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Introduction

Daniel A. Spielman August 29, 2018

1.1 First Things

1. Please call me “Dan”. If such informality makes you uncomfortable, you can try “Professor
Dan”. If that fails, I will also answer to “Prof. Spielman”.

2. If you are going to take this course, please sign up for it on Canvas. This is the only way you
will get emails like “Problem 3 was false, so you don’t have to solve it”.

3. This class meets this coming Friday, September 31, but not on Labor Day, which is Monday,
September 3.

1.2 Introduction

I have three objectives in this lecture: to give you an overview of the material we will cover this
semester, to help you decide if this course is right for you, and to tell you how the course will work.

As the title suggests, this course is about the eigenvalues and eigenvectors of matrices associated
with graphs, and their applications. I will never forget my amazement at learning that combinatorial
properties of graphs could be revealed by an examination of the eigenvalues and eigenvectors of
their associated matrices. I hope to both convey my amazement to you and to make it feel like
common sense. I’m now shocked when any important property of a graph is not revealed by its
eigenvalues and eigenvectors.

This class will fundamentally be a math class, and my emphasis is on material that I find beautiful
and/or useful. I’ll present a lot of theorems, a few algorithms, and a bunch of open problems.

1.3 Mechanics

There is no book for this course, but I will produce notes for every lecture. You should read
the lecture notes. They will often contain material that I did not have time to cover in class.
They will sometimes contain extra expositions of elementary topics. I will try to make the notes
available before lecture. Some students will want to print them out for reference during lecture.

Given that I am providing lecture notes, you might not need to take notes during lecture. I,
however, take notes during every lecture that I attend. It helps me pay attention and remember
what is going on. But, there are many different learning styles. You may prefer to just listen.
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If you would like a book that covers some of the material from the course, I suggest one of

“Algebraic Graph Theory” by Chris Godsil and Gordon Royle,

“Spectral Graph Theory” by Fan Chung, or

“Algebraic Combinatorics” by Chris Godsil.

I expect to produce around 5 or 6 problem sets during the semester. Some of the problems I assign
in these will be very hard. You will be allowed to work on them in small groups.

For some lectures, such as today’s, I have assigned a number of “exercises” at the end of the lecture
notes. You should solve these on your own, as soon after lecture as possible. You should not
hand them in. They are just to help you practice the material. Today’s exercises are a review of
fundamental linear algebra. I will put the solutions to some of them on Canvas.

There will be no tests or exams.

1.3.1 This is a graduate course

As some undergrads are thinking about taking this course, I thought I should explain the main
differences between an undergraduate course and a graduate course, and the differences in outlook
between undergrads and graduate students.

Graduate school is essentially pass/fail. Graduate students either write a thesis and graduate, or
they do not. Their grades in courses do not matter very much. Most are here because they think
they might learn something in this course that they will find useful in their careers. This means
that some of them will work very hard.

Graduate students are also occasionally occupied with other responsibilities, like teaching and
research. For this reason, I will give students at least two weeks to complete the problems I assign.
However, I recommend that you solve the easier problems immediately.

Graduate students routinely take courses for which they do not have all the prerequisite knowledge.
I assume that they can learn anything elementary as needed. Wikipedia makes this much easier
than it used to be.

Finally, graduate courses are not as “user friendly” as undergraduate courses. I make no guarantees
about what will happen in this course. I may assign more or fewer problem sets than I have
announced. I may completely change the topics that I decide to cover. You have been warned.

1.3.2 Other courses

I have adjusted my selection of material for this course to decrease overlap with others. For example,
I am omitting some material that will be included in S&DS 684a: Statistical Inference on Graphs
and S&DS 615b: Introduction to Random Matrix Theory.
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1.4 Background: Graphs

First, we recall that a graph G = (V,E) is specified by its vertex1 set, V , and edge set E. In an
undirected graph, the edge set is a set of unordered pairs of vertices. Unless otherwise specified, all
graphs will be undirected, simple (having no loops or multiple edges) and finite. We will sometimes
assign weights to edges. These will usually be real numbers. If no weights have been specified, we
view all edges as having weight 1. This is an arbitrary choice, and we should remember that it has
an impact.

