exponential that transfer directly to matrices:

1 + x ≤ ex, and

ex ≤ 1 + x+ x2, for x ∈ [−1, 1].

For λ ≤ 1/ν, ‖λX ‖ ≤ 1. So,
eλX 4 I + λX + λ2X 2.

Using E [X ] = 0, this gives

E
[
eλX

]
4 I + λ2E

[
X 2
]
.

4 eλ
2E[X 2],

as
∥∥E [X 2

]∥∥ ≤ ν2. So, ∥∥∥E [eλX ]∥∥∥ ≤ ∥∥∥eλ2E[X 2]
∥∥∥ .

It remains to bound the norm of E
[
X 2
]
, and to put the ingredients together.

Lemma 22.5.5. Let Π be a projection matrix (symmetric and all eigenvalues in {0, 1}) and let
M be a random positive semidefinite matrix such that E [M ] = Π and ‖M ‖ ≤ ν, always. Let
X = M −Π. Then,

λmax
(
E
[
X 2
])
≤ ν.

Proof.

E
[
X 2
]

= E
[
(M − E [M ])2

]
= E

[
M 2

]
− 2E [M ]E [M ] + E [M ]2

= E
[
M 2

]
− E [M ]2

4 E
[
M 2

]
.

To bound the latter term, observe that for a postive semidefinite matrix A we have

A2 4 ‖A‖A

(I could put this on a problem set, but it is too easy). In our case, we always have ‖M ‖ ≤ ν. So,

E
[
M 2

]
4 νE [M ] = νΠ,

and
λmax

(
E
[
M 2

])
≤ νλmax (‖Π‖) = ν.
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22.6 Finishing The Argument

By combining the results of the last section, we obtain a variant of Rudelson’s concentration
theorem [Rud99].

Theorem 22.6.1. Let Π be a projection matrix (symmetric and all eigenvalues in {0, 1}) and let
M be a random positive semidefinite matrix such that E [M ] = Π and ‖M ‖ ≤ ν, always. Let
M 1, . . . ,M q be independent random matrices with the same distribution as M . Then, for every
ε > 0,

Pr

[∥∥∥∥∥1

q

∑
i

M i −Π

∥∥∥∥∥ ≥ ε
]
≤ 2ne−ε

2q/4ν .

Proof. We first multiply through by q to obtain

Pr

[∥∥∥∥∥1

q

∑
i

M i −Π

∥∥∥∥∥ ≥ ε
]

= Pr

[∥∥∥∥∥∑
i

M i − qΠ

∥∥∥∥∥ ≥ εq
]
.

By Theorem 22.5.3, for every λ > 0 this probability is at most

ne−λt

(
q∏
i=1

∥∥∥E [eλX i

]∥∥∥+

q∏
i=1

∥∥∥E [e−λX i

]∥∥∥) . (22.1)

So, we set X i = M i − Π and apply Lemma 22.5.5 to show that λmax(E
[
(X i)2

]
) ≤ ν. Having

established this, we may apply Lemma 22.5.4 to prove that for λ < 1/ν,∥∥∥E [eλX i

]∥∥∥ ≤ ∥∥∥eλ2E[X 2]
∥∥∥ ≤ eλ2ν .

We may similarly prove that ∥∥∥E [e−λX i

]∥∥∥ ≤ eλ2ν .
So, we obtain an upper bound on the probabilty in (22.1) of

2ne−λteλ
2qν = 2neλ

2qν−λt

By differentiating the exponent with respect to t we find that the optimal choice of λ is

λ = t/2qν.

Substituting this into the bound on the probability yields

2ne−t/4qν .

Finally substituting t = εq gives
2ne−ε

2q/4ν .
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In the case of matrix sparsification, we have ν = n− 1 ≤ n. So, if we take

q = 5n ln(2n)/ε2,

we find that the probability that H fails to be an ε approximation of G is at most

2ne−ε
2q/4n ≤ 2ne−5 ln(2n)/4 = (2n)−1/4,

which is close to 0.

22.7 Open Problem

There is one way that I would like to make this construction cleaner. Instead of choosing edges with
replacement, I would rather have each edge e appear in the graph independently with probability
pe. While this is very close to what we are doing, I have been unable to prove that it works. Much
of this proof works for this case. We can create a random matrix M e for each edge e that in

expectation equals L
−1/2
G LeL

−1/2
G . We then have

E

[∑
e

M e

]
= Π.

The problem is that in this situtation Lemma 22.5.5 is just not strong enough.

In the proof presented here, Lemma 22.5.5 is very powerful because the norm of the expected matrix
is 1 and all of the eigenvalues of the expected matrix are 1. Howerver, in my alternative proposed
proof both the norm of the expected matrix and the sum of its eigenvalues are 2.
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