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5.1 Cayley Graphs

Ring graphs and hypercubes are types of Cayley graph. In general, the vertices of a Cayley graph
are the elements of some group Γ. In the case of the ring, the group is the set of integers modulo
n. The edges of a Cayley graph are specified by a set S ⊂ Γ, which are called the generators of the
Cayley graph. The set of generators must be closed under inverse. That is, if s ∈ S, then s−1 ∈ S.
Vertices u, v ∈ Γ are connected by an edge if there is an s ∈ S such that

u ◦ s = v,

where ◦ is the group operation. In the case of Abelian groups, like the integers modulo n, this
would usually be written u+ s = v. The generators of the ring graph are {1,−1}.

The d-dimensional hypercube, Hd, is a Cayley graph over the additive group (Z/2Z)d: that is the
set of vectors in {0, 1}d under addition modulo 2. The generators are given by the vectors in {0, 1}d
that have a 1 in exactly one position. This set is closed under inverse, because every element of
this group is its own inverse.

We require S to be closed under inverse so that the graph is undirected:

u+ s = v ⇐⇒ v + (−s) = u.

Cayley graphs over Abeliean groups are particularly convenient because we can find an orthonormal
basis of eigenvectors without knowing the set of generators. They just depend on the group1. Know-
ing the eigenvectors makes it much easier to compute the eigenvalues. We give the computations
of the eigenvectors in sections ?? and A.

We will now examine two exciting types of Cayley graphs: Paley graphs and generalized hypercubes.

5.2 Paley Graphs

The Paley graph are Cayley graphs over the group of integer modulo a prime, p, where p is equivalent
to 1 modulo 4. Such a group is often written Z/p.

1More precisely, the characters always form an orthonormal set of eigenvectors, and the characters just depend
upon the group. When two different characters have the same eigenvalue, we obtain an eigenspace of dimension
greater than 1. These eigenspaces do depend upon the choice of generators.
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I should begin by reminding you a little about the integers modulo p. The first thing to remember
is that the integers modulo p are actually a field, written Fp. That is, they are closed under
both addition and multiplication (completely obvious), have identity elements under addition and
multiplication (0 and 1), and have inverses under addition and multiplication. It is obvious that
the integers have inverses under addition: −x modulo p plus x modulo p equals 0. It is a little less
obvious that the integers modulo p have inverses under multiplication (except that 0 does not have
a multiplicative inverse). That is, for every x 6= 0, there is a y such that xy = 1 modulo p. When
we write 1/x, we mean this element y.

The generators of the Paley graphs are the squares modulo p (usually called the quadratic residues).
That is, the set of numbers s such that there exits an x for which x2 ≡p s. Thus, the vertex set
is {0, . . . , p− 1}, and there is an edge between vertices u and v if u − v is a square modulo p. I
should now prove that −s is a quadratic residue if and only if s is. This will hold provided that p
is equivalent to 1 modulo 4. To prove that, I need to tell you one more thing about the integers
modulo p: their multiplicative group is cyclic.

Fact 5.2.1. For every prime p, there exists a number g such that for every number x between 1
and p− 1, there is a unique i between 1 and p− 1 such that

x ≡ gi mod p.

In particular, gp−1 ≡ 1.

Corollary 5.2.2. If p is a prime equivalent to 1 modulo 4, then −1 is a square modulo p.

Proof. We know that 4 divides p− 1. Let s = g(p−1)/4. I claim that s2 = −1. This will follow from
s4 = 1.

To see this, consider the equation
x2 − 1 ≡ 0 mod p.

As the numbers modulo p are a field, it can have at most 2 solutions. Moreover, we already know
two solutions, x = 1 and x = −1. As s4 = 1, we know that s2 must be one of 1 or −1. However,
it cannot be the case that s2 = 1, because then the powers of g would begin repeating after the
(p− 1)/2 power, and thus could not represent every number modulo p.

