
Spectral Graph Theory Lecture 7

Fiedler’s Theorems on Nodal Domains

Daniel A. Spielman September 19, 2018

7.1 Overview

In today’s lecture we will justify some of the behavior we observed when using eigenvectors to draw
graphs in the first lecture. First, recall some of the drawings we made of graphs:

We will show that the subgraphs obtained in the right and left halfs of each image are connected.

Path graphs exhibited more interesting behavior: their kth eigenvector changes sign k times:
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Here are the analogous plots for a path graph with edge weights randomly chosen in [0, 1]:
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Here are the first few eigenvectors of another:
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Random.seed!(1)

M = spdiagm(1=>rand(10))

M = M + M’

L = lap(M)

E = eigen(Matrix(L))

Plots.plot(E.vectors[:,2],label="v2",marker = 5)

Plots.plot!(E.vectors[:,3],label="v3",marker = 5)

Plots.plot!(E.vectors[:,4],label="v4",marker = 5)

xlabel!("Vertex Number")

ylabel!("Value in Eigenvector")

savefig("rpath2v24.pdf")

We see that the kth eigenvector still changes sign k times. We will see that this always happens.
These are some of Fiedler’s theorems about “nodal domains”. Nodal domains are the connected
parts of a graph on which an eigenvector is negative or positive.
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7.2 Sylverter’s Law of Interia

Let’s begin with something obvious.

Claim 7.2.1. If A is positive semidefinite, then so is BTAB for every matrix B.

Proof. For any x,
xTBTABx = (Bx)TA(Bx) ≥ 0,

since A is positive semidefinite.

In this lecture, we will make use of Sylvester’s law of intertia, which is a powerful generalization of
this fact. I will state and prove it now.

Theorem 7.2.2 (Sylvester’s Law of Intertia). Let A be any symmetric matrix and let B be any
non-singular matrix. Then, the matrix BABT has the same number of positive, negative and zero
eigenvalues as A.

Note that if the matrix B were orthonormal, or if we used B−1 in place of BT , then these matrices
would have the same eigenvalues. What we are doing here is different, and corresponds to a change
of variables.

Proof. It is clear that A and BABT have the same rank, and thus the same number of zero
eigenvalues.

We will prove that A has at least as many positive eigenvalues as BABT . One can similarly prove
that that A has at least as many negative eigenvalues, which proves the theorem.

Let γ1, . . . , γk be the positive eigenvalues of BABT and let Yk be the span of the corresponding
eigenvectors. Now, let Sk be the span of the vectors BTy , for y ∈ Yk. As B is non-singluar, Sk
has dimension k. Let α1 ≥ · · · ≥ αn be the eigenvalues of A. By the Courant-Fischer Theorem, we
have

αk = max
S⊆IRn

dim(S)=k

min
x∈S

xTAx

xTx
≥ min

x∈Sk

xTAx

xTx
= min

y∈Yk

yTBABTy

yTBBTy
≥ γkyTy

yTBBTy
> 0.

So, A has at least k positive eigenvalues (The point here is that the denominators are always
positive, so we only need to think about the numerators.)

To finish, either apply the symmetric argument to the negative eigenvalues, or apply the same
argument with B−1.

7.3 Weighted Trees

We will now examine a theorem of Fiedler [Fie75].
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Theorem 7.3.1. Let T be a weighted tree graph on n vertices, let LT have eigenvalues 0 = λ1 <
λ2 · · · ≤ λn, and let ψk be an eigenvector of λk. If there is no vertex u for which ψk(u) = 0, then
there are exactly k − 1 edges for which ψk(u)ψk(v) < 0.

One can extend this theorem to accomodate zero entries and prove that the eigenvector changes
k − 1 times. We will just prove this theorem for weighted path graphs.

Our analysis will rest on an understanding of Laplacians of paths that are allowed to have negative
edges weights.

