
Spectral Graph Theory Lecture 23

Quadrature for the Finite Free Convolution

Daniel A. Spielman November 30, 2015

Disclaimer

These notes are not necessarily an accurate representation of what happened in class. The notes
written before class say what I think I should say. I sometimes edit the notes after class to make
them way what I wish I had said.

There may be small mistakes, so I recommend that you check any mathematically precise statement
before using it in your own work.

These notes were last revised on December 1, 2015.

23.1 Overview

The material in today’s lecture comes from [?] and [?]. My goal today is to prove simple analogs of
the main quadrature results, and then give some indication of how the other quadrature statements
are proved. I will also try to explain what led us to believe that these results should be true.

Recall that last lecture we considered the expected characteristic polynomial of a random matrix
of the form A+ ΠBΠT , where A and B are symmetric. We do not know a nice expression for this
expected polynomial for general A and B . However, we will see that there is a very nice expression
when A and B are Laplacian matrices or the adjacency matrices of regular graphs.

23.2 The Finite Free Convolution

In Free Probability [?], one studies operations on matrices in a large dimensional limit. These
matrices are determined by the moments of their spectrum, and thus the operations are independent
of the eigenvectors of the matrices. We consider a finite dimensional analog.

For n-dimensional symmetric matrices A and B , we consider the expected characteristic polynomial

EQ∈O(n)χx(A + QBQT ),

where O(n) is the group of n-by-n orthonormal matrices, and Q is a random orthonormal matrix
chosen according to the Haar measure. In case you are not familiar with “Haar measure”, I’ll
quickly explain the idea. It captures our most natural idea of a random orthnormal matrix. For
example, if A is a Gaussian random symmetric matrix, and V is its matrix of eigenvectors, then V
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is a random orthonormal matrix chosen according to Haar measure. Formally, it is the measure that
is invariant under group operations, which in this case are multiplication by orthnormal matrices.
That is, the Haar measure is the measure under which for every S ⊆ O(n) and P ∈ O(n), S has
the same measure as {QP : Q ∈ S}.

This expected characteristic polynomial does not depend on the eigenvectors of A and B , and thus
can be written as a function of the characteristic polynomials of these matrices. To see this, write
A = VDV T and B = UCU T where U and V are the orthnormal eigenvectors matrices and C
and D are the diagonal matrices of eigenvalues. We have

χx(VDV T +QUCU TQT ) = χx(D +V TQUCU TQTV ) = χx(D + (V TQU )C (V TQU )T ).

If Q is distributed according to the Haar measure on O(n), then so is V TQU .

If p(x) and q(x) are the characteristic polynomials of A and B , then we define their finite free
convolution to be the polynomial

p(x) n q(x)
def
= EQ∈O(n)χx(A + QBQT ).

In today’s lecture, we will establish the following formula for the finite free convolution.

Theorem 23.2.1. Let

p(x) =
n∑
i=0

xn−i(−1)iai and q(x) =
n∑
i=0

xn−i(−1)ibi.

Then,

p(x) n q(x) =

n∑
k=0

xn−k(−1)k
∑
i+j=k

(n− i)!(n− j)!
n!(n− i− j)!

aibj . (23.1)

This convolution was studied by Walsh [?], who proved that when p and q are real rooted, so is
p n q.

Our interest in the finite free convolution comes from the following theorem, whose proof we will
also sketch today.

Theorem 23.2.2. Let A and B be symmetric matrices with constant row sums. If A1 = a1 and
B1 = b1, we may write their characteristic polynomials as

χx(A) = (x− a)p(x) and χx(B) = (x− b)q(x).

We then have

EΠ∈Snχx(A + ΠBΠT ) = (x− (a+ b))(p(x) n−1 q(x)).

We know that 1 is an eigenvector of eigenvalue a+ b of A + ΠBΠT for every permutation matrix
Π. Once we work orthogonal to this vector, we discover the finite free convolution.

We describe this theorem as a quadrature result, because it obtains an integral over a continuous
space as a sum over a finite number of points.
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Before going in to the proof of the theorem, I would like to explain why one might think something
like this could be true. The first answer is that it was a lucky guess. We hoped that this expectation
would have a nice formula. The nicest possible formula would be a bi-linear map: a function that is
linear in p when q is held fixed, and vice versa. So, we computed some examples by holding B and
q fixed and varying A. We then observed that the coefficients of the resulting expected polynomial
are in fact a linear functions of the coefficients of p. Once we knew this, it didn’t take too much
work to guess the formula.

I now describe the main quadrature result we will prove today. Let B(n) be the nth hyperoctahedral
group. This is the group of symmetries of the generalized octahedron in n dimensions. It may be
described as the set of matrices that can be written in the form DΠ, where D is a diagonal matrix
of ±1 entries and Π is a permutation. It looks like the family of permutation matrices, except that
both 1 and −1 are allowed as nonzero entries. B(n) is a subgroup of O(n).

Theorem 23.2.3. For all symmetric matrices A and B ,

EQ∈O(n)χx(A + QBQT ) = EP∈B(n)χx(A + PBPT ).

