
Spectral Graph Theory Lecture 8

Testing Isomorphism of Graphs with Distinct Eigenvalues

Daniel A. Spielman September 24, 2018

8.1 Introduction

I will present an algorithm of Leighton and Miller [LM82] for testing isomorphism of graphs in
which all eigenvalues have multiplicity 1. This algorithm was never published, as the results were
technically subsumed by those in a paper of Babai, Grigoriev and Mount [BGM82], which gave a
polynomial time algorithm for testing isomorphism of graphs in which all eigenvalues have multi-
plicity bounded by a constant.

I present the weaker result in the interest of simplicity.

Testing isomorphism of graphs is a notorious problem. Until very recently, the fastest-known

algorithm for it took time time 2
√

O(n logn) (See [Bab81, BL83, ZKT85]). Babai [Bab16] recently

announced a breakthrough that reduces the complexity to 2(logn)
O(1)

.

However, testing graph isomorphism seems easy in almost all practical instances. Today’s lecture
and one next week will give you some idea as to why.

8.2 Graph Isomorphism

Recall that two graphs G = (V,E) and H = (V, F ) are isomorphic if there exists a permutation π
of V such that

(a, b) ∈ E ⇐⇒ (π(a), π(b)) ∈ F.

Of course, we can express this relation in terms of matrices associated with the graphs. It doesn’t
matter much which matrices we use. So for this lecture we will use the adjacency matrices.

Every permutation may be realized by a permutation matrix. For the permutation π, this is the
matrix Π with entries given by

Π(a, b) =

{
1 if π(a) = b

0 otherwise.

For a vector ψ, we see1 that
(Πψ) (a) = ψ(π(a)).

1I hope I got that right. It’s very easy to confuse the permutation and its inverse.

8-1
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Let A be the adjacency matrix of G and let B be the adjacency matrix of H. We see that G and
H are isomorphic if and only if there exists a permutation matrix Π such that

ΠAΠT = B.

8.3 Using Eigenvalues and Eigenvectors

If G and H are isomorphic, then A and B must have the same eigenvalues. However, there are
many pairs of graphs that are non-isomorphic but which have the same eigenvalues. We will see
some tricky ones next lecture. But, for now, we note that if A and B have different eigenvalues,
then we know that the corresponding graphs are non-isomorphic, and we don’t have to worry about
them.

For the rest of this lecture, we will assume that A and B have the same eigenvalues, and that each
of these eigenvalues has multiplicity 1. We will begin our study of this situation by considering
some cases in which testing isomorphism is easy.

Recall that we can write
A = ΨΛΨT ,

where Λ is the diagonal matrix of eigenvalues of A and Ψ is an orthonormal matrix holding its
eigenvectors. If B has the same eigenvalues, we can write

B = ΦΛΦT .

If Π is the matrix of an isomorphism from G to H, then

ΠΨΛΨTΠT = ΦΛΦT .

As each entry of Λ is distinct, this looks like it would imply ΠΨ = Φ. But, the eigenvectors
(columns of Φ and Ψ) are only determined up to sign. So, it just implies

ΠΨ = ΦS,

where S is a diagonal matrix with ±1 entries on its diagonal.

Lemma 8.3.1. Let A = ΨΛΨT and B = ΦΛΦT where Λ is a diagonal matrix with distinct
entries and Ψ and Φ are orthogonal matrices. A permutation matrix Π satisfies ΠAΠT = B if
and only if there exists a diagonal ±1 matrix S for which

ΠΨ = ΦS .

Proof. Let ψ1, . . . ,ψn be the columns of Ψ and let φ1, . . . ,φn be the columns of Φ. Assuming
there is a Π for which ΠAΠT = B ,

ΦΛΦT =
n∑

i=1

φiλiφ
T
i =

n∑
i=1

(Πψi)λi(ψ
T
i ΠT ),
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which implies that for all i
φiφ

T
i = (Πψi)(Πψi)

T .

This in turn implies that
φi = ±Πψi.

To go the other direction, assume ΠΨ = ΦS . Then,

ΠAΠT = ΠΨΛΨTΠT = ΦSΛSΦT = ΦΛSSΦT = ΦΛΦT = B ,

as S and Λ are diagonal and thus commute, and S2 = I .

