
Spectral Graph Theory Lecture 14

More Effective Resistance

Daniel A. Spielman October 15, 2018

14.1 Introduction

My plan for this lecture is to teach too much:

1. The Matrix Tree Theorem.

2. Effective Resistance / Leverage Scores, and the probability an edge appears in a random
spanning tree.

3. Estimating effective resistances quickly.

4. Rayleigh’s Monotonicity Theorem.

14.2 Effective Resistance and Energy Dissipation

In the last lecture we saw two ways of defining effective resistance. I will define it one more way,
but skip the proof. If a current f flows through a resistor of resistance R, the amount of energy
that is dissipated as heat is proportional to Rf2. If the potential difference across the resistor is v,
then f = v/R, and the energy dissipation is

Rf2 = v2/R = wv2,

where w is the weight of the edge. We can define the effective resistance between vertices a and
b to be the minimum of the total energy dissipation when we flow one unit of current from a to
b. You could compute this by evaluating the Laplacian quadratic form on the vector of voltages
induced by this flow.

14.3 Determinants

To begin, we review some facts about determinants of matrices and characteristic polynomials. We
first recall the Leibniz formula for the determinant of a square matrix A:

det(A) =
∑
π

(
sgn(π)

n∏
i=1

A(i, π(i))

)
, (14.1)
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where the sum is over all permutations π of {1, . . . , n}.

Also recall that the determinant is multiplicative, so for square matrices A and B

det(AB) = det(A) det(B). (14.2)

Elementary row operations do not change the determinant. If the columns of A are the vectors
aaa1, . . . ,aaan, then for every c

det
(
aaa1,aaa2, . . . ,aaan

)
= det

(
aaa1,aaa2, . . . ,aaan + caaa1

)
.

This fact gives us two ways of computing the determinant. The first comes from the fact that we
can apply elementary row operations to transform A into an upper triangular matrix, and (14.1)
tells us that the determinant of an upper triangular matrix is the product of its diagonal entries.

The second comes from the observation that the determinant is the volume of the parallelepiped with
axes aaa1, . . . ,aaan: the polytope whose corners are the origin and

∑
i∈S aaai for every S ⊆ {1, . . . , n}.

Let
Πaaa1

be the symmetric projection orthogonal to aaa1. As this projection amounts to subtracting off a
multiple of aaa1 and elementary row operations do not change the determinant,

det
(
aaa1,aaa2, . . . ,aaan

)
= det

(
aaa1,Πaaa1aaa2, . . . ,Πaaa1aaan

)
.

The volume of this parallelepiped is ‖aaa1‖ times the volume of the parallelepiped formed by the
vectors Πaaa1aaa2, . . . ,Πaaa1aaan. I would like to write this as a determinant, but must first deal with the
fact that these are n− 1 vectors in an n dimensional space. The way we first learn to handle this
is to project them into an n− 1 dimensional space where we can take the determinant. Instead, we
will employ other elementary symmetric functions of the eigenvalues.

14.4 Characteristic Polynomials

Recall that the characteristic polynomial of a matrix A is

det(xI −A).

I will write this as
n∑
k=0

xn−k(−1)kσk(A),

where σk(A) is the kth elementary symmetric function of the eigenvalues of A, counted with
algebraic multiplicity:

σk(A) =
∑
|S|=k

∏
i∈S

λi.

Thus, σ1(A) is the trace and σn(A) is the determinant. From this formula, we know that these
functions are invariant under similarity transformations.
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In Exercise 3 from Lecture 2, you were asked to prove that

σk(A) =
∑
|S|=k

det(A(S, S)). (14.3)

This follows from applying the Leibnitz formula (14.1) to det(xI −A).

If we return to the vectors Πaaa1aaa2, . . . ,Πaaa1aaan from the previous section, we see that the volume of
their parallelepiped may be written

σn−1

(
0n,Πaaa1aaa2, . . . ,Πaaa1aaan

)
,

as this will be the product of the n− 1 nonzero eigenvalues of this matrix.

Recall that the matrices BBT and BTB have the same eigenvalues, up to some zero eigenvalues
if they are rectangular. So,

σk(BBT ) = σk(B
TB).

