
Spectral Graph Theory Lecture 3

The Adjacency Matrix and Graph Coloring

Daniel A. Spielman September 9, 2015

Disclaimer

These notes are not necessarily an accurate representation of what happened in class. The notes
written before class say what I think I should say. I sometimes edit the notes after class to make
them way what I wish I had said.

There may be small mistakes, so I recommend that you check any mathematically precise statement
before using it in your own work.

These notes were last revised on September 13, 2015.

3.1 Overview

In this lecture, I will discuss the adjacency matrix of a graph, and the meaning of its largest and
smallest eigenvalues. Note that the largest eigenvalue of the adjacency matrix corresponds to the
smallest eigenvalue of the Laplacian.

I introduce the Perron-Frobenius theory, which basically says that the largest eigenvalue of the
adjacency matrix of a connected graph has multiplicity 1 and that its corresponding eigenvector is
uniform in sign.

I will then present bounds on the number of colors needed to color a graph in terms of its extreme
adjacency matrix eigenvalues.

The body of the notes includes the material that I intend to cover in class. Proofs that I will skip,
but which you should know, appear in the Appendix and Exercises.

3.2 The Adjacency Matrix

Let A be the adjacency matrix of a (possibly weighted) graph G. As an operator, A acts on a
vector x ∈ IRV by

(Ax )(u) =
∑

(u,v)∈E

wu,vx (v). (3.1)

We will denote the eigenvalues of A by µ1, . . . , µn. But, we order them in the opposite direction
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than we did for the Laplacian: we assume

µ1 ≥ µ2 ≥ · · · ≥ µn.

The reason for this convention is so that µi corresponds to the ith Laplacian eigenvalue, λi. If G
is a d-regular graph, then D = I d, and

L = I d−A,

and so
λi = d− µi.

So, we see that the largest adjacency eigenvalue of a d-regular graph is d, and its corresponding
eigenvector is the constant vector. We could also prove that the constant vector is an eigenvector
of eigenvalue d by considering the action of A as an operator (3.1): if x (u) = 1 for all u, then
(Ax )(v) = d for all v.

3.3 The Largest Eigenvalue, µ1

We now examine µ1 for graphs which are not necessarily regular. Let G be a graph, let dmax be
the maximum degree of a vertex in G, and let dave be the average degree of a vertex in G. If the
graph is weighted, then these are the weighted degrees. In the following, we let d(u) denote the
(weighted) degree of vertex u.

Lemma 3.3.1.
dave ≤ µ1 ≤ dmax.

Proof. While this theorem holds in the weighted case, we just prove it in the unweighted case for
simplicity.

The lower bound follows by considering the Rayleigh quotient with the all-1s vector:

µ1 = max
x

xTAx

xTx
≥ 1TA1

1T1
=

∑
(u,v)∈E A(u, v)

n
=

∑
u d(u)

n
.

To prove the upper bound, Let φ1 be an eigenvector of eigenvalue µ1. Let v be the vertex on which
it takes its maximum value, so φ1(v) ≥ φ1(u) for all u, and assume without loss of generality that
φ1(v) 6= 0. We have

µ1 =
(Aφ1)(v)

φ1(v)
=

∑
u:(u,v)∈E φ1(u)

φ1(v)
=

∑
u:(u,v)∈E

φ1(u)

φ1(v)
≤

∑
u:(u,v)∈E

1 ≤ d(v) ≤ dmax. (3.2)

We can strengthen the lower bound by proving that µ1 is at least the averge degree of every
subgraph of G.
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Lemma 3.3.2. For every S ⊆ V , let dave(S) be the average degree of vertices in the subgraph
induced on the vertices in S (that is, having only edges between vertices of S). Then,

dave(S) ≤ µ1.

An easy way to prove this is to emulate the proof of Lemma 3.3.1, but computing the quadratic
form in the characteristic vector of S instead of 1. I will instead take this opportunity to state one
of the most important properties of the eigenvalues of symmetric matrices, and prove it using that.

For a matrix A with rows and columns indexed by {1, . . . , n} and for S ⊆ {1, . . . , n}, let A(S)
denote the sub-matrix of A with rows and columns indexed by S. Throughout this lecture, we
will let λmax(A) denote the largest eigenvalue of the matrix A, and we will let λmin(A) denote the
smallest, even if we are calling the eigenvalues µn and µ1.

Lemma 3.3.3. Let A be a symmetric matrix and let S be a subset of its row and column indices.
Then

λmax(A) ≥ λmax(A(S)) ≥ λmin(A(S)) ≥ λmin(A).

Proof. It suffices to the lemma in the case that S = {1, . . . , n− 1}. So, let S = {1, . . . , n− 1} and
let B = A(S).

For any vector y ∈ IRn−1, we have

yTBy =

(
y
0

)T

A

(
y
0

)
.

