
Spectral Graph Theory Lecture 3

Fundamental Graphs

Daniel A. Spielman September 5, 2018

3.1 Overview

We will bound and derive the eigenvalues of the Laplacian matrices of some fundamental graphs,
including complete graphs, star graphs, ring graphs, path graphs, and products of these that
yield grids and hypercubes. As all these graphs are connected, they all have eigenvalue zero with
multiplicity one. We will have to do some work to compute the other eigenvalues.

We derive some meaning from the eigenvalues by using them to bound isoperimetric numbers of
graphs, which I recall are defined by

θ(S)
def
=
|∂(S)|
|S|

.

We bound this using the following theorem from last lecture.

Theorem 3.1.1. For every S ⊂ V
θ(S) ≥ λ2(1− s),

where s = |S| / |V |. In particular,
θG ≥ λ2/2.

3.2 The Laplacian Matrix

We beging this lecture by establishing the equivalence of multiple expressions for the Laplacian.
These will be necessary to derive its eigenvalues.

The Laplacian Matrix of a weighted graph G = (V,E,w), w : E → IR+, is designed to capture the
Laplacian quadratic form:

xTLGx =
∑

(a,b)∈E

wa,b(x (a)− x (b))2. (3.1)

We will now use this quadratic form to derive the structure of the matrix. To begin, consider a
graph with just two vertices and one edge. Let’s call it G1,2. We have

xTLG1,2x = (x (1)− x (2))2. (3.2)
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Consider the vector δ1 − δ2, where by δi I mean the elementary unit vector with a 1 in coordinate
i. We have

x (1)− x (2) = δT1 x − δT2 x = (δ1 − δ2)Tx ,

so

(x (1)− x (2))2 =
(
(δ1 − δ2)Tx

)2
= xT (δ1 − δ2) (δ1 − δ2)T x = xT

[
1 −1
−1 1

]
x .

Thus,

LG1,2 =

[
1 −1
−1 1

]
.

Now, let Ga,b be the graph with just one edge between u and v. It can have as many other vertices
as you like. The Laplacian of Ga,b can be written in the same way: LGa,b

= (δa − δb)(δa − δb)T .
This is the matrix that is zero except at the intersection of rows and columns indexed by u and v,
where it looks looks like [

1 −1
−1 1

]
.

Summing the matrices for every edge, we obtain

LG =
∑

(a,b)∈E

wa,b(δa − δb)(δa − δb)T =
∑

(a,b)∈E

wa,bLGa,b
.

You should check that this agrees with the definition of the Laplacian from the first class:

LG = DG −AG,

where
DG(a, a) =

∑
b

wa,b.

This formula turns out to be useful when we view the Laplacian as an operator. For every vector
x we have

(LGx )(a) = d(a)x (a)−
∑

(a,b)∈E

wa,bx (b) =
∑

(a,b)∈E

wa,b(x (a)− x (b)). (3.3)

3.3 The complete graph

The complete graph on n vertices, Kn, has edge set {(a, b) : a 6= b}.

Lemma 3.3.1. The Laplacian of Kn has eigenvalue 0 with multiplicity 1 and n with multiplicity
n− 1.

Proof. To compute the non-zero eigenvalues, let ψ be any non-zero vector orthogonal to the all-1s
vector, so ∑

a

ψ(a) = 0. (3.4)
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We now compute the first coordinate of LKnψ. Using (3.3), we find

(LKnψ) (1) =
∑
v≥2

(ψ(1)−ψ(b)) = (n− 1)ψ(1)−
n∑

v=2

ψ(b) = nψ(1), by (3.4).

As the choice of coordinate was arbitrary, we have Lψ = nψ. So, every vector orthogonal to the
all-1s vector is an eigenvector of eigenvalue n.

Alternative approach. Observe that LKn = nI − 11T .

We often think of the Laplacian of the complete graph as being a scaling of the identity. For every
x orthogonal to the all-1s vector, Lx = nx .