This gives us one other way of computing the absolute value of the product of the nonzero eigen-
values of the matrix (

Πaaa1aaa2, . . . ,Πaaa1aaan
)
.

We can instead compute their square by computing the determinant of the square matrixΠaaa1aaa2
...

Πaaa1aaan

(Πaaa1aaa2, . . . ,Πaaa1aaan
)
.

When B is a singular matrix of rank k, σk(B) acts as the determinant of B restricted to its span.
Thus, there are situations in which σk is multiplicative. For example, if A and B both have rank
k and the range of A is orthogonal to the nullspace of B , then

σk(BA) = σk(B)σk(A). (14.4)

We will use this identity in the case that A and B are symmetric and have the same nullspace.

14.5 The Matrix Tree Theorem

We will state a slight variant of the standard Matrix-Tree Theorem. Recall that a spanning tree of
a graph is a subgraph that is a tree.

Theorem 14.5.1. Let G = (V,E,w) be a connected, weighted graph. Then

σn−1(LG) = n
∑

spanning trees T

∏
e∈T

we.
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Thus, the eigenvalues allow us to count the sum over spanning trees of the product of the weights
of edges in those trees. When all the edge weights are 1, we just count the number of spanning
trees in G.

We first prove this in the case that G is just a tree.

Lemma 14.5.2. Let G = (V,E,w) be a weighted tree. Then,

σn−1(LG) = n
∏
e∈E

we.

Proof. For a ∈ V , let Sa = V − {a}. We know from (14.3)

σn−1(LG) =
∑
a∈V

det(LG(Sa, Sa).

We will prove that for every a ∈ V ,

det(LG(Sa, Sa)) =
∏
e∈E

we.

Write LG = U TWU , where U is the signed edge-vertex adjacency matrix and W is the diagonal
matrix of edge weights. Write B = W 1/2U , so

LG(Sa, Sa) = B(:, Sa)
TB(:, Sa),

and
det(LG(Sa, Sa)) = det(B(:, Sa))

2,

where we note that B(:, Sa) is square because a tree has n− 1 edges and so B has n− 1 rows.

To see what is going on, first consider the case in which G is a weighted path and a is the first
vertex. Then,

U =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
0 0 0 · · · −1

 , and B(:, S1) =


−√w1 0 · · · 0√
w2 −√w2 · · · 0
...

...
0 0 · · · −√wn−1

 .

We see that B(:, S1) is a lower-triangular matrix, and thus its determinant is the product of its
diagonal entries, −√wi.

To see that the same happens for every tree, renumber the vertices (permute the columns) so that
a comes first, and that the other vertices are ordered by increasing distance from 1, breaking ties
arbitrarily. This permutations can change the sign of the determinant, but we do not care because
we are going to square it. For every vertex c 6= 1, the tree now has exactly one edge (b, c) with
b < c. Put such an edge in position c−1 in the ordering, and let wc indicate its weight. Now, when
we remove the first column to form B(:, S1), we produce a lower triangular matrix with the entry
−√wc on the cth diagonal. So, its determinant is the product of these terms and

det(B(:, Sa))
2 =

n∏
c=2

wc.
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Proof of Theorem 14.5.1 . As in the previous lemma, let LG = U TWU and B = W 1/2U . So,

σn−1(LG) = σn−1(BTB)

= σn−1(BBT )

=
∑

|S|=n−1,S⊆E

σn−1(B(S, :)B(S, :)T ) (by (14.3) )

=
∑

|S|=n−1,S⊆E

σn−1(B(S, :)TB(S, :))

=
∑

|S|=n−1,S⊆E

σn−1(LGS
),

where by GS we mean the graph containing just the edges in S. As S contains n − 1 edges, this
graph is either disconnected or a tree. If it is disconnected, then its Laplacian has at least two zero
eigenvalues and σn−1(LGS

) = 0. If it is a tree, we apply the previous lemma. Thus, the sum equals∑
spanning trees T⊆E

σn−1(LGT
) = n

∑
spanning trees T

∏
e∈T

we.

14.6 Leverage Scores and Marginal Probabilities

The leverage score of an edge, written `e is defined to be weReff(e). That is, the weight of the edge
times the effective resistance between its endpoints. The leverage score serves as a measure of how
important the edge is. For example, if removing an edge disconnects the graph, then Reff(e) = 1/we,
as all current flowing between its endpoints must use the edge itself, and `e = 1.