Graphs (also called “networks”) are typically used to model connections or relations between things,
where “things” are vertices. However, I often prefer to think of the edges in a graph as being more
important than the vertices. In this case, I may just specify an edge set E, and ignore the ambient
vertex set.

Common “natural” examples of graphs are:

• Friendship graphs: people are vertices, edges exist between pairs of people who are friends
(assuming the relation is symmetric).

• Network graphs: devices, routers and computers are vertices, edges exist between pairs that
are connected.

• Circuit graphs: electronic components, such as transistors, are vertices: edges exist between
pairs connected by wires.

• Protein-Protein Interaction graphs: proteins are vertices. Edges exist between pairs that
interact. These should really have weights indicating the strength and nature of interaction.
Most other graphs should to.

It is much easier to study abstract, mathematically defined graphs. For example,

• The path on n vertices. The vertices are {1, . . . n}. The edges are (i, i+ 1) for 1 ≤ i < n.

• The ring on n vertices. The vertices are {1, . . . n}. The edges are all those in the path, plus
the edge (1, n).

• The hypercube on 2k vertices. The vertices are elements of {0, 1}k. Edges exist between
vertices that differ in only one coordinate.

1.5 Matrices for Graphs

The naive view of a matrix is that it is essentially a spreadsheet—a table we use to organize
numbers. This is like saying that a car is an enclosed metal chair with wheels. It says nothing
about what it does!

1I will use the words “vertex” and “node” interchangeably. Sorry about that.
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I will use matrices to do two things. First, I will view a matrix M as providing an function that
maps a vector x to the vector M x . That is, I view M as an operator. Second, I view a matrix
M as providing a function that maps a vector x to a number xTM x . That is, I use M to define
a quadratic form.

1.5.1 A spreadsheet

We will usually write V for the set of vertices of a graph, and let n denote the number of vertices.
There are times that we will need to order the vertices and assign numbers to them. In this case,
they will usually be {1, . . . , n}. For example, if we wish to draw a matrix as a table, then we need
to decide which vertex corresponds to which row and column.

The most natural matrix to associate with a graph G is its adjacency matrix2, M G, whose entries
M G(a, b) are given by

M G(a, b) =

{
1 if (a, b) ∈ E
0 otherwise.

It is important to observe that I index the rows and columns of the matrix by vertices, rather than
by number. Almost every statement that we make in this class will remain true under renaming
of vertices. The first row of a matrix has no special importance. To understand this better see the
exercises at the end of the lecture.

While the adjacency matrix is the most natural matrix to associate with a graph, I also find it the
least useful. Eigenvalues and eigenvectors are most meaningful when used to understand a natural
operator or a natural quadratic form. The adjacency matrix provides neither.

1.5.2 An operator

The most natural operator associated with a graph G is probably its diffusion operator. This
operator describes the diffusion of stuff among the vertices of a graph and how random walks
behave. We will save further discussion of this perspective for a later lecture.

1.5.3 A quadratic form

The most natural quadratic form associated with a graph is defined in terms of its Laplacian matrix,

LG
def
= DG −M G,

where DG is the diagonal matrix in which DG(a, a) is the degree of vertex a. We will usually write
d(a) for the degree of vertex a. In an unweighted graph, the degree of a vertex is the number of
edges attached to it. In the case of a weighted graph, we use the weighted degree: the sum of the
weights of the edges attached to the vertex a.

2I am going to try to always use the letter M for the adjacency matrix, in contrast with my past practice which
was to use A. I will use letter like a and b to denote vertices.
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Given a function on the vertices, x ∈ IRV , the Laplacian quadratic form is

xTLGx =
∑

(a,b)∈E

(x (a)− x (b))2. (1.1)

This form measures the smoothness of the function x . It will be small if the function x does not
jump too much over any edge.

I use the notation x (a) to denote the coordinate of vector x corresponding to vertex a. Other
people often use subscripts for this, like x a. I reserve subscripts for other purposes.

