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6.1 Overview

In this lecture we will see how high-frequency eigenvalues of the Laplacian matrix can be related to
independent sets and graph coloring. Some of the bounds we obtained will be more easilys stated
in terms of the adjacency matrix, M . Recall the we number the Laplacian matrix eigenvalues in
increasing order:

0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

We call the adjacency matrix eigenvalues µ1, . . . , µn, and number them in the reverse order:

µ1 ≥ · · · ≥ µn.

The reason is that for d-regular graphs, µi = d− λi.

6.2 Graph Coloring and Independent Sets

A coloring of a graph is an assignment of one color to every vertex in a graph so that each edge
connects vertices of different colors. We are interested in coloring graphs while using as few colors
as possible. Formally, a k-coloring of a graph is a function c : V → {1, . . . , k} so that for all
(u, v) ∈ V , c(u) 6= c(v). A graph is k-colorable if it has a k-coloring. The chromatic number of a
graph, written χG, is the least k for which G is k-colorable. A graph G is 2-colorable if and only if
it is bipartite. Determining whether or not a graph is 3-colorable is an NP-complete problem. The
famous 4-Color Theorem [AH77a, AH77b] says that every planar graph is 4-colorable.

A set of vertices S is independent if there are no edges between vertices in S. In particular, each
color class in a coloring is an independent set. The problem of finding large independent sets
in a graph is NP-Complete, and it is very difficult to even approximate the size of the largest
independent set in a graph.

However, for some carefully chosen graphs one can obtain very good bounds on the sizes of in-
dependent sets by using spectral graph theory. We may later see some uses of this theory in the
analysis of error-correcting codes and sphere packings.
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6.3 Hoffman’s Bound

One of the first results in spectral graph theory was Hoffman’s proof the following upper bound on
the size of an independent set in a graph G.

Theorem 6.3.1. Let G = (V,E) be a d-regular graph, and let µn be its smallest adjacency matrix
eigenvalue. Then

α(G) ≤ n −µn
d− µn

.

Recall that µn < 0. Otherwise this theorem would not make sense. We will prove a generalization
of Hoffman’s theorem due to Godsil and Newman [GN08]:

Theorem 6.3.2. Let S be an independent set in G, and let dave(S) be the average degree of a
vertex in S. Then,

|S| ≤ n
(

1− dave(S)

λn

)
.

This is a generalization because in the d-regular case dave = d and λn = d− µn. So, these bounds
are the same for regular graphs:

1− dave(S)

λn
=
λn − d
λn

=
−µn
d− µn

.

Proof. Let S be an independent set of vertices and let d(S) be the sum of the degrees of vertices
in S.

Recall that

λn = max
x

xTLx

xTx
.

We also know that the vector x that maximizes this quantity is ψn, and that ψn is orthogonal to
ψ1. So, we can refine this expression to

λn = max
x⊥1

xTLx

xTx
.

Consider the vector
x = χS − s1,

where s = |S| /n. As S is independent, we have

xTLx = |∂(S)| = d(S) = dave(S) |S| .

Claim 2.3.2 tells us that the square of the norm of x is

xTx = n(s− s2).
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So,

λn ≥
dave(S) |S|
n(s− s2)

=
dave(S)sn

n(s− s2)
=
dave(S)

1− s
.

Re-arranging terms, this gives

1− dave(S)

λn
≥ s,

which is equivalent to the claim of the theorem.

6.4 Application to Paley graphs

Let’s examine what Hoffman’s bound on the size of the largest independent set tells us about Paley
graphs.

If G is a Paley graph and S is an independent set, we have n = p, d = (p−1)/2, and λn = (p+
√
p)/2,

so Hoffman’s bound tells us that

|S| ≤ n
(

1− dave(S)

λn

)
= p

(
1− p− 1

p+
√
p

)
= p

(√
p+ 1

p+
√
p

)
=
√
p.

One can also show that every clique in a Paley graph has size at most
√
p.