Consider sampling a random spanning tree with probability proportional to the product of the
weights of its edges. We will now show that the probability that edge e appears in the tree is
exactly its leverage score.

Theorem 14.6.1. If we choose a spanning tree T with probability proportional to the product of
its edge weights, then for every edge e

Pr [e ∈ T ] = `e.

For simplicity, you might want to begin by thinking about the case where all edges have weight 1.

Recall that the effective resistance of edge e = (a, b) is

(δa − δb)TL+
G(δa − δb),

and so
`a,b = wa,b(δa − δb)TL+

G(δa − δb).
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We can write a matrix Γ that has all these terms on its diagonal by letting U be the edge-vertex
adjacency matrix, W be the diagonal edge weight matrix, B = W 1/2U , and setting

Γ = BL+
GB

T .

The rows and columns of Γ are indexed by edges, and for each edge e,

Γ(e, e) = `e.

For off-diagonal entries corresponding to edges (a, b) and (c, d), we have

Γ((a, b), (c, d)) =
√
wa,b
√
wc,d(δa − δb)

TL+
G(δc − δd).

Claim 14.6.2. The matrix Γ is a symmetric projection matrix and has trace n− 1.

Proof. The matrix Γ is clearly symmetric. To show that it is a projection, it suffices to show that
all of its eigenvalues are 0 or 1. This is true because, excluding the zero eigenvalues, Γ has the
same eigenvalues as

L+
GB

TB = L+
GLG = Π,

where Π is the projection orthogonal to the all 1 vector. As Π has n− 1 eigenvalues that are 1, so
does Γ.

As the trace of Γ is n− 1, so is the sum of the leverage scores:∑
e

`e = n− 1.

This is a good sanity check on Theorem 14.6.1: every spanning tree has n− 1 edges, and thus the
probabilities that each edge is in the tree must sum to n− 1.

We also obtain another formula for the leverage score. As a symmetric projection is its own square,

Γ(e, e) = Γ(e, :)Γ(e, :)T = ‖Γ(e, :)‖2 .

This is the formula I introduced in Section 14.2. If we flow 1 unit from a to b, the potential
difference between c and d is (δa− δb)

TL+
G(δc− δd). If we plug these potentials into the Laplacian

quadratic form, we obtain the effective resistance. Thus this formula says

wa,bReffa,b = wa,b
∑

(c,d)∈E

wc,d
(
(δa − δb)

TL+
G(δc − δd)

)2
.

Proof of Theorem 14.6.1. Let Span(G) denote the set of spanning trees of G. For an edge e,

PrT [e ∈ T ] =
∑

T∈Span(G):e∈T

σn−1(LGT
)

σn−1(LG)

=
∑

T∈Span(G):e∈T

σn−1(LGT
)σn−1(L+

G)

=
∑

T∈Span(G):e∈T

σn−1(LGT
L+
G),
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by (14.4). Recalling that the subsets of n− 1 edges that are not spanning trees contribute 0 allows
us to re-write this sum as ∑

|S|=n−1,e∈S

σn−1(LGS
L+
G).

To evaluate the terms in the sum, we compute

σn−1(LGS
L+
G) = σn−1(B(:, S)B(:, S)TL+

G)

= σn−1(B(:, S)TL+
GB(:, S))

= σn−1(Γ(S, S))

= σn−1(Γ(S, :)Γ(:, S)).

Let γe = Γ(e, :) and let Πγe
denote the projection orthogonal to γe. As e ∈ S, we have

σn−1(Γ(S, :)Γ(:, S)) = ‖γe‖
2 σn−2(Γ(S, :)Πγe

Γ(:, S)) = ‖γe‖
2 σn−2((ΓΠγe

Γ)(S, S)).

As γe is in the span on Γ, the matrix ΓΠγe
Γ is a symmetric projection onto an n− 2 dimensional

space, and so
σn−2(ΓΠγe

Γ) = 1.