1.6 Background: Spectral Theory

I now review the highlights of the spectral theory for symmetric matrices. Almost all of the matrices
we consider in this course will be symmetric or will be similar3 to symmetric matrices.

We recall that a vector ψ is an eigenvector of a matrix M with eigenvalue λ if

Mψ = λψ. (1.2)

That is, λ is an eigenvalue if and only if λI −M is a singular matrix. Thus, the eigenvalues are
the roots of the characteristic polynomial of M :

det(xI −M ).

Theorem 1.6.1. [The Spectral Theorem] If M is an n-by-n, real, symmetric matrix, then there
exist real numbers λ1, . . . , λn and n mutually orthogonal unit vectors ψ1, . . . ,ψn and such that ψi

is an eigenvector of M of eigenvalue λi, for each i.

This is the great fact about symmetric matrices. If the matrix is not symmetric, it might not have
n eigenvalues. And, even if it has n eigenvalues, their eigenvectors will not be orthogonal4. In fact,
if M is not symmetric, then its eigenvalues and eigenvalues might be the wrong thing to look at.

I remind you that the eigenvectors are not uniquely determined, although the eigenvalues are. If
ψ is an eigenvector, then −ψ is as well. Some eigenvalues can be repeated. If λi = λi+1, then
ψi + ψi+1 will also be an eigenvector of eigenvalue λi. Generally, the eigenvectors of a given
eigenvalue are only determined up to an orthogonal transformation.

Fact 1.6.2. The Laplacian matrix of a graph is positive semidefinite. That is, all its eigenvalues
are nonnegative.

Proof. Let ψ be a unit eigenvector of L of eigenvalue λ. Then,

ψTLψ = ψTλψ = λ =
∑

(a,b)∈E

(ψ(a)−ψ(b))2 > 0.

3A matrix M is similar to a matrix B if there is a non-singular matrix X such that X−1M X = B . In this case,
M and B have the same eigenvalues. See the exercises at the end of this lecture.

4You can prove that if the eigenvectors are orthogonal, then the matrix is symmetric.
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We always number the eigenvalues of the Laplacian from smallest to largest. Thus, λ1 = 0. We
will refer to λ2, and in general λk for small k, as low-frequency eigenvalues. λn is a high-frequency
eigenvalue. We will see why in a moment.

1.7 Overview of the course

We will begin the course by learning about the eigenvalues and eigenvectors of many special graphs.
These will include simple graphs like paths, rings, stars, trees and hypercubes, and we will eventually
get to Cayley graphs and Strongly Regular Graphs.

Before we get to any theorems, I would like to convince you that the eigenvalues and eigenvectors
of graphs are meaningful by showing you some examples. I will do these examples in Julia using
a Jupyter notebook. I include snippets of the code and the images they generate in this text, and
have provided the notebook on the course webpage.

1.7.1 Paths

A path graph has vertices {1, . . . , n} and edges (i, i+1) for 1 ≤ i < n. Here is the adjacency matrix
of a path graph on 4 vertices.

M = path_graph(4)

Matrix(M)

0.0 1.0 0.0 0.0

1.0 0.0 1.0 0.0

0.0 1.0 0.0 1.0

0.0 0.0 1.0 0.0

And, here is its Laplacian matrix

Matrix(lap(M))

1.0 -1.0 0.0 0.0

-1.0 2.0 -1.0 0.0

0.0 -1.0 2.0 -1.0

0.0 0.0 -1.0 1.0

Here are the eigenvalues of a longer path.