We will use this result to prove Theorem 23.2.1. The proof of Theorem 23.2.2 is similar to the
proof of Theorem 23.2.3. So, we will prove Theorem 23.2.3 and then explain the major differences.

23.3 Quadrature

In general, quadrature formulas allow one to evaluate integrals of a family of functions over a fixed
continuous domain by summing the values of those functions at a fixed number of points. There is
an intimate connection between families of orthogonal polynomials and quadrature formulae that
we unfortunately do not have time to discuss.

The best known quadrature formula allows us to evalue the integral of a polynomial around the
unit circle in the complex plane. For a polynomial p(x) of degree less than n,∫ 2π

θ=0
p(eiθ)dθ =

1

n

n−1∑
k=0

p(ωk),

where ω = e2πi/n is a primitive nth root of unity.

We may prove this result by establishing it separately for each monomial. For p(x) = xk with
k 6= 0, ∫ 2π

θ=0
p(eiθ)dθ =

∫ 2π

θ=0
eiθkdθ = 0.

And, for |k| < n, the corresponding sum is the sum of nth roots of unity distributed symmetrically
about the unit circle. So,

n−1∑
j=0

ωjk = 0.
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We used this fact in the start of the semester when we computed the eigenvectors of the ring graph
and observed that all but the dominant are orthogonal to the all-1s vector.

On the other hand, for p(x) = 1 both the integral and sum are 1.

We will use an alternative approach to quadrature on groups, encapsulted by the following lemma.

Lemma 23.3.1. For every n and function p(x) =
∑
|k|<n ckx

k, and every θ ∈ [0, 2π],

n∑
j=0

p(ei(2πj/n+θ)) =

n∑
j=0

p(ei(2πj/n)).

This identity implies the quadrature formula above, and has the advantage that it can be experi-
mentally confirmed by evaluating both sums for a random θ.

Proof. We again evaluate the sums monomial-by-monomial. For p(x) = xk, with |k| < n, we have

n∑
j=0

(ei(2πj/n+θ))k = eiθk
n∑
j=0

(ei(2πj/n))k.

For k 6= 0, the latter sum is zero. For k = 0, eiθk = 1.

23.4 Quadrature by Invariance

For symmetric matrices A and B , define the function

fA,B (Q) = det(A + QBQT ).

We will derive Theorem 23.2.3 from the following theorem.

Theorem 23.4.1. For all Q ∈ O(n),

EP∈B(n)f(P) = EP∈B(n)f(QP).

Proof of Theorem 23.2.3. First, observe that it suffices to consider determinants. For every P ∈
B(n), we have ∫

Q∈O(n)
det(A + QBQT ) =

∫
Q∈O(n)

f(Q) =

∫
Q∈O(n)

f(QP).

So,

EP∈B(n)

∫
Q∈O(n)

f(QP) =

∫
Q∈O(n)

f(Q).

On the other hand, as B(n) is discrete we can reverse the order of integration to obtain∫
Q∈O(n)

f(Q) =

∫
Q∈O(n)

EP∈B(n)f(QP) =

∫
Q∈O(n)

EP∈B(n)f(P) = EP∈B(n)f(P),

where the second equality follows from Theorem 23.4.1.



Lecture 23: November 30, 2015 23-5

23.5 Structure of the Orthogonal Group

To prove Theorem 23.4.1, we need to know a little more about the orthogonal group. We divide
the orthonormal matrices into two types, those of determinant 1 and those of determinant −1. The
orthonormal matrices of determinant 1 form the special orthogonal group, SO(n), and every matrix
in O(n) may be written in the form DQ where Q ∈ SO(n) and D is a diagonal matrix in which
the first entry is ±1 and all others are 1. Every matrix in SO(n) may be expressed as a product of
2-by-2 rotation matrices. That is, for every Q ∈ SO(n) there are matrices Q i,j for 1 ≤ i < j ≤ n
so that Q i,j is a rotation in the span of δi and δj and so that

Q = Q1,2Q1,3 · · ·Q1,nQ2,3 · · ·Q2,n · · ·Qn−1,n.

If you learned the QR-factorization of a matrix, then you learned an algorithm for computing this
decomposition.

These facts about the structure of O(n) tell us that it suffices to prove Theorem 23.4.1 for the
special cases in which Q = diag(−1, 1, 1, . . . , 1) and when Q is rotation of the plane spanned by δi
and δj . As the diagonal matrix is contained in B(n), the result is immediate in that case.

For simplicity, consider the case i = 1 and j = 2, and let Rθ denote the rotation by angle θ in the
first two coordinates:

Rθ
def
=

 cos θ sin θ 0
− sin θ cos θ 0

0 0 I n−2

 .
The hyperoctahedral group B(n) contains the matrices Rθ for θ ∈ {0, π/2, π, 3π/2}. As B(n) is a
group, for these θ we know

EP∈B(n)f(P) = EP∈B(n)f(RθP),

as the set of matrices in the expectations are identical. This identity implies

1

4

3∑
j=0

EP∈B(n)fA,B (R2πj/4P) = EP∈B(n)f(P).