A graph is called a k-Ramsey graph if it contains no clique or independent set of size k. It is a
challenge to find large k-Ramsey graphs. Equivalently, it is challenging to find k-Ramsey graphs
on n vertices for which k is small. In one of the first papers on the Probabilistic Method in
Combinatorics, Erdös proved that a random graph on n vertices in which each edge is included
with probability 1/2 is probably 2 log2 n Ramsey [Erd47].

However, constructing explicit Ramsey graphs has proved much more challening. Until recently,
Paley graphs were among the best known. A recent construction of Barak, Rao, Shatltiel and
Wigderson [BRSW12] constructs explicit graphs that are 2(logn)

o(1)
Ramsey.

6.5 Lower Bound on the chromatic number

As a k-colorable graph must have an independent set of size at least n/k, an upper bound on the
sizes of independent sets gives a lower bound on its chromatic number. However, this bound is not
always a good one.

For example, consider a graph on 2n vertices consisting of a clique on n vertices and n vertices of
degree 1, each of which is connected to a different vertex in the clique. The chromatic number of
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this graph is n, because each of the vertices in the clique must have a different color. However,
the graph also has an independent set of size n, which would only give a lower bound of 2 on the
chromatic number.

Hoffman proved the following lower bound on the chromatic number of a graph that does not
require the graph to be regular. Numerically, it is obtained by dividing n by the bound in Theorem
6.3.1. But, the proof is very different because that theorem only applies to regular graphs.

Theorem 6.5.1.

χ(G) ≥ µ1 − µn
−µn

= 1 +
µ1
−µn

.

The proof of this theorem relies on one inequality that I will not have time to cover in class. So, I
will put its proof in Section B.

Lemma 6.5.2. Let

A =


A1,1 A1,2 · · · A1,k

AT
1,2 A2,2 · · · A2,k
...

...
. . .

...

AT
1,k AT

2,k · · · Ak,k


be a block-partitioned symmetric matrix with k ≥ 2. Then

(k − 1)λmin(A) + λmax(A) ≤
∑
i

λmax(Ai,i).

Proof of Theorem 6.5.1. Let G be a k-colorable graph. After possibly re-ordering the vertices, the
adjacency matrix of G can be written

0 A1,2 · · · A1,k

AT
1,2 0 · · · A2,k
...

...
. . .

...

AT
1,k AT

2,k · · · 0

 .
Each block corresponds to a color.

As each diagonal block is all-zero, Lemma 6.5.2 implies

(k − 1)λmin(A) + λmax(A) ≤ 0.

Recalling that λmin(A) = µn < 0, and λmax(A) = µ1, a little algebra yields

1 +
µ1
−µn

≤ k.

To return to our example of the n clique with n degree-1 vertices attached, I examined an example
with n = 6. We find µ1 = 5.19 and µ12 = −1.62. This gives a lower bound on the chromatic
number of 4.2, which implies a lower bound of 5. We can improve the lower bound by re-weighting
the edges of the graph. For example, if we give weight 2 to all the edges in the clique and weight 1
to all the others, we obtain a bound of 5.18, which agrees with the chromatic number of this graph
which is 6.
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6.6 Coloring and The Adjacency Matrix

I would also like to show how to use spectral graph theory to color a graph. I do not know how to
do this using the Laplacian matrix, so we will work with the Adjacency matrix. This will provide
me with a good opportunity to cover some material about adjacency matrices that I have neglected.

6.7 The Largest Eigenvalue, µ1

We now examine µ1 for graphs which are not necessarily regular. Let G be a graph, let dmax be
the maximum degree of a vertex in G, and let dave be the average degree of a vertex in G.

Lemma 6.7.1.
dave ≤ µ1 ≤ dmax.

Proof. The lower bound follows by considering the Rayleigh quotient with the all-1s vector:

µ1 = max
x

xTMx

xTx
≥ 1TM1

1T1
=

∑
i,j M (i, j)

n
=

∑
i d(i)

n
.