L = lap(path_graph(10))

E = eigen(Matrix(L))

println(E.values)

[0.0, 0.097887, 0.381966, 0.824429, 1.38197, 2.0, 2.61803, 3.17557, 3.61803, 3.90211]
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The eigenvector of the zero-eigenvalue is a constant vector (up to numerical issues):

E.vectors[:,1]

0.31622776601683755

0.31622776601683716

0.31622776601683766

0.3162277660168381

0.31622776601683855

0.3162277660168381

0.3162277660168385

0.31622776601683805

0.3162277660168378

0.3162277660168378

The eigenvector of λ2 is the lowest frequency eigenvector, as we can see that it increases monoton-
ically along the path:

v2 = E.vectors[:,2]

-0.44170765403093937

-0.39847023129620024

-0.316227766016838

-0.20303072371134553

-0.06995961957075425

0.06995961957075386

0.2030307237113457

0.31622776601683766

0.3984702312961997

0.4417076540309382

Let’s plot that.
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plot(v2,marker=5,legend=false)

xlabel!("vertex number")

ylabel!("value in eigenvector")

The x-axis is the name/number of the vertex, and the y-axis is the value of the eigenvector at that
vertex. Now, let’s look at the next few eigenvectors.
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Plots.plot(E.vectors[:,2],label="v2",marker = 5)

Plots.plot!(E.vectors[:,3],label="v3",marker = 5)

Plots.plot!(E.vectors[:,4],label="v4",marker = 5)

xlabel!("Vertex Number")

ylabel!("Value in Eigenvector")

You may now understand why I refer to these as the low-frequency eigenvectors. The curves
they trace out resemble the low-frequency modes of vibration of a string. The reason for this is
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that the path graph can be viewed as a discretization of the string, and its Laplacian matrix is a
discretization of the Laplace operator. We will relate the low-frequency eigenvalues to connectivity.

In contrast, the highest frequency eigenvalue alternates positive and negative with every vertex.
We will show that these may be related to problems of graph coloring and finding independent sets.
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Plots.plot(E.vectors[:,10],label="v10",marker=5)

xlabel!("Vertex Number")

ylabel!("Value in Eigenvector")

1.7.2 Spectral Graph Drawing

We can often use the low-frequency eigenvalues to obtain a nice drawing of a graph. For example,
here is 3-by-4 grid graph, and its first two non-trivial eigenvectors. Looking at them suggests that
they might provide nice coordinates for the vertices.

M = grid2(3,4)

L = lap(M)

E = eigen(Matrix(L))

V = E.vectors[:,2:3]

-0.377172 0.353553

-0.15623 0.353553

0.15623 0.353553

0.377172 0.353553

-0.377172 -1.66533e-16

-0.15623 -4.16334e-16

0.15623 -5.82867e-16

0.377172 2.77556e-16
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-0.377172 -0.353553

-0.15623 -0.353553

0.15623 -0.353553

0.377172 -0.353553

In the figure below, we use these eigenvectors to draw the graph. Vertex a be been plotted at
coordinates ψ2(a),ψ3(a). That is, we use ψ2 to provide a horizontal coordinate for every vertex,
and ψ3 to obtain a vertical coordinate. We then draw the edges as straight lines.

plot_graph(M,V[:,1],V[:,2])

Let’s do a fancier example that should convince you something interesting is going on. I begin by
generating points by sampling them from the Yale logo.
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@load "yale.jld2"

scatter(xy[:,1],xy[:,2],legend=false)

I then construct a graph on them by forming their Delaunay triangulation. I won’t get to teach
about Delaunay triangulations during this course. But, they are terrific and I recommend that you
look them up.

Since the vertices came with coordinates, it was easy to draw a nice picture of the graph. But, what
if we just knew the graph, and not the coordinates? We could generate coordinates by computing
two eigenvectors, and using each as a coordinate. Below, I plot vertex a at position ψ2(a),ψ3(a),
and again draw the edges as straight lines.

plot_graph(a,xy[:,1],xy[:,2])
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plot_graph(a, v2,v3, dots=false)

That’s a great way to draw a graph if you start out knowing nothing about it. It’s the first thing I
do whenever I meet a strange graph. Note that the middle of the picture is almost planar, although
edges do cross near the boundaries.