So, for y an eigenvector of B of eigenvalue λmax(B),

λmax(B) =
yTBy

yTy
=

(
y
0

)T

A

(
y
0

)
(
y
0

)T (
y
0

) ≤ max
x∈IRn

xTAx

xTx
= λmax(A).

The same argument works for the smallest eigenvalues.

Proof of Lemma 3.3.2. Let S ⊆ V , and let G(S) denote the subgraph induced on the vertices in S.
If A is the adjacency matrix of G, then A(S) is the adjacency matrix of G(S). Lemma 3.3.1 says
that dave(S) is at most the largest eigenvalue of the adjacency matrix of G(S), and Lemma 3.3.3
says that this is at most µ1.

Lemma 3.3.4. If G is connected and µ1 = dmax, then G is dmax-regular.

Proof. If we have equality in (3.2), then it must be the case that d(v) = dmax and φ1(u) = φ1(v)
for all (u, v) ∈ E. Thus, we may apply the same argument to every neighbor of v. As the graph
is connected, we may keep applying this argument to neighbors of vertices to which it has already
been applied to show that φ1(z) = φ1(v) and d(z) = dmax for all z ∈ V .
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3.4 The Corresponding Eigenvector

The eigenvector corresponding to the largest eigenvalue of the adjacency matrix of a graph is usually
not a constant vector. However, it is always a positive vector if the graph is connected.

This follows from the Perron-Frobenius theory. In fact, the Perron-Frobenius theory says much
more, and it can be applied to adjacency matrices of strongly connected directed graphs. Note that
these need not even be diagonalizable! If you’d like to learn about the general theory, look at the
third lecture from my notes from 2009.

In the symmetric case, the theory is made much easier by both the spectral theory and the char-
acterization of eigenvalues as extreme values of Rayleigh quotients.

Theorem 3.4.1. [Perron-Frobenius, Symmetric Case] Let G be a connected weighted graph, let A
be its adjacency matrix, and let µ1 ≥ µ2 ≥ · · · ≥ µn be its eigenvalues. Then

a. µ1 ≥ −µn, and

b. µ1 > µ2,

c. The eigenvalue µ1 has a strictly positive eigenvector.

Before proving Theorem 3.4.1, we will state a lemma that will be useful in the proof and a few
other places today. It says that non-negative eigenvectors of non-negative adjacency matrices of
connected graphs must be strictly positive.

Lemma 3.4.2. Let G be a connected weighted graph (with non-negative edge weights), let A be its
adjacency matrix, and assume that some non-negative vector φ is an eigenvector of A. Then, φ is
strictly positive.

You should solve this as an exercise. The proof is similar to that of Lemma 3.3.4.

Proof of Theorem 3.4.1. Let φ1, . . . ,φn be the eigenvectors corresponding to µ1, . . . , µn.

We will just prove part c for now. Recall that

µ1 = max
x

xTAx

xTx
.

Let φ1 be an eigenvector of µ1, and construct the vector x such that

x (u) = |φ1(u)| , for all u.

We will show that x is an eigenvector of eigenvalue µ1.

We have xTx = φT
1 φ1. Moreover,

xTAx =
∑
u,v

A(u, v) |φ1(u)| |φ1(v)| ≥
∑
u,v

A(u, v)φ1(u)φ1(v) = φT
1 Aφ1 = µ1.
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So, the Rayleigh quotient of x is at least µ1. As µ1 is the maximum possible Rayleigh quotient,
the Rayleigh quotient of x must be µ1 and x must be an eigenvector of µ1.

So, we now know that A has an eigenvector x that is non-negative. We can then apply Lemma 3.4.2
to show that x is strictly positive.

The rest of the proof appears in the Appendix.

The following characterization of bipartite graphs follows from similar ideas.

Proposition 3.4.3. If G is a connected graph, then µn = −µ1 if and only if G is bipartite.

The proof appears in the Appendix.

The nth eigenvalue, which is the most negative in the case of the adjacency matrix and is the
largest in the case of the Laplacian, corresponds to the highest frequency vibration in a graph.
Its corresponding eigenvector tries to assign as different as possible values to neighboring vertices.
This is, it tries to assign a coloring. In fact, there are heuristics for finding k colorings by using the
k − 1 largest eigenvectors [AK97].

3.5 Graph Coloring

A coloring of a graph is an assignment of one color to every vertex in a graph so that each edge
attaches vertices of different colors. We are interested in coloring graphs while using as few colors
as possible. Formally, a k-coloring of a graph is a function c : V → {1, . . . , k} so that for all
(u, v) ∈ V , c(u) 6= c(v). A graph is k-colorable if it has a k-coloring. The chromatic number of a
graph, written χG, is the least k for which G is k-colorable. A graph G is 2-colorable if and only if
it is bipartite. Determining whether or not a graph is 3-colorable is an NP-complete problem. The
famous 4-Color Theorem [AH77a, AH77b] says that every planar graph is 4-colorable.