Now, let’s see how our bound on the isoperimetric number works out. Let S ⊂ [n]. Every vertex
in S has n− |S| edges connecting it to vertices not in S. So,

θ(S) =
|S| (n− |S|
|S|

= n− |S| = λ2(LKn)(1− s),

where s = |S| /n. Thus, Theorem 3.1.1 is sharp for the complete graph.

3.4 The star graphs

The star graph on n vertices Sn has edge set {(1, a) : 2 ≤ a ≤ n}.

To determine the eigenvalues of Sn, we first observe that each vertex a ≥ 2 has degree 1, and that
each of these degree-one vertices has the same neighbor. Whenever two degree-one vertices share
the same neighbor, they provide an eigenvector of eigenvalue 1.

Lemma 3.4.1. Let G = (V,E) be a graph, and let a and b be vertices of degree one that are both
connected to another vertex c. Then, the vector ψ = δa − δb is an eigenvector of LG of eigenvalue
1.

Proof. Just multiply LG by ψ, and check (using (3.3)) vertex-by-vertex that it equals ψ.

As eigenvectors of different eigenvalues are orthogonal, this implies that ψ(a) = ψ(b) for every
eigenvector with eigenvalue different from 1.

Lemma 3.4.2. The graph Sn has eigenvalue 0 with multiplicity 1, eigenvalue 1 with multiplicity
n− 2, and eigenvalue n with multiplicity 1.

Proof. Applying Lemma 3.4.1 to vertices i and i+1 for 2 ≤ i < n, we find n−2 linearly independent
eigenvectors of the form δi − δi+1, all with eigenvalue 1. As 0 is also an eigenvalue, only one
eigenvalue remains to be determined.
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Recall that the trace of a matrix equals both the sum of its diagonal entries and the sum of its
eigenvalues. We know that the trace of LSn is 2n− 2, and we have identified n− 1 eigenvalues that
sum to n− 2. So, the remaining eigenvalue must be n.

To determine the corresponding eigenvector, recall that it must be orthogonal to the other eigen-
vectors we have identified. This tells us that it must have the same value at each of the points of
the star. Let this value be 1, and let x be the value at vertex 1. As the eigenvector is orthogonal
to the constant vectors, it must be that

(n− 1) + x = 0,

so x = −(n− 1).

3.5 Products of graphs

We now define a product on graphs. If we apply this product to two paths, we obtain a grid. If we
apply it repeatedly to one edge, we obtain a hypercube.

Definition 3.5.1. Let G = (V,E) and H = (W,F ) be graphs. Then G×H is the graph with vertex
set V ×W and edge set (

(a, b), (â, b)

)
where (a, â) ∈ E and(

(a, b), (a, b̂)

)
where (b, b̂) ∈ F .

Figure 3.1: An m-by-n grid graph is the product of a path on m vertices with a path on n vertices.
This is a drawing of a 5-by-4 grid made using Hall’s algorithm.

Theorem 3.5.2. Let G = (V,E) and H = (W,F ) be graphs with Laplacian eigenvalues λ1, . . . , λn
and µ1, . . . , µm, and eigenvectors α1, . . . ,αn and β1, . . . ,βm, respectively. Then, for each 1 ≤ i ≤ n
and 1 ≤ j ≤ m, G×H has an eigenvector γi,j of eigenvalue λi + µj such that

γi,j(a, b) = αi(a)βj(b).
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Proof. Let α be an eigenvector of LG of eigenvalue λ, let β be an eigenvector of LH of eigenvalue
µ, and let γ be defined as above.

To see that γ is an eigenvector of eigenvalue λ+ µ, we compute

(Lγ)(a, b) =
∑

(a,â)∈E

(γ(a, b)− γ(â, b)) +
∑

(b,b̂)∈F

(
γ(a, b)− γ(a, b̂)

)
=

∑
(a,â)∈E

(α(a)β(b)−α(â)β(b)) +
∑

(b,b̂)∈F

(
α(a)β(b)−α(a)β(b̂)

)
=

∑
(a,â)∈E

β(b) (α(a)−α(â)) +
∑

(b,b̂)∈F

α(a)
(
β(b)− β(b̂)

)
=

∑
(a,â)∈E

β(b)λα(a) +
∑

(b,b̂)∈F

α(a)µβ(b)

= (λ+ µ)(α(a)β(b)).