To prove the upper bound, Let ψ1 be an eigenvector of eigenvalue µ1. Let v be the vertex on which
it takes its maximum value, so ψ1(v) ≥ ψ1(u) for all u, and assume without loss of generality that
ψ1(v) 6= 0. We have

µ1 =
(Mψ1)(v)

ψ1(v)
=

∑
u∼v ψ1(u)

ψ1(v)
=
∑
u∼v

ψ1(u)

ψ1(v)
≤
∑
u∼v

1 ≤ d(v) ≤ dmax. (6.1)

Lemma 6.7.2. If G is connected and µ1 = dmax, then G is dmax-regular.

Proof. If we have equality in (6.1), then it must be the case that d(v) = dmax and φ1(u) = φ1(v)
for all (u, v) ∈ E. Thus, we may apply the same argument to every neighbor of v. As the graph
is connected, we may keep applying this argument to neighbors of vertices to which it has already
been applied to show that φ1(z) = φ1(v) and d(z) = dmax for all z ∈ V .

6.8 Wilf’s Theorem

While we may think of µ1 as being a related to the average degree, it does behave differently. In
particular, if we remove the vertex of smallest degree from a graph, the average degree can increase.
On the other hand, µ1 can only decrease when we remove a vertex. Let’s prove that now.

Lemma 6.8.1. Let A be a symmetric matrix with largest eigenvalue α1. Let B be the matrix
obtained by removing the last row and column from A, and let β1 be the largest eigenvalue of B.
Then,

α1 ≥ β1.
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Proof. For any vector y ∈ IRn−1, we have

yTBy =

(
y
0

)T

A

(
y
0

)
.

So, for y an eigenvector of B of eigenvalue β1,

β1 =
yTBy

yTy
=

(
y
0

)T

A

(
y
0

)
(
y
0

)T (
y
0

) ≤ max
x∈IRn

xTAx

xTx
.

Of course, this holds regardless of which row and column we remove, as long as they are the same
row and column.

It is easy to show that every graph is (dmax +1)-colorable. Assign colors to the vertices one-by-one.
As each vertex has at most dmax neighbors, there is always some color one can assign that vertex
that is different that those assigned to its neighbors. The following theorem of Wilf improves upon
this bound.

Theorem 6.8.2.
χ(G) ≤ bµ1c+ 1.

Proof. We prove this by induction on the number of vertices in the graph. To ground the induction,
consider the graph with one vertex and no edges. It has chromatic number 1 and largest eigenvalue
zero1. Now, assume the theorem is true for all graphs on n − 1 vertices, and let G be a graph on
n vertices. By Lemma 6.7.1, G has a vertex of degree at most bµ1c. Let v be such a vertex and
let G − {v} be the graph obtained by removing this vertex. By Lemma 6.8.1 and our induction
hypothesis, G−{v} has a coloring with at most bµ1c+1 colors. Let c be any such coloring. We just
need to show that we can extend c to v. As v has at most bµ1c neighbors, there is some color in
{1, . . . , bµ1c+ 1} that does not appear among its neighbors, and which it may be assigned. Thus,
G has a coloring with bµ1c+ 1 colors.

For an example, consider a path graph with at least 3 vertices. We have dmax = 2, but α1 < 2.

6.9 Perron-Frobenius Theorey

The eigenvector corresponding to the largest eigenvalue of the adjacency matrix of a graph is usually
not a constant vector. However, it is always a positive vector if the graph is connected.

This follows from the Perron-Frobenius theory. In fact, the Perron-Frobenius theory says much
more, and it can be applied to adjacency matrices of strongly connected directed graphs. Note that

1If this makes you uncomfortable, you could use both graphs on two vertices
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these need not even be diagonalizable! We will defer a discussion of the general theory until we
discuss directed graphs, which will happen towards the end of the semester. If you want to see it
now, look at the third lecture from my notes from 2009.

In the symmetric case, the theory is made much easier by both the spectral theory and the char-
acterization of eigenvalues as extreme values of Rayleigh quotients.

Theorem 6.9.1. [Perron-Frobenius, Symmetric Case] Let G be a connected weighted graph, let M
be its adjacency matrix, and let µ1 ≥ µ2 ≥ · · · ≥ µn be its eigenvalues. Then

a. µ1 ≥ −µn, and

b. µ1 > µ2,

c. The eigenvalue µ1 has a strictly positive eigenvector.

