
Spectral Graph Theory Lecture 15

Tutte’s Theorem: How to draw a graph

Daniel A. Spielman October 22, 2018

15.1 Overview

We prove Tutte’s theorem [Tut63], which shows how to use spring embeddings to obtain planar
drawings of 3-connected planar graphs. One begins by selecting a face, and then nailing down the
positions of its vertices to the corners of a strictly convex polygon. Of course, the edges of the
face should line up with the edges of the polygon. Ever other vertex goes where the springs say
they should—to the center of gravity of their neighbors. Tutte proved that the result is a planar
embedding of the planar graph. Here is an image of such an embedding

The presentation in this lecture is a based on notes given to me by Jim Geelen. I begin by recalling
some standard results about planar graphs that we will assume.

15.2 3-Connected, Planar Graphs

A graph G = (V,E) is k-connected if there is no set of k−1 vertices whose removal disconnects the
graph. That is, for every S ⊂ V with |S| ≥ |V | − (k − 1), G(S) is connected. In a classical graph
theory course, one usually spends a lot of time studying things like 3-connectivity.

A planar drawing of a graph G = (V,E) consists of mapping from the vertices to the plane,
z : V → IR2, along with interior-disjoint curves for each edge. The curve for edge (a, b) starts at
z (a), ends at z (b), never crosses itself, and its interior does not intersect the curve for any other
edge. A graph is planar if it has a planar drawing. There can, of course, be many planar drawings
of a graph.

15-1



Lecture 15: October 22, 2018 15-2

If one removes the curves corresponding to the edges in a planar drawing, one divides the plane
into connected regions called faces. In a 3-connected planar graph, the sets of vertices and edges
that border each face are the same in every planar drawing. There are planar graphs that are
not 3-connected, like those in Figures 15.2 and 15.2, in which different planar drawings result in
combinatorially different faces. We will only consider 3-connected planar graphs.

Figure 15.1: Planar graphs that are merely one-connected. Edge (c, d) appears twice on a face in
each of them.

Figure 15.2: Two different planar drawings of a planar graph that is merely two-connected. Vertices
g and h have switched positions, and thus appear in different faces in each drawing.

We state a few properties of 3-connected planar graphs that we will use. We will not prove
these properties, as we are more concerned with algebra and these properly belong in a class
on combinatorial graph theory.

Claim 15.2.1. Let G = (V,E) be a planar graph. Then, there exists a set of faces F , each of which
corresponds to a cycle in G, so that no vertex appears twice in a face, no edge appears twice in a
face, and every edge appears in exactly two faces.

We call the face on the outside of the drawing the outside face. The edges that lie along the outside
face are the boundary edges.

Another standard fact about planar graphs is that they remain planar under edge contractions.
Contracting an edge (a, b) creates a new graph in which a and b become the same vertex, and all
edges that went from other vertices to a or b now go to the new vertex. Contractions also preserve
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Figure 15.3: 3-connected planar graphs. Some faces of the graph on the left are abf , fgh, and
afhe. The outer face is abcde. The graph on the right is obtained by contracting edge (g, h).

3-connectivity. Figure 15.2 depicts a 3-connected planar graph and the result of contracting an
edge.

A graph H = (W,F ) is a minor of a graph G = (V,E) if H can be obtained from G by contracting
some edges and possibly deleting other edges and vertices. This means that each vertex in W
corresponds to a connected subset of vertices in G, and that there is an edge between two vertices
in W precisely when there is some edge between the two corresponding subsets. This leads to
Kuratowski’s Theorem [Kur30], one of the most useful characterizations of planar graphs.

Theorem 15.2.2. A graph G is planar if and only if it does not have a minor isomorphic to the
complete graph on 5 vertices, K5, or the bipartite complete graph between two sets of 3 vertices,
K3,3.

Figure 15.4: The Peterson graph appears on the left. On the right is a minor of the Peterson graph
that is isomorphic to K5, proving that the Peterson graph is not planar.

We will use one other important fact about planar graphs, whose utility in this context was observed
by Jim Geelen.

Lemma 15.2.3. Let (a, b) be an edge of a 3-connected planar graph and let S1 and S2 be the sets of
vertices on the two faces containing (a, b). Let P be a path in G that starts at a vertex of S1−{a, b},
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ends at a vertex of S2−{a, b}, and that does not intersect a or b. Then, every path in G from a to
b either intersects a vertex of P or the edge (a, b).