3.5.1 The Hypercube

The d-dimensional hypercube graph, Hd, is the graph with vertex set {0, 1}d, with edges between
vertices whose names differ in exactly one bit. The hypercube may also be expressed as the product
of the one-edge graph with itself d− 1 times, with the proper definition of graph product.

Let H1 be the graph with vertex set {0, 1} and one edge between those vertices. It’s Laplacian
matrix has eigenvalues 0 and 2. As Hd = Hd−1 ×H1, we may use this to calculate the eigenvalues
and eigenvectors of Hd for every d.

Using Theorem 3.1.1 and the fact that λ2(Hd) = 2, we can immediately prove the following isoperi-
metric theorem for the hypercube.

Corollary 3.5.3.
θHd
≥ 1.

In particular, for every set of at most half the vertices of the hypercube, the number of edges on the
boundary of that set is at least the number of vertices in that set.

This result is tight, as you can see by considering one face of the hypercube, such as all the vertices
whose labels begin with 0. It is possible to prove this by more concrete combinatorial means. In
fact, very precise analyses of the isoperimetry of sets of vertices in the hypercube can be obtained.
See [Har76] or [Bol86].

3.6 Bounds on λ2 by test vectors

We can reverse our thinking and use Theorem 3.1.1 to prove an upper bound on λ2. If you recall
the proof of that theorem, you will see a special case of proving an upper bound by a test vector.
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By Theorem 2.1.3 we know that every vector v orthogonal to 1 provides an upper bound on λ2:

λ2 ≤
vTLv

vTv
.

When we use a vector v in this way, we call it a test vector.

Let’s see what a test vector can tell us about λ2 of a path graph on n vertices. I would like to use
the vector that assigns i to vertex a as a test vector, but it is not orthogonal to 1. So, we will use
the next best thing. Let x be the vector such that x (a) = (n+ 1)− 2a, for 1 ≤ a ≤ n. This vector
satisfies x ⊥ 1, so

λ2(Pn) ≤
∑

1≤a<n(x(a)− x(a+ 1))2∑
a x(a)2

=

∑
1≤a<n 22∑

a(n+ 1− 2a)2

=
4(n− 1)

(n+ 1)n(n− 1)/3
(clearly, the denominator is n3/c for some c)

=
12

n(n+ 1)
. (3.5)

We will soon see that this bound is of the right order of magnitude. Thus, Theorem 3.1.1 does not
provide a good bound on the isoperimetric number of the path graph. The isoperimetric number
is minimized by the set S = {1, . . . , n/2}, which has θ(S) = 2/n. However, the upper bound
provided by Theorem 3.1.1 is of the form c/n2. Cheeger’s inequality, which we will prove later in
the semester, will tell us that the error of this approximation can not be worse than quadratic.

The Courant-Fischer theorem is not as helpful when we want to prove lower bounds on λ2. To
prove lower bounds, we need the form with a maximum on the outside, which gives

λ2 ≥ max
S:dim(S)=n−1

min
v∈S

vTLv

vTv
.

This is not too helpful, as it is difficult to prove lower bounds on

min
v∈S

vTLv

vTv

over a space S of large dimension. We will see a technique that lets us prove such lower bounds
next lecture.

But, first we compute the eigenvalues and eigenvectors of the path graph exactly.

3.7 The Ring Graph

The ring graph on n vertices, Rn, may be viewed as having a vertex set corresponding to the
integers modulo n. In this case, we view the vertices as the numbers 0 through n − 1, with edges
(a, a+ 1), computed modulo n.
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(a) The ring graph on 9 vertices.
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(b) The eigenvectors for k = 2.