We now understand a lot about the squares modulo p (formally called quadratic residues). The
squares are exactly the elements gi where i is even. As gigj = gi+j , the fact that −1 is a square
implies that s is a square if and only if −s is a square. So, S is closed under negation, and the
Cayley graph of Z/p with generator set S is in fact a graph. As |S| = (p − 1)/2, it is regular of
degree

d =
p− 1

2
.

5.3 Eigenvalues of the Paley Graphs

It will prove simpler to compute the eigenvalues of the adjacency matrix of the Paley Graphs. Since
these graphs are regular, this will immediately tell us the eigenvalues of the Laplacian. Let L be
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the Laplacians matrix of the Paley graph on p vertices. A remarkable feature of Paley graph is
that L2 can be written as a linear combination of L, J and I , where J is the all-1’s matrix. We
will prove that

L2 = pL +
p− 1

4
J − p(p− 1)

4
I . (5.1)

The proof will be easiest if we express L in terms of a matrix X defined by the quadratic character :

χ(x) =


1 if x is a quadratic residue modulo p

0 if x = 0, and

−1 otherwise.

This is called a character because it satisfies χ(xy) = χ(x)χ(y). We will use this to define a matrix
X by

X (u, v) = χ(u− v).

An elementary calculation, which I skip, reveals that

X = pI − 2L− J . (5.2)

Lemma 5.3.1.
X 2 = pI − J .

When combined with (5.2), this lemma immediately implies (5.1).

Proof. The diagonal entries of X 2 are the squares of the norms of the columns of X . As each
contains (p − 1)/2 entries that are 1, (p − 1)/2 entries that are −1, and one entry that is 0, its
squared norm is p− 1.

To handle the off-diagonal entries, we observe that X is symmetric, so the off-diagonal entries are
the inner products of columns of X . That is,

X (u, v) =
∑
x

χ(u− x)χ(v − x) =
∑
y

χ(y)χ((v − u) + y),

where we have set y = u − x. For convenience, set w = v − u, so we can write this more simply.
As we are considering a non-diagonal entry, w 6= 0. The term in the sum for y = 0 is zero. When
y 6= 0, χ(y) ∈ ±1, so

χ(y)χ(w + y) = χ(w + y)/χ(y) = χ(w/y + 1).

Now, as y varies over {1, . . . , p− 1}, w/y varies over all of {1, . . . , p− 1}. So, w/y + 1 varies over
all elements other than 1. This means that

∑
y

χ(y)χ((v − u) + y) =

(
p−1∑
z=0

χ(z)

)
− χ(1) = 0− 1 = −1.

So, every off-diagonal entry in X 2 is −1.
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This gives us a quadratic equation that every eigenvalue other than d must obey. Let φ be an
eigenvector of L of eigenvalue λ 6= 0. As φ is orthogonal to the all-1s vector, Jφ = 0. So,

λ2φ = L2φ = pLφ− p(p− 1)

4
Iφ == (pλ− p(p− 1)/4)φ.

So, we find

λ2 + pλ− p(p− 1)

4
= 0.

This gives

λ =
1

2
(p±√p) .

This tells us at least two interesting things:

1. The Paley graph is (up to a very small order term) a 1+
√

1/p approximation of the complete
graph.

2. Payley graphs have only two nonzero eigenvalues. This places them within the special family
of Strongly Regular Graphs, that we will study later in the semester.

5.4 Generalizing Hypercubes

To generalize the hypercube, we will consider this same group, but with a general set of generators.
We will call then g1, . . . , gk, and remember that each is a vector in {0, 1}d, modulo 2.

Let G be the Cayley graph with these generators. To be concrete, I set V = {0, 1}d, and note that
G has edge set {

(x ,x + g j) : x ∈ V, 1 ≤ j ≤ k
}
.

Using the analysis of products of graphs, we can derive a set of eigenvectors of Hd. We will now
verify that these are eigenvectors for all generalized hypercubes. Knowing these will make it easy
to describe the eigenvalues.

