
Spectral Graph Theory Lecture 4

Bounding Eigenvalues

Daniel A. Spielman September 14, 2015

Disclaimer

These notes are not necessarily an accurate representation of what happened in class. The notes
written before class say what I think I should say. I sometimes edit the notes after class to make
them way what I wish I had said.

There may be small mistakes, so I recommend that you check any mathematically precise statement
before using it in your own work.

These notes were last revised on September 22, 2015.

4.1 Overview

It is unusual when one can actually explicitly determine the eigenvalues of a graph. Usually one is
only able to prove loose bounds on some eigenvalues. In this lecture, I will introduce two important
techniques for proving such bounds. The first is the Courant-Fischer Theorem, which provides a
more powerful characterization of eigenvalues as solutions to optimization problems than the one
we derived before. This theorem is useful for doing things like proving upper bounds on the largest
eigenvalue of a matrix.

The more powerful technique we will see allows one to compare one graph with another, and prove
things like lower bounds on the largest eigenvalue of a matrix. It often goes by the name “Poincaré
Inequalities” (see [DS91, SJ89, GLM99]), although I often use the name “Graphic inequlities”, as
I see them as providing inequalities between graphs.

4.2 The Courant-Fischer Theorem

I gave a hint of the Courant-Fischer Theorem earlier in the semester. I’ll do the rest of it now.

Theorem 4.2.1 (Courant-Fischer Theorem). Let L be a symmetric matrix with eigenvalues λ1 ≤
λ2 ≤ · · · ≤ λn. Then,

λk = min
S⊆IRn

dim(S)=k

max
x∈S

xTLx

xTx
= max

T⊆IRn

dim(T )=n−k+1

min
x∈T

xTLx

xTx
.
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For example, consier the case k = 1. In this case, S is just the span of ψ1 and T is all of IRn. For
general k, the optima will be achieved when S is the span of ψ1, . . . ,ψk and when T is the span of
ψk, . . . ,ψn.

Proof. We will just verify the first characterization of λk. The other is similar.

First, let’s verify that λk is achievable. Let Sk be the span of ψ1, . . . ,ψk. For every x ∈ Sk, we
can write

x =
k∑

i=1

ciψi,

so,

xTLx

xTx
=

∑k
i=1 λic

2
i∑k

i=1 c
2
i

≤
∑k

i=1 λkc
2
i∑k

i=1 c
2
i

= λk.

To verify that this is in fact the maximum, let Tk be the span of ψk, . . . ,ψn. As Tk has dimension
n− k + 1, for any S of dimension k the intersection of S with Tk has dimension at least 1. So,

max
x∈S

xTLx

xTx
≥ max

x∈S∩Tk

xTLx

xTx
.

Any such x may be expressed as

x =
n∑

i=k

ciψi,

and so
xTLx

xTx
=

∑n
i=k λic

2
i∑n

i=k c
2
i

≥
∑n

i=k λkc
2
i∑n

i=k c
2
i

= λk.

We conclude that for all subspaces S of dimension k,

max
x∈S

xTLx

xTx
≥ λk.

4.3 Bounds on λ2

We were essentially using the Courant-Fischer theorem when we observed that the second-smallest
eigenvalue of the Laplacian is given by

λ2 = min
v :vT 1=0

vTLv

vTv
.

To see this, consider any vector x , and let S be the span of x and 1. Let v be a vector in S that
is orthogonal to 1. It is clear that

vTLv = xTLx .
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You should check for yourself that
vTv ≤ xTx .

I’ll make this an exercise.

The type of bounds that we get from the Courant-Fischer theorem are those that follow from this.
Every vector v orthogonal to 1 provides an upper bound on λ2:

λ2 ≤
vTLv

vTv
.

When we use a vector v in this way, we call it a test vector.

Let’s see what a test vector can tell us about λ2 of a path graph on n vertices. I would like to use
the vector that assigns i to vertex i as a test vector, but it is not orthogonal to 1. So, we will use
the next best thing. Let x be the vector such that x (i) = (n+ 1)− 2i, for 1 ≤ i ≤ n. This vector
satisfies x ⊥ 1, so

λ2(Pn) ≤
∑

1≤i<n(x(i)− x(i+ 1))2∑
i x(i)2

=

∑
1≤i<n 22∑

i(n+ 1− 2i)2

=
4(n− 1)

(n+ 1)n(n− 1)/3
(clearly, the denominator is n3/c for some c)

=
12

n(n+ 1)
. (4.1)

We will soon see that this bound is of the right order of magnitude.