Our algorithm for testing isomorphism will determine all such matrices S . Let S be the set of all
diagonal ±1 matrices. We will find diagonal matrices S ∈ S such that the set of rows of ΦS is the
same as the set of rows of Ψ . As the rows of Ψ are indexed by vertices a ∈ V , we will write the
row indexed by a as the row-vector

va
def
= (ψ1(a), . . . ,ψn(a)).

Similarly denote the rows of Φ by vectors ua. In this notation, we are searching for matrices S ∈ S
for which the set of vectors {va}a∈V is identical to the set of vectors {uaS}a∈V We have thus
transformed the graph isomorphism problem into a problem about vectors:

8.4 An easy case

I will say that an eigenvector ψi is helpful if for all a 6= b ∈ V , |ψi(a)| 6= |ψi(b)|. In this case, it is
very easy to test if G and H are isomorphic, because this helpful vector gives us a canonical name
for every vertex. If Π is an isomorphism from G to H, then Πψi must be an eigenvector of B. In
fact, is must be ±φi. If the sets of absolute values of entries of ψi and φi are the same, then we
may find the permutation that maps A to B by mapping every vertex a to the vertex b for which
|ψi(a)| = |φi(b)|.

The reason that I put absolute values in the definition of helpful, rather than just taking values, is
that eigenvectors are only determined up to sign. On the other hand, a single eigenvector determines
the isomorphism if ψi(a) 6= ψi(b) for all a 6= b and there is a canonical way to choose a sign for
the vector ψi. For example, if the sum of the entries in ψi is not zero, we can choose its sign to
make the sum positive. In fact, unless ψi and −ψi have exactly the same set of values, there is a
canonical choice of the sign for this vector.

Even if there is no canonical choice of sign for this vector, it leaves at most two choices for the
isomorphism.

8.5 All the Automorphisms

The graph isomorphism problem is complicated by the fact that there can be many isomorphisms
from one graph to another. So, any algorithm for finding isomorphisms must be able to find many
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of them.

Recall that an automorphism of a graph is an isomorphism from the graph to itself. These form
a group which we denote aut(G): if Π and Γ are automorphisms of A then so is ΠΓ. Let A ⊆ S
denote the corresponding set of diagonal ±1 matrices. The set A is in fact a group and is isomorphic
to aut(G).

Here is a way to make this isomorphism very concrete: Lemma 8.3.1 implies that the Π ∈ aut(G)
and the S ∈ A are related by

Π = ΨSΨT and S = ΨTΠΨ .

As diagonal matrices commute, we have that for every Π1 and Π2 in aut(G) and for S1 = ΨTΠ1Ψ
and S2 = ΨTΠ2Ψ ,

Π1Π2 = ΨS1Ψ
TΨS2Ψ

T = ΨS1S2Ψ
T = ΨS2S1Ψ

T = ΨS2Ψ
TΨS1Ψ

T = Π2Π1.

Thus, the automorphism group of a graph with distinct eigenvalues is commutative, and it is
isomorphic to a subgroup of S.

It might be easier to think about these subgroups by realizing that they are isomorphic to subspaces
of (Z/2Z)n. Let f : S → (Z/2Z)n be the function that maps the group of diagonal matrices with
±1 entries to vectors t modulo 2 by setting t(i) so that S(i, i) = (−1)t(i). You should check that
this is a group homomorphism: f(S1S2) = f(S1) + f(S2). You should also confirm that f is
invertible.

For today’s lecture, we will focus on the problem of finding the group of automorphisms of a graph
with distinct eigenvalues. We will probably save the slight extension to finding isomorphisms for
homework. Note that we will not try to list all the isomorphisms, as there could be many. Rather,
we will give a basis of the corresponding subspace of (Z/2Z)n.

8.6 Equivalence Classes of Vertices

Recall that the orbit of an element under the action of a group is the set of elements to which it is
mapped by the elements of the group. Concretely, the orbit of a vertex a in the graph is the set
of vertices to which it can be mapped by automorphisms. We will discover the orbits by realizing
that the orbit of a vertex a is the set of b for which vaS = v b for some S ∈ A.