For each b ∈ {0, 1}d, define the function ψb from V to the reals given by

ψb(x ) = (−1)b
T x .

When I write bTx , you might wonder if I mean to take the sum over the reals or modulo 2. As
both b and x are {0, 1}-vectors, you get the same answer either way you do it.

While it is natural to think of b as being a vertex, that is the wrong perspective. Instead, you
should think of b as indexing a Fourier coefficient (if you don’t know what a Fourier coefficient is,
just don’t think of it as a vertex).

The eigenvectors and eigenvalues of the graph are determined by the following theorem. As this
graph is k-regular, the eigenvectors of the adjacency and Laplacian matrices will be the same.
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Lemma 5.4.1. For each b ∈ {0, 1}d the vector ψb is a Laplacian matrix eigenvector with eigenvalue

k −
k∑

i=1

(−1)b
T g i .

Proof. We begin by observing that

ψb(x + y) = (−1)b
T (x+y) = (−1)b

T x (−1)b
T y = ψb(x )ψb(y).

Let L be the Laplacian matrix of the graph. For any vector ψb for b ∈ {0, 1}d and any vertex
x ∈ V , we compute

(Lψb)(x ) = kψb(x )−
k∑

i=1

ψb(x + g i)

= kψb(x )−
k∑

i=1

ψb(x )ψb(g i)

= ψb(x )

(
k −

k∑
i=1

ψb(g i)

)
.

So, ψb is an eigenvector of eigenvalue

k −
k∑

i=1

ψb(g i) = k −
k∑

i=1

(−1)b
T g i .

5.5 A random set of generators

We will now show that if we choose the set of generators uniformly at random, for k some constant
multiple of the dimension, then we obtain a graph that is a good approximation of the complete
graph. That is, all the eigenvalues of the Laplacian will be close to k. I will set k = cd, for some
c > 1. Think of c = 2, c = 10, or c = 1 + ε.

For b ∈ {0, 1}d but not all zero, and for g chosen uniformly at random from {0, 1}d, bTg modulo
2 is uniformly distributed in {0, 1}, and so

(−1)b
T g

is uniformly distributed in ±1. So, if we pick g1, . . . , gk independently and uniformly from {0, 1}d,
the eigenvalue corresponding to the eigenvector ψb is

λb
def
= k −

k∑
i=1

(−1)b
T g i .
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The right-hand part is a sum of independent, uniformly chosen ±1 random variables. So, we
know it is concentrated around 0, and thus λb will be concentrated around k. To determine how
concentrated the sum actually is, we use a Chernoff bound. There are many forms of Chernoff
bounds. I will not use the strongest, but settle for one which is simple and which gives results that
are qualitatively correct.

Theorem 5.5.1. Let x1, . . . , xk be independent ±1 random variables. Then, for all t > 0,

Pr

[∣∣∣∣∣∑
i

xi

∣∣∣∣∣ ≥ t
]
≤ 2e−t

2/2k.

This becomes very small when t is a constant fraction of k. In fact, it becomes so small that it is
unlikely that any eigenvalue deviates from k by more than t.

Theorem 5.5.2. With high probability, all of the nonzero eigenvalues of the generalized hypercube
differ from k by at most

k

√
2

c
,

where k = cd.

Proof. Let t = k
√

2/c. Then, for every nonzero b,

Pr [|k − λb | ≥ t] ≤ 2e−t
2/2k ≤ 2e−k/c = 2e−d.

Now, the probability that there is some b for which λb violates these bounds is at most the sum of
these terms:

Pr [∃b : |k − λb | ≥ t] ≤
∑

b∈{0,1}d,b 6=0d

Pr [|k − λb | ≥ t] ≤ (2d − 1)2e−d,

which is always less than 1 and goes to zero exponentially quickly as d grows.