Proof. Let s1 and s2 be the vertices at the ends of the path P . Consider a planar drawing of G and
¡the closed curve in the plane that follows the path P from s1 to s2, and then connects s1 to s2 by
moving inside the faces S1 and S2, where the path only intersects the curve for edge (a, b). This
curve separates vertex a from vertex b. Thus, every path in G that connects a to b must intersect
this curve. This means that it must either consist of just edge (a, b), or it must intersect a vertex
of P . See Figure 15.2.

Figure 15.5: A depiction of Lemma 15.2.3. S1 = abcde, S2 = abf , and the path P starts at d, ends
at f , and contains the other unlabeled vertices.

15.3 Strictly Convex Polygons

This is a good time to remind you what exactly a convex polygon is. A subset C ⊆ IR2 is convex
if for every two points x and y in C, the line segment between x and y is also in C. A convex
polygon is a convex region of IR2 whose boundary is comprised of a finite number of straight lines.
It is strictly convex if in addition the angle at every corner is less than π. We will always assume
that the corners of a strictly convex polygon are distinct. Two corners form an edge of the polygon
if the interior of the polygon is entirely on one side of the line through those corners. This leads
to another definition of a strictly convex polygon: a convex polygon is strictly convex if for every
edge, all of the corners of the polygon other than those two defining the edge lie entirely on one
side of the polygon. In particular, none of the other corners lie on the line.

Definition 15.3.1. Let G = (V,E) be a 3-connected planar graph. We say that z : V → IR2 is a
Tutte embedding if

a. There is a face F of G such that z maps the vertices of F to the corners of a strictly convex
polygon so that every edge of the face joins consecutive corners of the polygon;
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(a) A polygon (b) A convex polygon (c) A strictly convex
polygon

Figure 15.6: Polygons

b. Every vertex not in F lies at the center of gravity of its neighbors.

We will prove Tutte’s theorem by proving that every face of G is embedded as a strictly convex
polygon. In fact, we will not use the fact that every non-boundary vertex is exactly the average of
its neighbors. We will only use the fact that every non-boundary vertex is inside the convex hull
of its neighbors. This corresponds to allowing arbitrary spring constants in the embedding.

Theorem 15.3.2. Let G = (V,E) be a 3-connected planar graph, and let z be a Tutte embedding
of G. If we represent every edge of G as the straight line between the embedding of its endpoints,
then we obtain a planar drawing of G.

Note that if the graph were not 3-connected, then the embedding could be rather degenerate. If
there are two vertices a and b whose removal disconnects the graph into two components, then all
of the vertices in one of those components will embed on the line segment from a to b.

Henceforth, G will always be a 3-connected planar graph and z will always be a Tutte embedding.

15.4 Possible Degeneracies

The proof of Theorem 15.3.2 will be easy once we rule out certain degeneracies. There are two
types of degeneracies that we must show can not happen. The most obvious is that we can not have
z (a) = z (b) for any edge (a, b). The fact that this degeneracy can not happen will be a consequence
of Lemma 15.5.1.

The other type of degeneracy is when there is a vertex a such that all of its neighbors lie on one
line in IR2. We will rule out such degeneracies in this section.

We first observe two simple consequences of the fact that every vertex must lie at the average of
its neighbors.

Claim 15.4.1. Let a be a vertex and let ` be any line in IR2 through z (a). If a has a neighbor that
lines on one side of `, then it has a neighbor that lies on the other.

Claim 15.4.2. All vertices not in F must lie strictly inside the convex hull of the polygon of which
the vertices in F are the corners.
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Proof. For every vertex a not in F , we can show that the position of a is a weighted average of the
positions of vertices in F by eliminating every vertex not in F ∪ {a}. As we learned in Lecture 13,
this results in a graph in which all the neighbors of a are in F , and thus the position of a is some
weighted average of the position of the vertices in F . As the graph is 3-connected, we can show
that this average must assign nonzero weights to at least 3 of the vertices in F .

Note that it is also possible to prove Claim 15.4.2 by showing that one could reduce the potential
energy by moving vertices inside the polygon. See Claim 8.8.1 from my lecture notes from 2015.

Lemma 15.4.3. Let H be a halfspace in IR2 (that is, everything on one side of some line). Then
the subgraph of G induced on the vertices a such that z (a) ∈ H is connected.

Proof. Let t be a vector so that we can write the line ` in the form tTx = µ, with the halfspace
consisting of those points x for which tTx ≥ µ. Let a be a vertex such that z (a) ∈ H and let b be
a vertex that maximizes tT z (b). So, z (b) is as far from the line defining the halfspace as possible.
By Claim 15.4.2, b must be on the outside face, F .