3.6 Wilf’s Theorem

It is easy to show that every graph is (dmax +1)-colorable. Assign colors to the vertices one-by-one.
As each vertex has at most dmax neighbors, there is always some color one can assign that vertex
that is different from those assigned to its neighbors. Wilf’s theorem will exploit a generalization
of this algorithm.

Order the vertices of a graph 1 through n. Let κ be a number so that every vertex has at most κ
edges to vertices of lower number. That is,

∀u, |{v : v < u and (u, v) ∈ E}| ≤ κ.

Then, the same algorithm will color G with at most κ + 1 colors. It goes through the vertices in
order, and for each vertex assigns it a color that is not assigned to any of its neighbors. As each
vertex has at most κ neighbors that were already assigned colors, κ+ 1 colors will suffice.
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The following theorem of Wilf [Wil67] uses Lemma 3.3.2 to prove that every graph can be arranged
this way with κ ≤ µ1.

Theorem 3.6.1.
χ(G) ≤ bµ1c+ 1.

Proof. We prove that one can order the vertices of G so that each vertex has at most µ1 edges to
vertices that come before it in the order. As the number of edges must be an integer, this gives an
ordering with κ ≤ bµ1c.

We begin by choosing the last vertex in the order. Lemma 3.3.2 tells us that the average degree of
G is at most µ1. This implies that there is some vertex of degree at most µ1. Call this vertex n,
and put it last in the order.

It now remains to order the vertices in the subgraph on the other vertices. Lemma 3.3.3 tells us
that the largest eigenvalue of the adjacency matrix of this subgraph is at most µ1. So, by induction
on the number of vertices in the graph, we may assume that this subgraph has an ordering in which
every vertex has at most µ1 neighbors that come before it. Use this order, and put vertex n at the
end.

For an example, consider a path graph with at least 3 vertices. We have dmax = 2, but µ1 < 2. So,
this theorem tells us that we can color it with two colors. But, you could probably 2-color a path
without thinking.

3.7 Hoffman’s Bound

Hoffman [Hof70] proved a bound on the chromatic number of a graph in terms of its adjacency
matrix eigenvalues that is tight for bipartite graphs. It is also remarkable in that it applies equally
well to weighted graphs. Of course, the chromatic number of a graph does not depend on the
weights of its edges. But, the adjacency matrix, and therefor its eigenvalues, does.

Theorem 3.7.1.

χ(G) ≥ µ1 − µn
−µn

= 1 +
µ1
−µn

.

This theorem follows from a partial converse to Lemma 3.3.3.

Lemma 3.7.2. Let

A =


A1,1 A1,2 · · · A1,k

AT
1,2 A2,2 · · · A2,k
...

...
. . .

...

AT
1,k AT

2,k · · · Ak,k


be a block-partitioned symmetric matrix with k ≥ 2. Then

(k − 1)λmin(A) + λmax(A) ≤
∑
i

λmax(Ai,i).
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Proof of Theorem 3.7.1. Let G be a k-colorable graph. After possibly re-ordering the vertices, the
adjacency matrix of G can be written

0 A1,2 · · · A1,k

AT
1,2 0 · · · A2,k
...

...
. . .

...

AT
1,k AT

2,k · · · 0

 .
Each block corresponds to a color.

As each diagonal block is all-zero, Lemma 3.7.2 implies

(k − 1)λmin(A) + λmax(A) ≤ 0.

Recalling that λmin(A) = µn < 0, and λmax(A) = µ1, a little algebra yields

1 +
µ1
−µn

≤ k.

To prove Lemma 3.7.2, we begin with the case of k = 2. The general case follows from this one by
induction.

Lemma 3.7.3. Let

A =

[
B C

C T D

]
be a symmetric matrix. Then

λmin(A) + λmax(A) ≤ λmax(B) + λmax(D).

Proof. Let x be an eigenvector of A of eigenvalue λmax(A). To simplify formulae, let’s also assume

that x is a unit vector. Write x =

(
x 1

x 2

)
, using the same partition as we did for A.

We first consider the case in which neither x 1 nor x 2 is an all-zero vector. In this case, we set

y =

( ‖x2‖
‖x1‖x 1

−‖x1‖
‖x2‖x 2

)
.