I initially suggested thinking of c = 2 or c = 10. The above bound works for c = 10. To get a useful
bound for c = 2, we need to sharpen the analysis. A naive sharpening will work down to c = 2 ln 2.
To go lower than that, you need a stronger Chernoff bound.

5.6 Conclusion

We have now seen that a random generalized hypercube of degree k probably has all non-zero
Laplacian eigenvalues between

k(1−
√

2/c) and k(1 +
√

2/c).

If we let n be the number of vertices, and we now multiply the weight of every edge by n/k, we
obtain a graph with all nonzero Laplacian eigenvalues between

n(1−
√

2/c) and n(1 +
√

2/c).
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Thus, this is essentially a 1 +
√

2/c approximation of the complete graph on n vertices. But, the
degree of every vertex is only c log2 n. Expanders are infinite families of graphs that are constant-
factor approximations of complete graphs, but with constant degrees.

We know that random regular graphs are probably expanders. If we want explicit constructions,
we need to go to non-Abelian groups.

Explicit constructions that achieve bounds approaching those of random generalized hypercubes
come from error-correcting codes.

Explicit constructions allow us to use these graphs in applications that require us to implicitly deal
with a very large graph. A few weeks from now, we will see how to use such graphs to construct
pseudo-random generators.

5.7 Non-Abelian Groups

In the homework, you will show that it is impossible to make constant-degree expander graphs from
Cayley graphs of Abelian groups. The best expanders are constructed from Cayley graphs of 2-by-2
matrix groups. In particular, the Ramanujan expanders of Margulis [Mar88] and Lubotzky, Phillips
and Sarnak [LPS88] are Cayley graphs over the Projective Special Linear Groups PSL(2, p), where
p is a prime. These are the 2-by-2 matrices modulo p with determinant 1, in which we identify A
with −A.

They provided a very concrete set of generators. For a prime q modulo to 1 modulo 4, it is known
that there are p+ 1 solutions to the equation

a21 + a22 + a23 + a24 = p,

where a1 is odd and a2, a3 and a4 are even. We obtain a generator for each such solution of the
form:

1
√
p

[
a0 + ia1 a2 + ia3
−a2 + ia3 a0 − ia1

]
,

where i is an integer that satisfies i2 = −1 modulo p.

Even more explicit constructions, which do not require solving equations, may be found in [ABN+92].

A Eigenvectors of Cayley Graphs of Abelian Groups

The wonderful thing about Cayley graphs of Abelian groups is that we can construct an orthornor-
mal basis of eigenvectors for these graphs without even knowing the set of generators S. That
is, the eigenvectors only depend upon the group. Related results also hold for Cayley graphs of
arbitrary groups, and are related to representations of the groups. See [Bab79] for details.

As Cayley graphs are regular, it won’t matter which matrix we consider. For simplicity, we will
consider adjacency matrices.
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Let n be an integer and let G be a Cayley graph on Z/n with generator set S. When S = {±1},
we get the ring graphs. For general S, I think of these as generalized Ring graphs. Let’s first see
that they have the same eigenvectors as the Ring graphs.

Recall that we proved that the vectors x k and yk were eigenvectors of the ring graphs, where

x k(u) = sin(2πku/n), and

yk(u) = cos(2πku/n),

for 1 ≤ k ≤ n/2.

Let’s just do the computation for the x k, as the yk are similar. For every u modulo n, we have

(Ax k)(u) =
∑
g∈S

x k(u+ g)

=
1

2

∑
g∈S

x k(u+ g) + x k(u− g)


=

1

2

∑
g∈S

sin(2πk(u+ g)/n) + sin(2πk(u− g)/n)


=

1

2

∑
g∈S

2 sin(2πku/n) cos(2πkg/n)


= sin(2πku/n)

∑
g∈S

cos(2πkg/n)

= x k(u)
∑
g∈S

cos(2πkg/n).

So, the corresponding eigenvalue is ∑
g∈S

cos(2πkg/n).
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