1.7.3 Graph Isomorphism

It is important to note that the eigenvalues do not change if we relabel the vertices. Moreover, if we
permute the vertices then the eigenvectors are similarly permuted. That is, if P is a permutation
matrix, then

Lψ = λψ if and only if (PLPT )(Pψ) = λ(Pψ),

because PTP = I . To prove it by experiment, let’s randomly permute the vertices, and plot the
permuted graph.
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Random.seed!(1)

p = randperm(size(a,1))

M = a[p,p]

E = eigen(Matrix(lap(M)))

V = E.vectors[:,2:3]

plot_graph(M,V[:,1],V[:,2], dots=false)

Note that this picture is slightly different from the previous one: it has flipped vertically. That’s
because eigenvectors are only determined up to signs, and that’s only if they have multiplicity 1.
This gives us a very powerful heuristic for testing if one graph is a permutation of another (this is
the famous “Graph Isomorphism Testing Problem”). First, check if the two graphs have the same
sets of eigenvalues. If they don’t, then they are not isomorphic. If they do, and the eigenvalues
have multiplicity one, then draw the pictures above. If the pictures are the same, up to horizontal
or vertical flips, and no vertex is mapped to the same location as another, then by lining up the
pictures we can recover the permutation.

As some vertices can map to the same location, this heuristic doesn’t always work. We will learn
about it to the extent to which it does. In particular, we will see that if every eigenvalue of two
graphs G and H have multiplicity 1, then we can efficiently test whether or not they are isomorphic.

These algorithms have been extended to handle graph in which the multiplicity of every eigenvalue
is bounded by a constant. But, there are graphs in which every non-trivial eigenvalue has large
multiplicity. We will learn how to construct and analyze these, as they constitute fundamental
examples and counter-examples to many natural conjectures. For example, here are the eigenvalues
of a Latin Square Graph on 25 vertices. These are a type of Strongly Regular Graph.

M = latin_square_graph(5);

println(eigvals(Matrix(lap(M))))

[0.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0]
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All Latin Square Graphs of the same size have the same eigenvalues, whether or not they are
isomorphic. We will learn some surprisingly fast (but still not polynomial time) algorithms for
checking whether or not Strongly Regular Graphs are isomorphic.

1.7.4 Platonic Solids

Of course, somme graphs are not meant to be drawn in 3 dimensions. For example let’s try this
with the dodecahedron.

M = readIJV("dodec.txt")

spectral_drawing(M)

You will notice that this looks like what you would get if you squashed the dodecahedron down to
the plane. The reason is that we really shouldn’t be drawing this picture in two dimensions: the
smallest non-zero eigenvalue of the Laplacian has multiplicity three.

E = eigen(Matrix(lap(M)))

println(E.values)

So, we can’t reasonably choose just two eigenvectors. We should be choosing three that span the
eigenspace. If we do, we would get the canonical representation of the dodecahedron in three
dimensions.
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x = E.vectors[:,2]

y = E.vectors[:,3]

z = E.vectors[:,4]

pygui(true)

plot_graph(M, x, y, z; setaxis=false)

As you would guess, this happens for all Platonic solids. In fact, if you properly re-weight the edges,
it happens for every graph that is the one-skeleton of a convex polytope. Let me state that more
concretely. A weighted graph is a graph along with a weight function, w, mapping every edge to a
positive number. The adjacency matrix of a weighted graph has the weights of edges as its entries,
instead of 1s. The diagonal degree matrix of a weighted graph, DG, has the weighted degrees on
its diagonal. That is,

DG(i, i) =
∑

j:(i,j)∈E

w(i, j).

The Laplacian then becomes LG = DG − AG. Given a convex polytope in IRd, we can treat its
1-skeleton as a graph on its vertices. We will prove that there is a way of assigning weights to edges
so that the second-smallest Laplacian eigenvalue has multiplicity d, and so that the corresponding
eigenspace is spanned by the coordinate vectors of the vertices of the polytope.