To exploit this identity, we return to our summation:∑
|S|=n−1,e∈S

σn−1(LGS
L+
G) =

∑
|S|=n−1,e∈S

‖γe‖
2 σn−2((ΓΠγe

Γ)(S, S))

= ‖γe‖
2

∑
|S|=n−1,e∈S

σn−2((ΓΠγe
Γ)(S, S))

= ‖γe‖
2 σn−2(ΓΠγe

Γ)

= ‖γe‖
2

= `e.

14.7 Quickly estimating effective resistances

We can compute Reff(a, b) by solving a system of equations in L. We know how to solve such
systems of linear equations to high accuracy in time nearly linear in the number of nonzero entries
in L [?]. But, what if we want to know the effective resistance of every edge or between every pair
of vertices?

We will see that we can do this by solving on O(log n) systems of equations in L. The reason is
that the effective resistances are the squares of Euclidean distances:

Reff(a, b) =
∥∥∥L+/2

G (δa − δb)
∥∥∥2

=
∥∥∥L+/2

G δa − L
+/2
G δa

∥∥∥2
.

The reason is that we can exploit the Johnson-Lindenstrauss Theorem [?].
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Theorem 14.7.1. [Johnson Lindenstrauss] Let v1, · · · , vn be vectors in an m dimensional vector
space. Let R be a d-by-m matrix of independent Gaussian random variables of variance 1/d. If

d ≥ 8

δ2
ln(n/ε),

then with probability at most ε for all i 6= j,

1− δ ≤ ‖Rv i −Rv j‖
‖v i − v j‖

≤ 1 + δ.

That is, the distances between all pairs of vectors Rv i are approximately the same as between the
vectors v i.

One can prove this by using tail bounds on χ-square random variables. I’ll include a proof in the
Appendix.

Here’s one way we could try to use this. If we want to estimate all effective resistances to within
error δ, with probability at least 1− ε, we set

d =

⌈
8

δ2
ln(n/ε)

⌉
,

choose R to be a d-by-n matrix of independent random Gaussians, and then compute

RL+/2.

This requires solving d systems of linear equations in L1/2.

But, that is not quite the same as solving systems in L. To turn this into a problem of solving
systems in L, we exploit a slightly different formula for effective resistances. As before, write
L = U TWU . We then have

L+U TW 1/2W 1/2UL+ = L+LL+ = L+.

So, ∥∥∥W 1/2UL+(δa − δb)
∥∥∥2

= Reff(a, b).

Now, we let R be a d-by-|E| matrix of random Gaussians of variance 1/d, and compute

RW 1/2UL+ = (RW 1/2U )L+.

This requires solving d systems of linear equations in L. We then set

va = (RW 1/2U )L+δa.

Each of these is a vector in d dimensions, and with high probability ‖va − v b‖2 is a good approxi-
mation of Reff(a, b).
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14.8 Monotonicity

Rayleigh’s Monotonicity Principle tells us that if we alter the spring network by decreasing some
of the spring constants, then the effective spring constant between s and t will not increase. In
terms of effective resistance, this says that if we increase the resistance of some resistors then the
effective resistance can not decrease. This sounds obvious. But, it is in fact a very special property
of linear elements like springs and resistors.

Theorem 14.8.1. Let G = (V,E,w) be a weighted graph and let Ĝ = (V,E, ŵ) be another weighted
graph with the same edges and such that

ŵa,b ≤ wa,b

for all (a, b) ∈ E. For vertices s and t, let cs,t be the effective spring constant between s and t in G

and let ĉs,t be the analogous quantity in Ĝ. Then,

ĉs,t ≤ cs,t.

Proof. Let x be the vector of minimum energy in G such that x (s) = 0 and x (t) = 1. Then, the
energy of x in Ĝ is no greater:

1

2

∑
(a,b)∈E

ŵa,b(x (a)− x (b))2 ≤ 1

2

∑
(a,b)∈E

wa,b(x (a)− x (b))2 = cs,t.

So, the minimum energy of a vector x in Ĝ such that x (s) = 0 and x (t) = 1 will be at most cs,t,
and so ĉs,t ≤ cs,t.

While this principle seems very simple and intuitively obvious, it turns out to fail in just slightly
more complicated situations.

14.9 Notes

A Proof of Johnson Lindenstrauss