The Courant-Fischer theorem is not as helpful when we want to prove lower bounds on λ2. To
prove lower bounds, we need the form with a maximum on the outside, which gives

λ2 ≥ max
S:dim(S)=n−1

min
v∈S

vTLv

vTv
.

This is not too helpful, as it is difficult to prove lower bounds on

min
v∈S

vTLv

vTv

over a space S of large dimension. We need another technique.

4.4 Graphic Inequalities

I begin by recalling an extremely useful piece of notation that is used in the Optimization commu-
nity. For a symmetric matrix A, we write

A < 0
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if A is positive semidefinite. That is, if all of the eigenvalues of A are nonnegative, which is
equivalent to

vTAv ≥ 0,

for all v . We similarly write
A < B

if
A−B < 0

which is equivalent to
vTAv ≥ vTBv

for all v .

The relation 4 is an example of a partial order. It applies to some pairs of symmetric matrices,
while others are incomparable. But, for all pairs to which it does apply, it acts like an order. For
example, we have

A < B and B < C implies A < C ,

and
A < B implies A + C < B + C ,

for symmetric matrices A, B and C .

I find it convenient to overload this notation by defining it for graphs as well. Thus, I’ll write

G < H

if LG < LH . For example, if G = (V,E) is a graph and H = (V, F ) is a subgraph of G, then

LG < LH .

To see this, recall the Laplacian quadratic form:

xTLGx =
∑

(u,v)∈E

wu,v(x (u)− x (v))2.

It is clear that dropping edges can only decrease the value of the quadratic form. The same holds
for decreasing the weights of edges.

This notation is most powerful when we consider some multiple of a graph. Thus, I could write

G < c ·H,

for some c > 0. What is c ·H? It is the same graph as H, but the weight of every edge is multiplied
by c.

Using the Courant-Fischer Theorem, we can prove
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Lemma 4.4.1. If G and H are graphs such that

G < c ·H,

then
λk(G) ≥ cλk(H),

for all k.

Proof. The Courant-Fischer Theorem tells us that

λk(G) = min
S⊆IRn

dim(S)=k

max
x∈S

xTLGx

xTx
≥ c min

S⊆IRn

dim(S)=k

max
x∈S

xTLHx

xTx
= cλk(H).

Corollary 4.4.2. Let G be a graph and let H be obtained by either adding an edge to G or increasing
the weight of an edge in G. Then, for all i

λi(G) ≤ λi(H).

4.5 Approximations of Graphs

An idea that we will use in later lectures is that one graph approximates another if their Laplacian
quadratic forms are similar. For example, we will say that H is a c-approximation of G if

cH < G < H/c.

Surprising approximations exist. For example, expander graphs are very sparse approximations of
the complete graph. For example, the following is known.

Theorem 4.5.1. For every ε > 0, there exists a d > 0 such that for all sufficiently large n there is
a d-regular graph Gn that is a (1 + ε)-approximation of Kn.

These graphs have many fewer edges than the complete graphs!

In a later lecture we will also prove that every graph can be well-approximated by a sparse graph.

4.6 The Path Inequality

By now you should be wondering, “how do we prove that G < c · H for some graph G and H?”
Not too many ways are known. We’ll do it by proving some inequalities of this form for some of
the simplest graphs, and then extending them to more general graphs. For example, we will prove

(n− 1) · Pn < G1,n, (4.2)
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where Pn is the path from vertex 1 to vertex n, and G1,n is the graph with just the edge (1, n). All
of these edges are unweighted.

The following very simple proof of this inequality was discovered by Sam Daitch.

Lemma 4.6.1.
(n− 1) · Pn < G1,n.

Proof. We need to show that for every x ∈ IRn,

(n− 1)
n−1∑
i=1

(x (i+ 1)− x (i))2 ≥ (x (n)− x (1))2.

For 1 ≤ i ≤ n− 1, set
∆(i) = x (i+ 1)− x (i).

The inequality we need to prove then becomes

(n− 1)

n−1∑
i=1

∆(i)2 ≥

(
n−1∑
i=1

∆(i)

)2

.

But, this is just the Cauchy-Schwartz inequality. I’ll remind you that Cauchy-Schwartz just follows
from the fact that the inner product of two vectors is at most the product of their norms:

(n− 1)
n−1∑
i=1

∆(i)2 = ‖1n−1‖2 ‖∆‖2 = (‖1n−1‖ ‖∆‖)2 ≥
(
1T
n−1∆

)2
=

(
n−1∑
i=1

∆(i)

)2

.

While I won’t cover it in lecture, I will also state the version of this inequality for weighted paths.