Before proving Theorem 6.9.1, we will prove a lemma that will be useful in the proof and a few
other places today. It says that non-negative eigenvectors of non-negative adjacency matrices of
connected graphs must be strictly positive.

Lemma 6.9.2. Let G be a connected weighted graph (with non-negative edge weights), let M be
its adjacency matrix, and assume that some non-negative vector φ is an eigenvector of M . Then,
φ is strictly positive.

Proof. Assume by way of contradiction that φ is not strictly positive. So, there is some vertex u
for which φ(u) = 0. Thus, there must be some edge (u, v) for which φ(u) = 0 but φ(v) > 0. We
would then

(Mφ)(u) =
∑

(u,z)∈E

w(u, z)φ(z) ≥ w(u, v)φ(v) > 0,

as all the terms w(u, z) and φ(z) are non-negative. But, this must also equal µφ(u) = 0, where µ
is the eigenvalue corresponding to φ. This is a contradiction.

So, we conclude that φ must be strictly positive.

We probably won’t have time to say any more about Perron-Frobenius theory, so I defer the proof
of the theorem to the appendix.

A Perron-Frobenius, continued

Proof of Theorem 6.9.1. Let φ1, . . . ,φn be the eigenvectors corresponding to µ1, . . . , µn.

We start with part c. Recall that

µ1 = max
x

xTMx

xTx
.

Let φ1 be an eigenvector of µ1, and construct the vector x such that

x (u) = |φ1(u)| , for all u.
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We will show that x is an eigenvector of eigenvalue µ1.

We have xTx = φT
1 φ1. Moreover,

φT
1 Mφ1 =

∑
u,v

M (u, v)φ1(u)φ1(v) ≤
∑
u,v

M (u, v) |φ1(u)| |φ1(v)| = xTMx .

So, the Rayleigh quotient of x is at least µ1. As µ1 is the maximum possible Rayleigh quotient,
the Rayleigh quotient of x must be µ1 and x must be an eigenvector of µ1.

So, we now know that M has an eigenvector x that is non-negative. We can then apply Lemma 6.9.2
to show that x is strictly positive.

To prove part b, let φn be the eigenvector of µn and let y be the vector for which y(u) = |φn(u)|.
In the spirit of the previous argument, we can again show that

|µn| = |φnMφn| ≤
∑
u,v

M (u, v)y(u)y(v) ≤ µ1yTy = µ1.

To show that the multiplicity of µ1 is 1 (that is, µ2 < µ1), consider an eigenvector φ2. As φ2 is
orthogonal to φ1, it must contain both positive and negative values. We now construct the vector
y such that y(u) = |φ2(u)| and repeat the argument that we used for x . We find that

µ2 =
φT
2 Mφ2

φ2φ2

≤ yTMy

yTy
≤ µ1.

From here, we divide the proof into two cases. First, consider the case in which y is never zero. In
this case, there must be some edge (u, v) for which φ2(u) < 0 < φ2(v). Then the above inequality
must be strict because the edge (u, v) will make a negative contribution to φT

2 Mφ2 and a positive
contribution to yTMy .

We will argue by contradiction in the case that y has a zero value. In this case, if µ2 = µ1 then
y will be an eigenvector of eigenvalue µ1. This is a contradiction, as Lemma 6.9.2 says that a
non-negative eigenvector cannot have a zero value. So, if y has a zero value then yTMy < µ1 and
µ2 < µ1 as well.

The following characterization of bipartite graphs follows from similar ideas.

Proposition A.1. If G is a connected graph, then µn = −µ1 if and only if G is bipartite.

Proof. First, assume that G is bipartite. That is, we have a decomposition of V into sets U and
W such that all edges go between U and W . Let φ1 be the eigenvector of µ1. Define

x (u) =

{
φ1(u) if u ∈ U, and
−φ1(u) if u ∈W.

For u ∈ U , we have

(Mx )(u) =
∑

(u,v)∈E

x (v) = −
∑

(u,v)∈E

φ(v) = −µ1φ(u) = −µ1x (u).
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Using a similar argument for u 6∈ U , we can show that x is an eigenvector of eigenvalue −µ1.