Figure 3.2:

Lemma 3.7.1. The Laplacian of Rn has eigenvectors

x k(a) = cos(2πka/n), and

yk(a) = sin(2πka/n),

for 0 ≤ k ≤ n/2, ignoring y0 which is the all-zero vector, and for even n ignoring yn/2 for the
same reason. Eigenvectors x k and yk have eigenvalue 2− 2 cos(2πk/n).

Note that x 0 is the all-ones vector. When n is even, we only have xn/2, which alternates ±1.

Proof. We will first see that x 1 and y1 are eigenvectors by drawing the ring graph on the unit
circle in the natural way: plot vertex u at point (cos(2πa/n), sin(2πa/n)).

You can see that the average of the neighbors of a vertex is a vector pointing in the same direction
as the vector associated with that vertex. This should make it obvious that both the x and y
coordinates in this figure are eigenvectors of the same eigenvalue. The same holds for all k.

Alternatively, we can verify that these are eigenvectors by a simple computation.

(LRnx k) (a) = 2x k(a)− x k(a+ 1)− x k(a− 1)

= 2 cos(2πka/n)− cos(2πk(a+ 1)/n)− cos(2πk(a− 1)/n)

= 2 cos(2πka/n)− cos(2πka/n) cos(2πk/n) + sin(2πka/n) sin(2πk/n)

− cos(2πka/n) cos(2πk/n)− sin(2πka/n) sin(2πk/n)

= 2 cos(2πka/n)− cos(2πka/n) cos(2πk/n)− cos(2πka/n) cos(2πk/n)

= (2− 2 cos(2πk/n)) cos(2πka/n)

= (2− cos(2πk/n))x k(a).

The computation for yk follows similarly.
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3.8 The Path Graph

We will derive the eigenvalues and eigenvectors of the path graph from those of the ring graph. To
begin, I will number the vertices of the ring a little differently, as in Figure 3.3.

1

23

4

8

7 6

5

Figure 3.3: The ring on 8 vertices, numbered differently

Lemma 3.8.1. Let Pn = (V,E) where V = {1, . . . , n} and E = {(a, a+ 1) : 1 ≤ a < n}. The
Laplacian of Pn has the same eigenvalues as R2n, excluding 2. That is, Pn has eigenvalues namely
2(1− cos(πk/n)), and eigenvectors

vk(a) = cos(πku/n− πk/2n).

for 0 ≤ k < n

Proof. We derive the eigenvectors and eigenvalues by treating Pn as a quotient of R2n: we will
identify vertex u of Pn with vertices u and u+ n of R2n (under the new numbering of R2n). These
are pairs of vertices that are above each other in the figure that I drew.

Let I n be the n-dimensional identity matrix. You should check that

(
I n I n

)
LR2n

(
I n

I n

)
= 2LPn .

If there is an eigenvector ψ of R2n with eigenvalue λ for which ψ(a) = ψ(a + n) for 1 ≤ a ≤ n,
then the above equation gives us a way to turn this into an eigenvector of Pn: Let φ ∈ IRn be the
vector for which

φ(a) = ψ(a), for 1 ≤ a ≤ n.

Then, (
I n

I n

)
φ = ψ, LR2n

(
I n

I n

)
φ = λψ, and

(
I n I n

)
LR2n

(
I n

I n

)
ψ = 2λφ.
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So, if we can find such a vector ψ, then the corresponding φ is an eigenvector of Pn of eigenvalue
λ.

As you’ve probably guessed, we can find such vectors ψ. I’ve drawn one in Figure 3.3. For each of
the two-dimensional eigenspaces of R2n, we get one such a vector. These provide eigenvectors of
eigenvalue

2(1− cos(πk/n)),

for 1 ≤ k < n. Thus, we now know n− 1 distinct eigenvalues. The last, of course, is zero.

The type of quotient used in the above argument is known as an equitable partition. You can find
a extensive exposition of these in Godsil’s book [God93].
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