For every vertex c, define t(c) = tT z (c). We will see that there is a path in G from a to b along
which the function t never decreases, and thus all the vertices along the path lie in the halfspace.
We first consider the case in which t(a) = t(b). In this case, we also know that a ∈ F . As the
vertices in F embed to a strictly convex polygon, this implies that (a, b) is an edge of that polygon,
and thus the path from a to b.

If t(a) < t(b), it suffices to show that there is a path from a to some other vertex c for which
t(c) > t(a) and along which t never decreases: we can then proceed from c to obtain a path to b.
Let U be the set of all vertices u reachable from a for which t(u) = t(a). As the graph is connected,
there must be a vertex u ∈ U that has a neighbor c 6∈ U . By Claim 15.4.1 u must have a neighbor
c for which t(c) > t(u). Thus, the a path from a through U to c suffices.

Lemma 15.4.4. No vertex is colinear with all of its neighbors.

Proof. This is trivially true for vertices in F , as no three of them are colinear.

Assume by way of contradiction that there is a vertex a that is colinear with all of its neighbors. Let
` be that line, and let S+ and S− be all the vertices that lie above and below the line, respectively.
Lemma 15.4.3 tells us that both sets S+ and S− are connected. Let U be the set of vertices u
reachable from a and such that all of us neighbors lie on `. The vertex a is in U . Let W be the set
of nodes that lie on ` that are neighbors of vertices in U , but which themselves are not in U . As
vertices in W are not in U , Claim 15.4.1 implies that each vertex in W has neighbors in both S+

and S−. As the graph is 3-connected, and removing the vertices in W would disconnect U from
the rest of the graph, there are at least 3 vertices in W . Let w1, w2 and w3 be three of the vertices
in W .

We will now obtain a contradiction by showing that G has a minor isomorphic to K3,3. The three
vertices on one side are w1, w2, and w3. The other three are obtained by contracting the vertex
sets S+, S−, and U .
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Figure 15.7: An illustration of the proof of Lemma 15.4.4.

15.5 All faces are convex

We now prove that every face of G embeds as a strictly convex polygon.

Lemma 15.5.1. Let (a, b) be any non-boundary edge of the graph, and let ` be a line through z (a)
and z (b) (there is probably just one). Let F0 and F1 be the faces that border edge (a, b) and let S0
and S1 be the vertices on those faces, other than a and b. Then all the vertices of S0 and S1 lie on
opposite sides of `, and none lie on `.

Note: if z (a) = z (b), then we can find a line passing through them and one of the vertices of S0.
This leads to a contradiction, and thus rules out this type of degeneracy.

Proof. Assume by way of contradiction that the lemma is false. Without loss of generality, we may
then assume that there are vertices of both S0 and S1 on or below the line `. Let s0 and s1 be such
vertices. By Lemma 15.4.4 and Claim 15.4.1, we know that both s0 and s1 have neighbors that lie
strictly below the line `. By Lemma 15.4.3, we know that there is a path P that connects s0 and
s1 on which all vertices other than s0 and s1 lie strictly below `.

On the other hand, we can similarly show that that both a and b have neighbors above the line `,
and that they are joined by a path that lies strictly above `. Thus, this path cannot consist of the
edge (a, b) and must be disjoint from P . This contradicts Lemma 15.2.3.

So, we now know that the embedding z contains no degeneracies, that every face is embedded as
a strictly convex polygon, and that the two faces bordering each edge embed on opposites sides of
that edge. This is all we need to know to prove Tutte’s Theorem. We finish the argument in the
proof below.

Proof of Theorem 15.3.2. We say that a point of the plane is generic if it does not lie on any z (a)
for on any segment of the plane corresponding to an edge (a, b). We first prove that every generic
point lies in exactly one face of G.
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Figure 15.8: An illustration of the proof of Lemma 15.5.1.

Begin with a point that is outside the polygon on which F is drawn. Such a point lies only in the
outside face. For any other generic point we can draw a curve between these points that never
intersects a z (a) and never crosses the intersection of the drawings of edges. That is, it only crosses
drawings of edges in their interiors. By Lemma 15.5.1, when the curve does cross such an edge it
moves from one face to another. So, at no point does it ever appear in two faces.

Now, assume by way of contradiction that the drawings of two edges cross. There must be some
generic point near their intersection that lies in at least two faces. This would be a contradiction.

15.6 Notes

This is the simplest proof of Tutte’s theorem that I have seen. Over the years, I have taught many
versions of Tutte’s proof by building on expositions by Lovász [LV99] and Geelen [Gee12], and an
alternative proof of Gortler, Gotsman and Thurston [GGT06].
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