Lemma 4.6.2. Let w1, . . . , wn−1 be positive. Then

G1,n 4

(
n−1∑
i=1

1

wi

)
n−1∑
i=1

wiGi,i+1.

Proof. Let x ∈ IRn and set ∆(i) as in the proof of the previous lemma. Now, set

γ(i) = ∆(i)
√
wi.

Let w−1/2 denote the vector for which

w−1/2(i) =
1
√
wi
.

Then, ∑
i

∆(i) = γTw−1/2,
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∥∥∥w−1/2∥∥∥2 =
∑
i

1

wi
,

and
‖γ‖2 =

∑
i

∆(i)2wi.

So,

xTLG1,nx =

(∑
i

∆(i)

)2

=
(
γTw−1/2

)2
≤
(
‖γ‖

∥∥∥w−1/2∥∥∥)2 =

(∑
i

1

wi

)∑
i

∆(i)2wi =

(∑
i

1

wi

)
xT

(
n−1∑
i=1

wiLGi,i+1

)
x .

4.6.1 Bounding λ2 of a Path Graph

I’ll now demonstrate the power of Lemma 4.6.1 by using it to prove a lower bound on λ2(Pn) that
will be very close to the upper bound we obtained from the test vector.

To prove a lower bound on λ2(Pn), we will prove that some multiple of the path is at least the
complete graph. To this end, write

LKn =
∑
i<j

LGi,j ,

and recall that
λ2(Kn) = n.

For every edge (i, j) in the complete graph, we apply the only inequality available in the path:

Gi,j 4 (j − i)
j−1∑
k=i

Gk,k+1 4 (j − i)Pn. (4.3)

This inequality says that Gi,j is at most (j − i) times the part of the path connecting i to j, and
that this part of the path is less than the whole.

Summing inequality (4.3) over all edges (i, j) ∈ Kn gives

Kn =
∑
i<j

Gi,j 4
∑
i<j

(j − i)Pn.

To finish the proof, we compute

∑
1≤i<j≤n

(j − i) =
n−1∑
k=1

k(n− k) = n(n+ 1)(n− 1)/6.
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So,

LKn 4
n(n+ 1)(n− 1)

6
· LPn .

Applying Lemma 4.4.1, we obtain

6

(n+ 1)(n− 1)
≤ λ2(Pn).

This only differs from the upper bound (4.1) by a factor of 2.

4.7 The Complete Binary Tree

Let’s do the same analysis with the complete binary tree.

One way of understanding the complete binary tree of depth d+ 1 is to identify the vertices of the
tree with strings over {0, 1} of length at most d. The root of the tree is the empty string. Every
other node has one ancestor, which is obtained by removing the last character of its string, and
two children, which are obtained by appending one character to its label.

Alternatively, you can describe it as the graph on n = 2d+1− 1 nodes with edges of the form (i, 2i)
and (i, 2i+ 1) for i < n. We will name this graph Td. Pictures of this graph appear below.

Pictorially, these graphs look like this:

1 1

1

2
2

2

3 3

3

5 6

74

Figure 4.1: T1, T2 and T3. Node 1 is at the top, 2 and 3 are its children. Some other nodes have
been labeled as well.

Let’s first upper bound λ2(Td) by constructing a test vector x. Set x(1) = 0, x(2) = 1, and
x(3) = −1. Then, for every vertex u that we can reach from node 2 without going through node 1,
we set x(u) = 1. For all the other nodes, we set x(u) = −1.

0

1
−1

1

11

1

11

−1
−1

−1−1−1−1

Figure 4.2: The test vector we use to upper bound λ2(T3).
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We then have

λ2 ≤
∑

(i,j)∈Td
(xi − xj)2∑
i x

2
i

=
(x1 − x2)2 + (x1 − x3)2

n− 1
= 2/(n− 1).

We will again prove a lower bound by comparing Td to the complete graph. For each edge (i, j) ∈
Kn, let T i,j

d denote the unique path in T from i to j. This path will have length at most 2d. So,
we have

Kn =
∑
i<j

Gi,j 4
∑
i<j

(2d)T i,j
d 4

∑
i<j

(2 log2 n)Td =

(
n

2

)
(2 log2 n)Td.

So, we obtain the bound (
n

2

)
(2 log2 n)λ2(Td) ≥ n,

which implies

λ2(Td) ≥ 1

(n− 1) log2 n
.

In the next problem set, I will ask you to improve this lower bound to 1/cn for some constant c.

4.8 Exercises

1. Let v be a vector so that vT1 = 0. Prove that

‖v‖2 ≤ ‖v + t1‖2 ,

for every real number t.
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