The set of orbits of vertices forms a partition of the vertices. We say that a partition of the vertices
is valid if every orbit is contained entirely within one set in the partition. That is, each class of the
partition is a union of orbits. Our algorithm will proceed by constructing a valid partition of the
vertices and then splitting classes in the partition until each is exactly an orbit.

Recall that a set is stabilized by a group if the set is unchanged when the group acts on all of its
members. We will say that a group G ⊆ S stabilizes a set of vertices C if it stabilizes the set of
vectors {va}a∈C . Thus, A is the group that stabilizes V .
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An orbit is stabilized by A, and so are unions of orbits and thus classes of valid partitions. We
would like to construct the subgroup of S that stabilizes each orbit Cj . However, I do not yet see
how to do that directly. Instead, we will construct a particular valid partition of the vertices, and
find for each class in the partition Cj the subgroup of Aj ⊆ S that stabilizes Cj , where here we
are considering the actions of matrices S ∈ S on vectors va. In fact, Aj will act transitively2 on
the class Cj . As A stabilizes every orbit, and thus every union of orbits, it is a subgroup of Aj . In
fact, A is exactly the intersection of all the groups Aj .

We now observe that we can use linear algebra to efficiently construct A from the groups Aj by
exploiting the isomorphism between S and (Z/2)n. Each subgroup Aj is isomorphic to a subgroup
of (Z/2)n. Each subgroup of (Z/2)n is precisely a vector space modulo 2, and thus may be described
by a basis. It will eventually become clear that by “compute Aj” we mean to compute such a basis.
From the basis, we may compute a basis of the nullspace. The subgroup of (Z/2)n corresponding
to A is then the nullspace of the span of the nullspaces of the subspaces corresponding to the Aj .
We can compute all these using Gaussian elimination.

8.7 The first partition

We may begin by dividing vertices according to the absolute values of their entries in eigenvectors.
That is, if |ψi(a)| 6= |ψi(b)| for some i, then we may place vertices a and b in different classes, as
there can be no S ∈ S for which vaS = v b. The partition that we obtain this way is thus valid,
and is the starting point of our algorithm.

8.8 Unbalanced vectors

We say that an eigenvector ψi is unbalanced if there is some value x for which

|{a : ψi(a) = x}| 6= |{a : ψi(a) = −x}| .

Such vectors cannot change sign in an automorphism. That is, S(i, i) must equal 1. The reason is
that an automorphism with S(i, i) = −1 must induce a bijection between the two sets above, but
this is impossible if their sizes are different.

Thus, an unbalanced vector tells us that all vertices for which ψi(a) = x are in different orbits from
those for which ψi(a) = −x. This lets us refine classes.

We now extend this idea in two ways. First, we say that ψi is unbalanced on a class C if there is
some value x for which

|{a ∈ C : ψi(a) = x}| 6= |{a ∈ C : ψi(a) = −x}| .

By the same reasoning, we can infer that the sign of S(i, i) must be fixed to 1. Assuming, as will
be the case, that C is a class in a valid partition and thus a union of orbits, we are now able to

2That is, for every a and b in Cj , there is an S ∈ Aj for which vaS = bb.
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split C into two smaller classes

C0 = {a ∈ C : ψi(a) = x} and C1 = {a ∈ C : ψi(a) = −x} .

The partition we obtain by splitting C into C1 and C2 is thus also valid. Of course, it is only useful
if both sets are non-empty.

Finally, we consider vectors formed from products of eigenvectors. For R ⊆ {1, . . . , n}, define ψR

to be the component-wise product of the ψi for i ∈ R:

ψR(a) =
∏
i∈R

ψi(a).

We say that the vector ψR is unbalanced on class C if there is some value x for which

|{a ∈ C : ψR(a) = x}| 6= |{a ∈ C : ψR(a) = −x}| .

An unbalanced vector of this form again tells us that the vertices in the two sets belong to different
orbits. So, if both sets are nonempty we can use such a vector to split the class C in two to obtain
a more refined valid partition. It also provides some relations between the entries of S , but we will
not exploit those.

We say that a vector is balanced if it is not unbalanced.

We say that a subset of the vertices C ⊆ V is balanced if every non-constant product of eigenvectors
is balanced on C. Thus, orbits are balanced. Our algorithm will partition the vertices into balanced
classes.