Lemma 7.3.2. Let M be the Laplacian matrix of a weighted path that can have negative edge
weights:

M =
∑

1≤a<n

wa,a+1La,a+1,

where the weights wa,a+1 are non-zero and we recall that La,b is the Laplacian of the edge (a, b).
The number of negative eigenvalues of M equals the number of negative edge weights.

Proof. Note that

xTM x =
∑

(u,v)∈E

wu,v(x (u)− x (v))2.

We now perform a change of variables that will diagonalize the matrix M . Let δ(1) = x (1), and
for every a > 1 let δ(a) = x (a)− x (a− 1).

Every variable x (1), . . . ,x (n) can be expressed as a linear combination of the variables δ(1), . . . , δ(n).
In particular,

x (a) = δ(1) + δ(2) + · · ·+ δ(a).

So, there is a square matrix L of full rank such that

x = Lδ.

By Sylvester’s law of intertia, we know that

LTM L

has the same number of positive, negative, and zero eigenvalues as M . On the other hand,

δTLTM Lδ =
∑

1≤a<n

wa,a+1(δ(v))2.

So, this matrix clearly has one zero eigenvalue, and as many negative eigenvalues as there are
negative wa,a+1.

Proof of Theorem 7.3.1. We assume that λk has multiplicity 1. One can prove it, but we
will skip it.

Let Ψk denote the diagonal matrix with ψk on the diagonal, and let λk be the corresponding
eigenvalue. Consider the matrix

M = Ψk(LP − λkI )Ψk.
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The matrix LP − λkI has one zero eigenvalue and k− 1 negative eigenvalues. As we have assumed
that ψk has no zero entries, Ψk is non-singular, and so we may apply Sylvester’s Law of Intertia
to show that the same is true of M .

I claim that
M =

∑
(u,v)∈E

wu,vψk(u)ψk(v)Lu,v.

To see this, first check that this agrees with the previous definition on the off-diagonal entries. To
verify that these expression agree on the diagonal entries, we will show that the sum of the entries
in each row of both expressions agree. As we know that all the off-diagonal entries agree, this
implies that the diagonal entries agree. We compute

Ψk(LP − λkI )Ψk1 = Ψk(LP − λkI )ψk = Ψk(λkψk − λkψk) = 0.

As Lu,v1 = 0, the row sums agree. Lemma 7.3.2 now tells us that the matrix M , and thus LP−λkII,
has as many negative eigenvalues as there are edges (u, v) for which ψk(u)ψk(v) < 0.

7.4 More linear algebra

There are a few more facts from linear algebra that we will need for the rest of this lecture. We
stop to prove them now.

7.4.1 The Perron-Frobenius Theorem for Laplacians

In Lecture 3, we proved the Perron-Frobenius Theorem for non-negative matrices. I wish to quickly
observe that this theory may also be applied to Laplacian matrices, to principal sub-matrices of
Laplacian matrices, and to any matrix with non-positive off-diagonal entries. The difference is that
it then involves the eigenvector of the smallest eigenvalue, rather than the largest eigenvalue.

Corollary 7.4.1. Let M be a matrix with non-positive off-diagonal entries, such that the graph
of the non-zero off-diagonally entries is connected. Let λ1 be the smallest eigenvalue of M and
let v1 be the corresponding eigenvector. Then v1 may be taken to be strictly positive, and λ1 has
multiplicity 1.

Proof. Consider the matrix A = σI −M , for some large σ. For σ sufficiently large, this matrix
will be non-negative, and the graph of its non-zero entries is connected. So, we may apply the
Perron-Frobenius theory to A to conclude that its largest eigenvalue α1 has multiplicity 1, and the
corresponding eigenvector v1 may be assumed to be strictly positive. We then have λ1 = σ − α1,
and v1 is an eigenvector of λ1.