Before we turn off the computer, let’s take a look at the high-frequency eigenvectors of the dodec-
ahedron.
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x = E.vectors[:,11]

y = E.vectors[:,12]

z = E.vectors[:,10]

pygui(true)

plot_graph(M, x, y, z; setaxis=false)

1.7.5 The Fiedler Value

The second-smallest eigenvalue of the Laplacian matrix of a graph is zero if and only if the graph
is disconnected. If G is disconnected, then we can partition it into two graphs G1 and G2 with no
edges between them, and then write

LG =

(
LG1 0

0 LG2

)
.

As the eigenvalues of LG are the union, with multiplicity, of the eigenvalues of LG1 and LG2 we see
that LG inherits a zero eigenvalue from each. Conversely, if G is connected then we can show that
the only vectors x for which xTLGx = 0 are the constant vectors. If x is not constant and G is
connected then there must be an edge (a, b) for which x (a) 6= x (b). And, this edge will contribute
a positive term to the sum (1.1).

Fiedler suggested that we make this qualitative observation quantitative and think of λ2 as a mea-
sure of how well connected the graph is. For this reason, he called it the “Algebraic Connectivity”
of a graph, and we call it the “Fiedler value”.

Fiedler proved that the further λ2 is from 0, the better connected the graph is. We will cover the
ultimate extension of this result: Cheeger’s inequality.

In short, we say that a graph is poorly connected if one can cut off many vertices by removing
only a few edges. We measure how poorly connected it is by the ratio of these quantities (almost).
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Cheeger’s inequality gives a tight connection between this ratio and λ2. If λ2 is small, then for
some t, the set of vertices

Si
def
= {i : v2(i) < t}

may be removed by cutting much less than |Si| edges. This spectral graph partitioning heuristic
has proved very successful in practice.

In general, it will be interesting to turn qualitative statements like this into quantitative ones. For
example, we will see that the smallest eigenvalue of the diffusion matrix is zero if and only if the
graph is bipartite. One can relate the magnitude of this eigenvalue to how far a graph is from being
bipartite.

1.7.6 Bounding Eigenvalues

We will often be interested in the magnitudes of certain eigenvalues. For this reason, we will learn
multiple techniques for proving bounds on eigenvalues. The most prominent of these will be proofs
by test vectors and proofs by comparison with simpler graphs.

1.7.7 Planar Graphs

We will prove that graphs that can be drawn nicely must have small Fiedler value, and we will
prove very tight results for planar graphs.

We will also see how to use the graph Laplacian to draw planar graphs: Tutte proved that if one
reasonably fixes the locations of the vertices on a face of a planar graph and then lets the others
settle into the positions obtained by treating the edges as springs, then one obtains a planar drawing
of the graph!

1.7.8 Random Walks on Graphs

Spectral graph theory is one of the main tools we use for analyzing random walks on graphs. We
will spend a few lecture on this theory, connect it to Cheeger’s inequality, and use tools developed
to study random walks to derive a fascinating proof of Cheeger’s inequality.

1.7.9 Expanders

We will be particularly interested in graphs that are very well connected. These are called expanders.
Roughly speaking, expanders are sparse graphs (say a number of edges linear in the number of
vertices), in which λ2 is bounded away from zero by a constant. They are among the most important
examples of graphs, and play a prominent role in Theoretical Computer Science.

Expander graphs have numerous applications. We will see how to use random walks on expander
graphs to construct pseudo-random generators about which one can actually prove something. We
will also use them to construct good error-correcting codes.
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Error-correcting codes and expander graphs are both fundamental objects of study in the field of
Extremal Combinatorics and are extremely useful. If students in the class have not learned about
these, I will teach about them. We will also use error-correcting codes to construct crude expander
graphs.

We will learn at least one construction of good expanders. The best expanders are the Ramanujan
graphs. These were first constructed by Margulis and Lubotzky, Phillips and Sarnak. We might
finish the class by proving the existence of Ramanujan graphs.

1.7.10 Approximations of Graphs

We will ask what it means for one graph to approximate another. Given graphs G and H, we will
measure how well G approximates H by the closeness of their Laplacian quadratic forms. We will
see that expanders are precisely the sparse graphs that provide good approximations of the complete
graph, and we will use this perspective for most of our analysis of expanders. We will show that
every graph can be well-approximated by a sparse graph through a process called sparsification.