The reader may verify that y is also a unit vector, so

yTAy ≥ λmin(A).
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We have

λmax(A) + λmin(A) ≤ xTAx + yTAy

= xT
1 Bx 1 + xT

1 Cx 2 + xT
2 C

Tx 1 + xT
2 Dx 2+

+
‖x 2‖2

‖x 1‖2
xT
1 Bx 1 − xT

1 Cx 2 − xT
2 C

Tx 1 +
‖x 1‖2

‖x 2‖2
xT
2 Dx 2

= xT
1 Bx 1 + xT

2 Dx 2 +
‖x 2‖2

‖x 1‖2
xT
1 Bx 1 +

‖x 1‖2

‖x 2‖2
xT
2 Dx 2

≤

(
1 +
‖x 2‖2

‖x 1‖2

)
xT
1 Bx 1 +

(
1 +
‖x 1‖2

‖x 2‖2

)
xT
2 Dx 2

≤ λmax(B)
(
‖x 1‖2 + ‖x 2‖2

)
+ λmax(D)

(
‖x 1‖2 + ‖x 2‖2

)
= λmax(B) + λmax(D),

as x is a unit vector.

We now return to the case in which ‖x 2‖ = 0 (or ‖x 1‖ = 0, which is really the same case). Lemma
3.3.3 tells us that λmax(B) ≤ λmax(A). So, it must be the case that x 1 is an eigenvector of
eigenvalue λmax(A) of B , and thus λmax(B) = λmax(A). To finish the proof, also observe that
Lemma 3.3.3 implies

λmax(D) ≥ λmin(D) ≥ λmin(A).

Proof of Lemma 3.7.2. For k = 2, this is exactly Lemma 3.7.3. For k > 2, we apply induction. Let

B =


A1,1 A1,2 · · · A1,k−1
AT

1,2 A2,2 · · · A2,k−1
...

...
. . .

...

AT
1,k−1 AT

2,k−1 · · · Ak−1,k−1

 .
Lemma 3.3.3 now implies.

λmin(B) ≥ λmin(A).

Applying Lemma 3.7.3 to B and the kth row and column of A, we find

λmin(A) + λmax(A) ≤ λmax(B) + λmax(Ak,k)

≤ −(k − 2)λmin(B) +

k−1∑
i=1

λmax(Ai,i) + λmax(Ak,k) (by induction)

≤ −(k − 1)λmin(A) +

k∑
i=1

λmax(Ai,i),

which proves the lemma.
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A Some Proofs

The rest of the proof of Theorem 3.4.1 . To prove part b, let φn be the eigenvector of µn and let y
be the vector for which y(u) = |φn(u)|. In the spirit of the previous argument, we can again show
that

|µn| = |φnAφn| ≤
∑
u,v

A(u, v)y(u)y(v) ≤ µ1yTy = µ1.

To show that the multiplicity of µ1 is 1 (that is, µ2 < µ1), consider an eigenvector φ2. As φ2 is
orthogonal to φ1, it must contain both positive and negative values. We now construct the vector
y such that y(u) = |φ2(u)| and repeat the argument that we used for x . We find that

µ2 =
φT
2 Aφ2

φ2φ2

≤ yTAy

yTy
≤ µ1.

From here, we divide the proof into two cases. First, consider the case in which y is never zero. In
this case, there must be some edge (u, v) for which φ2(u) < 0 < φ2(v). Then the above inequality
must be strict because the edge (u, v) will make a negative contribution to φT

2 Aφ2 and a positive
contribution to yTAy .

We will argue by contradiction in the case that y has a zero value. In this case, if µ2 = µ1 then
y will be an eigenvector of eigenvalue µ1. This is a contradiction, as Lemma 3.4.2 says that a
non-negative eigenvector cannot have a zero value. So, if y has a zero value then yTAy < µ1 and
µ2 < µ1 as well.

Proof of Proposition 3.4.3. First, assume that G is bipartite. That is, we have a decomposition of
V into sets U and W such that all edges go between U and W . Let φ1 be the eigenvector of µ1.
Define

x (u) =

{
φ1(u) if u ∈ U, and
−φ1(u) if u ∈W.

For u ∈ U , we have

(Ax )(u) =
∑

(u,v)∈E

x (v) = −
∑

(u,v)∈E

φ(v) = −µ1φ(u) = −µ1x (u).

Using a similar argument for u 6∈ U , we can show that x is an eigenvector of eigenvalue −µ1.

To go the other direction, assume that µn = −µ1. We then construct y as in the previous proof,
and again observe

|µn| = |φnAφn| =

∣∣∣∣∣∑
u,v

A(u, v)φn(u)φn(v)

∣∣∣∣∣ ≤∑
u,v

A(u, v)y(u)y(v) ≤ µ1yTy = µ1.

For this to be an equality, it must be the case that y is an eigenvalue of µ1, and so y = ‘φ1. For
the first inequality above to be an equality, it must also be the case that all the terms φn(u)φn(v)
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have the same sign. In this case that sign must be negative. So, we every edge goes between a
vertex for which φn(u) is positive and a vertex for which φn(v) is negative. Thus, the signs of φn

give the bi-partition.

B Exercises

1. Prove Lemma 3.4.2.

Note that the proof is similar to that of Lemma 3.3.4.
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