7.4.2 Eigenvalue Interlacing

We will often use the following elementary consequence of the Courant-Fischer Theorem. I will
assign it as homework.
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Theorem 7.4.2 (Eigenvalue Interlacing). Let A be an n-by-n symmetric matrix and let B be a
principal submatrix of A of dimension n− 1 (that is, B is obtained by deleting the same row and
column from A). Then,

α1 ≥ β1 ≥ α2 ≥ β2 ≥ · · · ≥ αn−1 ≥ βn−1 ≥ αn,

where α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βn−1 are the eigenvalues of A and B , respectively.

7.5 Fiedler’s Nodal Domain Theorem

Given a graph G = (V,E) and a subset of vertices, W ⊆ V , recall that the graph induced by G on
W is the graph with vertex set W and edge set

{(i, j) ∈ E, i ∈W and j ∈W} .

This graph is sometimes denoted G(W ).

Theorem 7.5.1 ([Fie75]). Let G = (V,E,w) be a weighted connected graph, and let LG be its
Laplacian matrix. Let 0 = λ1 < λ2 ≤ · · · ≤ λn be the eigenvalues of LG and let ψ1, . . . ,ψn be the
corresponding eigenvectors. For any k ≥ 2, let

Wk = {i ∈ V : ψk(i) ≥ 0} .

Then, the graph induced by G on Wk has at most k − 1 connected components.

Proof. To see that Wk is non-empty, recall that ψ1 = 1 and that ψk is orthogonal ψ1. So, ψk

must have both positive and negative entries.

Assume that G(Wk) has t connected components. After re-ordering the vertices so that the vertices
in one connected component of G(Wk) appear first, and so on, we may assume that LG and ψk

have the forms

LG =


B1 0 0 · · · C1

0 B2 0 · · · C2
...

...
. . .

...
...

0 0 · · · Bt Ct

CT
1 CT

2 · · · CT
t D

 ψk =


x 1

x 2
...

x t

y

 ,

and 
B1 0 0 · · · C1

0 B2 0 · · · C2
...

...
. . .

...
...

0 0 · · · Bt Ct

CT
1 CT

2 · · · CT
t D




x 1

x 2
...

x t

y

 = λk


x 1

x 2
...

x t

y

 .

The first t sets of rows and columns correspond to the t connected components. So, x i ≥ 0 for
1 ≤ i ≤ t and y < 0 (when I write this for a vector, I mean it holds for each entry). We also know
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that the graph of non-zero entries in each Bi is connected, and that each Ci is non-positive, and
has at least one non-zero entry (otherwise the graph G would be disconnected).

We will now prove that the smallest eigenvalue of Bi is smaller than λk. We know that

Bix i + Ciy = λkx i.

As each entry in Ci is non-positive and y is strictly negative, each entry of Ciy is non-negative and
some entry of Ciy is positive. Thus, x i cannot be all zeros,

Bix i = λkx i − Ciy ≤ λkx i

and
xT
i Bix i ≤ λkxT

i x i.

If x i has any zero entries, then the Perron-Frobenius theorem tells us that x i cannot be an eigen-
vector of smallest eigenvalue, and so the smallest eigenvalue of Bi is less than λk. On the other
hand, if x i is strictly positive, then xT

i Ciy > 0, and

xT
i Bix i = λkxT

i x i − xT
i Ciy < λkxT

i x i.

Thus, the matrix 
B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bt


has at least t eigenvalues less than λk. By the eigenvalue interlacing theorem, this implies that
LG has at least t eigenvalues less than λk. We may conclude that t, the number of connected
components of G(Wk), is at most k − 1.

We remark that Fiedler actually proved a somewhat stronger theorem. He showed that the same
holds for

W = {i : ψk(i) ≥ t} ,

for every t ≤ 0.

This theorem breaks down if we instead consider the set

W = {i : ψk(i) > 0} .

The star graphs provide counter-examples.
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Figure 7.1: The star graph on 5 vertices, with an eigenvector of λ2 = 1.