1.7.11 Solving equations in and computing eigenvalues of Laplacians

We will also ask how well a graph can be approximated by a tree, and see that low-stretch spanning-
trees provide good approximations under this measure.

My motivation for this material is not purely graph-theoretic. Rather, it is inspired by the need
to design fast algorithms for computing eigenvectors of Laplacian matrices and for solving linear
equations in Laplacian matrices. This later problem arises in numerous contexts, including the
solution of elliptic PDEs by the finite element method, the solution of network flow problems by
interior point algorithms, and in classification problems in Machine Learning.

In fact, our definition of graph approximation is designed to suit the needs of the Preconditioned
Conjugate Gradient algorithm. We may finish the semester by learning how these algorithms work.

1.8 Eigenvalues and Optimization

One of the reasons that the eigenvalues of matrices have meaning is that they arise as the solution
to natural optimization problems. We will spend a lot of time on this connection next lecture. For
now, we start with one result in this direction. Observe that its proof does not require the spectral
theorem.

Theorem 1.8.1. Let M be a symmetric matrix and let x be a non-zero vector that maximizes the
Rayleigh quotient with respect to M :

xTM x

xTx
.

Then, x is an eigenvector of M with eigenvalue equal to the Rayleigh quotient. Moreover, this
eigenvalue is the largest eigenvalue of M .
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Proof. We first observe that the maximum is achieved: As the Rayleigh quotient is homogeneous,
it suffices to consider unit vectors x . As the set of unit vectors is a closed and compact set, the
maximum is achieved on this set.

Now, let x be a non-zero vector that maximizes the Rayleigh quotient. We recall that the gradient
of a function at its maximum must be the zero vector. Let’s compute that gradient.

We have
∇xTx = 2x ,

and
∇xTM x = 2M x .

So,

∇xTM x

xTx
=

(xTx )(2M x )− (xTM x )(2x )

(xTx )2
.

In order for this to be zero, we must have

M x =
xTM x

xTx
x .

That is, if and only if x is an eigenvector of M with eigenvalue equal to its Rayleigh quotient.

1.9 Exercises

The following exercises are for your own practice. They are intended as a review of fundamental
linear algebra. I have put the solutions in a separate file that you can find on Classes V2. I
recommend that you try to solve all of these before you look at the solutions, so that you can get
back in practice at doing linear algebra.

1. Orthogonal eigenvectors. Let M be a symmetric matrix, and let ψ and φ be vectors so that

Mψ = µψ and Mφ = νφ.

Prove that if µ 6= ν then ψ must be orthogonal to φ. Note that your proof should exploit the
symmetry of M , as this statement is false otherwise.

2. Invariance under permutations.

Let Π be a permutation matrix. That is, there is a permutation π : V → V so that

Π(u, v) =

{
1 if u = π(v), and

0 otherwise.

Prove that if
Mψ = λψ,

then (
ΠM ΠT

)
(Πψ) = λ(Πψ).
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That is, permuting the coordinates of the matrix merely permutes the coordinates of the eigenvec-
tors, and does not change the eigenvalues.

3. Invariance under rotations.

Let Q be an orthonormal matrix. That is, a matrix such that QTQ = I . Prove that if

Mψ = λψ,

then (
QM QT

)
(Qψ) = λ(Qψ).

4. Similar Matrices.

A matrix M is similar to a matrix B if there is a non-singular matrix X such that X−1M X = B .
Prove that similar matrices have the same eigenvalues.

5. Spectral decomposition.

Let M be a symmetric matrix with eigenvalues λ1, . . . , λn and let ψ1, . . . ,ψn be a corresponding
set of orthonormal column eigenvectors. Let Ψ be the orthonormal matrix whose ith column is
ψi. Prove that

ΨTM Ψ = Λ,

where Λ is the diagonal matrix with λ1, . . . , λn on its diagonal. Conclude that

M = ΨΛΨT =
∑
i∈V

λiψiψ
T
i .