My confusion over this lecture stemmed from thinking that all balanced classes must be orbits.
But, I don’t know if this is true.

Question: Is every balanced class an orbit of A?

8.9 The structure of the balanced classes

Let Cj be a balanced class. By definition, the product of every subset of eigenvectors is either
constant or balanced on Cj . We say that a subset of eigenvectors Q is independent on Cj if all
products of subsets of eigenvectors in Q are balanced on Cj (except for the empty product). In
particular, none of these eigenvectors is zero or constant on Cj . Construct a matrix MCj ,Q whose
rows are indexed by vertices in a ∈ Cj , whose columns are indexed by subsets R ⊆ Q, and whose
entries are given by

MCj ,Q(a,R) = sgn(ψR(a)),where I recall sgn(x) =


1 if x > 0

−1 if x < 0, and

0 if x = 0.

Lemma 8.9.1. If Q is independent on C then the columns of MC,Q are orthogonal.
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Proof. Let R1 and R2 index two columns of MC,Q. That is, R1 and R2 are two different subsets of
Q. Let R0 be their symmetric difference. We have

MC,Q(a,R1)MC,Q(a,R2) = sgn(ψR1
(a))sgn(ψR2

(a)) =∏
i∈R1

sgn(ψi(a))
∏
i∈R2

sgn(ψi(a)) =
∏
i∈R0

sgn(ψi(a)) = sgn(ψR0
(a)) = MC,Q(a,R0).

As all the nonempty products of subsets of eigenvectors in Q are balanced on C, MC,Q(a,R0) is
positive for half the a ∈ C and negative for the other half. So,

MC,Q(:, R1)
TMC,Q(:, R2) =

∑
a∈C

MC,Q(a,R1)MC,Q(a,R2) =
∑
a∈C

MC,Q(a,R0) = 0.

Lemma 8.9.2. If C is a balanced class of vertices and Q is a maximal set of eigenvectors that are
independent on C, then for every a and b in C there is an i ∈ Q for which ψi(a) 6= ψi(b).

Proof. Assume by way of contradiction that this does not hold. There must be some eigenvector i
for which ψi(a) 6= ψi(b). We will show that if we added i to Q, the product of every subset would
still be balanced. As we already know this for subsets of Q, we just have to prove it for subsets of
the form R ∪ {i}, where R ⊆ Q. As ψh(a) = ψh(b) for every h ∈ Q, ψR(a) = ψR(b). This implies
ψR∪{i}(a) 6= ψR∪{i}(b). Thus, ψR∪{i} is not uniform on C, and so it must be balanced on C.

Lemma 8.9.3. If C is a balanced class of vertices and Q is a maximal set of eigenvectors that are
independent on C, then the rows of MC,Q are orthogonal.

Proof. Let a and b be in C. From Lemma 8.9.2 we know that there is an i ∈ Q for which
ψi(a) = −ψi(b). To prove that the rows MC,Q(a, :) and MC,Q(b, :) are orthogonal, we compute
their inner product:∑

R⊆Q
sgn(ψR(a)ψR(b)) =

∑
R⊆Q−{i}

sgn(ψR(a)ψR(b)) + sgn(ψR∪{i}(a)ψR∪{i}(b))

=
∑

R⊆Q−{i}

sgn(ψR(a)ψR(b)) + sgn(ψR(a)ψi(a)ψR(b)ψi(b))

=
∑

R⊆Q−{i}

sgn(ψR(a)ψR(b)) + sgn(ψR(a)ψR(b))sgn(ψi(a)ψi(b))

=
∑

R⊆Q−{i}

sgn(ψR(a)ψR(b))− sgn(ψR(a)ψR(b))

= 0.

Corollary 8.9.4. Let C be a balanced subset of vertices. Then the size of C is a power of 2. If Q
is an independent set of eigenvectors on C, then |Q| ≤ log2 |C|.
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Proof. Let C be an orbit and let Q be a maximal set of eigenvectors that are independent on C.
As the rows and columns of MC,Q are both orthogonal, MC,Q must be square. This implies that
|C| = 2|Q|. If we drop the assumption that Q is maximal, we still know that all the columns of
MC,Q are orthogonal. This matrix has 2|Q| columns. As they are vectors in |C| dimensions, there
can be at most |C| of them.