We will prove the following lemma, and then show it implies Theorem 23.4.1.

Lemma 23.5.1. For every symmetric A and B , and every θ

1

4

3∑
j=0

fA,B (Rθ+2πj/4) =
1

4

3∑
j=0

fA,B (R2πj/4).

This lemma implies that for every Q1,2,

EP∈B(n)f(P) = EP∈B(n)f(Q1,2P).

This, in turn, implies Theorem 23.4.1 and thus Theorem 23.2.3.

We can use Lemma 23.3.1 to derive Lemma 23.5.1 follows from the following.
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Lemma 23.5.2. For every symmetric A and B , there exist c−2, c−1, c0, c1, c2 so that

fA,B (Rθ) =
2∑

k=−2

ck(e
iθ)k.

Proof. We need to express f(Rθ) as a function of eiθ. To this end, recall that

cos θ =
1

2
(eiθ + e−iθ) and sin θ =

−i
2

(eiθ − e−iθ).

From these identities, we see that all two-by-two rotation matrices can be simultaneously diagonal-
ized by writing (

cos θ sin θ
− sin θ cos θ

)
= U

(
eiθ 0
0 e−iθ

)
U ∗,

where

U =

(
1 1
i −i

)
,

and we recall that U ∗ is the conjugate transpose:

U ∗ =

(
1 −i
1 i

)
.

Let Dθ be the digaonal matrix having its first two entries eiθ and e−iθ, and the rest 1, and let U n

be the matrix with U in its upper 2-by-2 block and 1s on the diagonal beneath. So,

Rθ = U nDθU
∗
n.

Now, examine

fA,B (Rθ) = det(A + RθBR∗θ)

= det(A + U nDθU
∗
nBU nD

∗
θU
∗
n)

= det(U ∗nAU n + DθU
∗
nBU nD

∗
θ)

= det(U ∗nAU nDθ + DθU
∗
nBU n).

The term eiθ only appears in the first row and column of this matrix, and the term e−iθ only
appears in the second row and column. As a determinant can be expressed as a sum of products
of matrix entries with one in each row and column, it is immediate that this determinant can be
expressed in terms of ekiθ for |k| ≤ 4. As each such product can have at most 2 terms of the form
eiθ and at most two of the form e−iθ, we have |k| ≤ 2.

The difference between Theorem 23.2.3 and Theorem 23.2.2 is that the first involves a sum over
the isometries of hyperoctahedron, while the second involves a sum over the symmetries of the
regular n-simplex in n − 1 dimensions. The proof of the appropriate quadrature theorem for the
symmetries of the regular simplex is very similar to the proof we just saw, except that rotations of
the plane through δi and δj are replaced by rotations of the plane parallel to the affine subspace
spanned by triples of vertices of the simplex.
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23.6 The Formula

To establish the formula in Theorem 23.2.1, we observe that it suffices to compute the formula
for diagonal matrices, and that Theorem 23.2.3 makes this simple. Every matrix in B(n) can be
written as a product ΠD where D is a ±1 diagonal matrix. If B is the diagonal matrix with entries
µ1, . . . , µn, then ΠDBDΠT = ΠBΠT , which is the diagonal matrix with entries µπ(1), . . . , µπ(n),
where π is the permutation corresponding to Π.

Let A be diagonal with entries λ1, . . . , λn. For a subset S of {1, . . . , n}, define

λS =
∏
i∈S

λi.

We then have
ai =

∑
|S|=i

λS .

Let

p n q =
n∑
k=0

xn−k(−1)kck.

We first compute the expected determinant, cn.

cn =
1

n!

∑
π

∏
h

(λh + µπ(h)) =
1

n!

∑
π

∑
|S|=i

λS
∏

h:π(h)6∈S

µh.

As opposed to expanding this out, let’s just figure out how often the product λSµT appears. We
must have |T | = n− |S|, and then this term appears for each permutation such that π(T )∩ S = ∅.
This happens 1/

(
n
i

)
fraction of the time, giving the formula

cn =
n∑
i=0

1(
n
i

) ∑
|S|=i

λS
∑
|T |=n−i

µT =
n∑
i=0

1(
n
i

)aibn−i =
n∑
i=0

i!(n− i)!
n!

aibn−i.

For general ck and i+ j = k, we see that λS and µT appear whenever µ(T ) is disjoint from S. The
probability of this happening is(

n−i
j

)(
n
j

) =
(n− i)!(n− j)!j!
n!(n− i− j)!j!

=
(n− i)!(n− j)!
n!(n− i− j)!

,

and so

ck =
∑
i+j=k

aibj
(n− i)!(n− j)!
n!(n− i− j)!

.

23.7 Question

For which discrete subgroups of O(n) does a result like Theorem 23.2.3 hold? Can it hold for a
substantially smaller subgroup than the symmetries of the simplex (which has size (n + 1)! in n
dimensions).