To go the other direction, assume that µn = −µ1. We then construct y as in the previous proof,
and again observe

|µn| = |φnMφn| =

∣∣∣∣∣∑
u,v

M (u, v)φn(u)φn(v)

∣∣∣∣∣ ≤∑
u,v

M (u, v)y(u)y(v) ≤ µ1yTy = µ1.

For this to be an equality, it must be the case that y is an eigenvalue of µ1, and so y = ‘φ1. For
the first inequality above to be an equality, it must also be the case that all the terms φn(u)φn(v)
have the same sign. In this case that sign must be negative. So, we every edge goes between a
vertex for which φn(u) is positive and a vertex for which φn(v) is negative. Thus, the signs of φn

give the bi-partition.

B Proofs for Hoffman’s lower bound on chromatic number

To prove Lemma 6.5.2, we begin with the case of k = 2. The general case follows from this one by
induction.

Lemma B.1. Let

A =

[
B C

C T D

]
be a symmetric matrix. Then

λmin(A) + λmax(A) ≤ λmax(B) + λmax(D).

Proof. Let x be an eigenvector of A of eigenvalue λmax(A). To simplify formulae, let’s also assume

that x is a unit vector. Write x =

(
x 1

x 2

)
, using the same partition as we did for A.

We first consider the case in which neither x 1 nor x 2 is an all-zero vector. In this case, we set

y =

( ‖x2‖
‖x1‖x 1

−‖x1‖
‖x2‖x 2

)
.

The reader may verify that y is also a unit vector, so

yTAy ≥ λmin(A).
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We have

λmax(A) + λmin(A) ≤ xTAx + yTAy

= xT
1 Bx 1 + xT

1 Cx 2 + xT
2 C

Tx 1 + xT
2 Dx 2+

+
‖x 2‖2

‖x 1‖2
xT
1 Bx 1 − xT

1 Cx 2 − xT
2 C

Tx 1 +
‖x 1‖2

‖x 2‖2
xT
2 Dx 2

= xT
1 Bx 1 + xT

2 Dx 2 +
‖x 2‖2

‖x 1‖2
xT
1 Bx 1 +

‖x 1‖2

‖x 2‖2
xT
2 Dx 2

≤

(
1 +
‖x 2‖2

‖x 1‖2

)
xT
1 Bx 1 +

(
1 +
‖x 1‖2

‖x 2‖2

)
xT
2 Dx 2

≤ λmax(B)
(
‖x 1‖2 + ‖x 2‖2

)
+ λmax(D)

(
‖x 1‖2 + ‖x 2‖2

)
= λmax(B) + λmax(D),

as x is a unit vector.

We now return to the case in which ‖x 2‖ = 0 (or ‖x 1‖ = 0, which is really the same case). Lemma
6.8.1 tells us that λmax(B) ≤ λmax(A). So, it must be the case that x 1 is an eigenvector of
eigenvalue λmax(A) of B , and thus λmax(B) = λmax(A). To finish the proof, also observe that
Lemma 6.8.1 implies

λmax(D) ≥ λmin(D) ≥ λmin(A).

Proof of Lemma 6.5.2. For k = 2, this is exactly Lemma B.1. For k > 2, we apply induction. Let

B =


A1,1 A1,2 · · · A1,k−1
AT

1,2 A2,2 · · · A2,k−1
...

...
. . .

...

AT
1,k−1 AT

2,k−1 · · · Ak−1,k−1

 .
Lemma 6.8.1 now implies.

λmin(B) ≥ λmin(A).

Applying Lemma B.1 to B and the kth row and column of A, we find

λmin(A) + λmax(A) ≤ λmax(B) + λmax(Ak,k)

≤ −(k − 2)λmin(B) +

k−1∑
i=1

λmax(Ai,i) + λmax(Ak,k) (by induction)

≤ −(k − 1)λmin(A) +

k∑
i=1

λmax(Ai,i),

which proves the lemma.
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