We can now describe the structure of a balanced subset of vertices C. We call a maximal set of
eigenvectors that are independent on C a base for C. Every other eigenvector j is either constant
on C or becomes constant when multiplied by the product of some subset R of eigenvectors in Q.
In either case, we can write

ψj(a) = γ
∏
i∈R

ψi(a) for all a ∈ C, (8.1)

for some constant γ.

Let va(Q) denote the vector (va(i))i∈Q—the restriction of the vector va to the coordinates in Q.
I claim that every one of the 2|Q| ± sign patterns of length |Q| must appear in exactly one of the
vectors v q(Q). The reason is that there are |C| = 2|Q| of these vectors, and we established in
Lemma 8.9.2 that va(Q) 6= v b(Q) for all a 6= b in Q. Thus, for every diagonal ± matrix SQ of
dimension |Q|, we have

{va(Q)SQ : a ∈ C} = {va(Q) : a ∈ C} .
That is, this set of vectors is stabilized by ±1 diagonal matrices.

As equation (8.1) gives a formula for the value taken on C by every eigenvector not in Q in terms
of the eigenvectors in Q, we have described the structure of the subgroup of S that stabilizes C:
the diagonals corresponding to Q are unconstrained, and every other diagonal is some product of
these. This structure is something that you are used to seeing in subspaces. Apply f to map this
subgroup of S to (Z/2)n, and let B be a n-by-log2(|C|) matrix containing a basis of the subspace
in its columns. Any independent subset of log2(|C|) rows of B will form a basis of the row-space,
and is isomorphic to a base for C of the eigenvectors.

8.10 Algorithms

Let Cj be a balanced class. We just saw how to compute Aj , assuming that we know Cj and a
base Q for it. Of course, by “compute” we mean computing a basis of f(Aj). We now show how
to find a base for a balanced class Cj . We do this by building up a set Q of eigenvectors that are
independent on Cj . To do this, we go through the eigenvectors in order. For each eigenvector ψi,
we must determine whether or not its values on Cj can be expressed as a product of eigenvectors
already present in Q. If it can be, then we record this product as part of the structure of Aj . If
not, we add i to Q.

The eigenvector ψi is a product of eigenvectors in Q on Cj if and only if there is a constant γ and
yh ∈ {0, 1} for h ∈ Q such that

ψi(a) = γ
∏
h∈Q

(ψh(a))yh ,
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for all vertices a ∈ Cj . This happens if and only if

sgn(ψi(a)) =
∏
h∈Q

sgn(ψh(a))yh .

We can tell whether or not these equations have a solution using linear algebra modulo 2. Let B
be the matrix over Z/2 such that

ψi(a) = (−1)B(i,a).

Then, the above equations become

B(i, a) =
∑
h∈Q

yhB(h, a) for all a ∈ Cj .

Thus, we can solve for the coefficients yh in polynomial time, if they exist. If they do not, we add
i to Q.

Once we have determined a base Q and how to express on Cj the values of every other eigenvector
as a product of eigenvectors in Q, we have determine Aj .

It remains to explain how we partition the vertices into balanced classes. Consider applying the
above procedure to a class Cj that is not balanced. We will discover that Cj is not balanced by
finding a product of eigenvectors that is neither constant nor balanced on Cj . Every time we add an
eigenvector ψi to Q, we will examine every product of vectors in Q to check if any are unbalanced
on Cj . We can do this efficiently, because there are at most 2|Q| ≤ |Cj | such products to consider.
As we have added ψi to Q, none of the products of vectors in Q can be constant on Cj . If we find
a product that it not balanced on Cj , then it must also be non-constant, and thus provide a way
of splitting class Cj into two.

We can now summarize the entire algorithm. We first compute the partition by absolute values of
entries described in section 8.7. We then go through the classes of the partition one-by-one. For
each, we use the above procedure until we have either split it in two or we have determined that
it is balanced and we have computed its automorphism group. If we do split the class in two, we
refine the partition and start over. As the total number of times we split classes is at most n, this
algorithm runs in polynomial time.

After we have computed a partition into balanced classes and have computer their automorphisms
groups, we combine them to find the automorphisms group of the entire graph as described at the
end of section 8.6.
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