
Spectral Graph Theory Lecture 17

Sparsification by Effective Resistance Sampling

Daniel A. Spielman November 2, 2015

Disclaimer

These notes are not necessarily an accurate representation of what happened in class. The notes
written before class say what I think I should say. I sometimes edit the notes after class to make
them way what I wish I had said.

There may be small mistakes, so I recommend that you check any mathematically precise statement
before using it in your own work.

These notes were last revised on November 3, 2015.

17.1 Overview

I am going to prove that every graph on n vertices has an ε-approximation with only O(ε−2n log n)
edges (a result of myself and Srivastava [SS11]). We will prove this using a matrix Chernoff bound
due to Tropp [Tro12].

We originally proved this theorem using a concentration bound of Rudelson [Rud99]. This required
an argument that used sampling with replacement. When I taught this result in 2012, I asked if
one could avoid sampling with replacement. Nick Harvey pointed out to me the argument that
avoids replacement that I am presenting today.

17.2 Sparsification

For this lecture, I define a graph H to be an ε-approximation of a graph G if

(1− ε)LG 4 LH 4 (1 + ε)LG.

We will show that every graph G has a good approximation by a sparse graph. This is a very
strong statement, as graphs that approximate each other have a lot in common. For example,

1. the effective resistance between all pairs of vertices are similar in the two graphs,

2. the eigenvalues of the graphs are similar,

3. the boundaries of all sets are similar, as these are given by χTSLGχS , and
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4. the solutions of linear equations in the two matrices are similar.

We will prove this by using a very simple random construction. For each edge (a, b) ∈ G, let
Reff(a, b) denote the effective resistance between a and b in G. Recall that this equals

(δa − δb)
TL+

G(δa − δb),

and that it is smaller when there are many short paths between a and b. Define

qa,b = wa,bReff(a, b) and pa,b = min
(
1, C(log n)ε−2qa,b

)
,

where C is some absolute constant we will set later, and wa,b is the weight of edge (a, b). Our
algorithm is simple: we include edge (a, b) in H with probability pa,b. If we do include edge (a, b),
we give it weight wa,b/pa,b. We will show that the resulting graph H has O(n log n/ε2) edges and
is an ε approximation of G with high probability.

The reason we employ this sort of sampling–blowing up the weight of an edge by dividing by the
probability that we choose it—is that it preserves the matrix in expectation. Let La,b denote the
elementary Laplacian on edge (a, b) with weight 1, so that

LG =
∑

(a,b)∈E

wa,bLa,b.

We then have that
ELH =

∑
(a,b)∈E

pa,b(wa,b/pa,b)La,b = LG.

17.3 Matrix Chernoff Bounds

The main tool that we will use in our analysis is a theorem about the concentration of random
matrices. These may be viewed as matrix analogs of the Chernoff bound that we saw in Lecture 5.
These are a surprisingly recent development, with the first ones appearing in the work of Rudelson
and Vershynin [Rud99, RV07] and Ahlswede and Winter [AW02]. The best present source for these
bounds is Tropp [Tro12], in which the following result appears as Corollary 5.2.

Theorem 17.3.1. Let X 1, . . . ,Xm be independent random n-dimensional symmetric positive semidef-
inite matrices so that ‖X i‖ ≤ R almost surely. Let X =

∑
iX i and let µmin and µmax be the

minimum and maximum eigenvalues of

E [X ] =
∑
i

E [X i] .

Then,

Pr

[
λmin(

∑
i

X i) ≤ (1− ε)µmin

]
≤ n

(
e−ε

(1− ε)1−ε

)µmin/R

, for 0 < ε < 1, and

Pr

[
λmax(

∑
i

X i) ≥ (1 + ε)µmax

]
≤ n

(
eε

(1 + ε)1+ε

)µmax/R

, for 0 < ε.
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It is important to note that the matrices X 1, . . . ,Xm can have different distributions. Also note
that as the norms of these matrices get bigger, the bounds above become weaker. As the expressions
above are not particularly easy to work with, we often use the following approximations.(

e−ε

(1− ε)1−ε

)
≤ e−ε2/2, for 0 < ε < 1, and(

eε

(1 + ε)1+ε

)
≤ e−ε2/3, for 0 < ε < 1.

Chernoff (and Hoeffding and Bernstein) bounds rarely come in exactly the form you want. Some-
times you can massage them into the needed form. Sometimes you need to prove your own. For
this reason, you may some day want to spend a lot of time reading how these are proved.

I am going to want a bound on the probability that the smallest eigenvalue is small in terms of
µmax rather than in terms of µmin. Fortunately, the bound I want is easy to obtain by substitution:

Pr

[
λmin(

∑
i

X i) ≤ µmin − εµmax

]
≤ n exp

(
−1

2

(
εµmax
µmin

)2

µmin/R

)

= n exp

(
−1

2
ε2
(
µmax
µmin

)
µmax/R

)
≤ n exp

(
−1

2
ε2µmax/R

)
.

17.4 The key transformation

To apply the matrix Chernoff bound, and to explain why we sample by effective resistances, we
make a simplifying transformation.

For positive definite matrices A and B , we have

A 4 (1 + ε)B ⇐⇒ B−1/2AB−1/2 4 (1 + ε)I .

The same things holds for singular semidefinte matrices that have the same nullspace:

LH 4 (1 + ε)LG ⇐⇒ L
+/2
G LHL

+/2
G 4 (1 + ε)L

+/2
G LGL

+/2
G ,

where L
+/2
G is the square root of the pseudo-inverse of LG. Let

Π = L
+/2
G LGL

+/2
G ,

which is the projection onto the range of LG.

As multiplication by a fixed matrix is a linear operation and expectation commutes with linear
operations,

EL+/2
G LHL

+/2
G = L

+/2
G (ELH)L

+/2
G = EL+/2

G LGL
+/2
G = Π.
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So, we really just need to show that this random matrix is probably close to its expectation, Π. It
would probably help to pretend that Π is in fact the identity, as it will make it easier to understand
the analysis. In fact, you don’t have to pretend: you could project all the vectors and matrices
onto the span of Π and carry out the analysis there.

17.5 Why effective resistances

We will now see why we set the edge sampling probabilities in terms of effective resistances. We
have ∑

(a,b)∈E

qa,b =
∑

(a,b)∈E

wa,bReff(a, b)

=
∑

(a,b)∈E

wa,b(δa − δb)
TL+

G(δa − δb)

=
∑

(a,b)∈E

wa,bTr
(
L+
G(δa − δb)(δa − δb)

T
)

= Tr

 ∑
(a,b)∈E

L+
Gwa,b(δa − δb)(δa − δb)

T


= Tr

L+
G

∑
(a,b)∈E

wa,bLa,b


= Tr

(
L+
GLG

)
= Tr (Π)

= n− 1.

There is a combinatorial reason that this is true: qa,b is the probability that edge (a, b) appears in
a random spanning tree of G when we sample spanning trees with probability proportional to the
product of their edge weights. As every spanning tree has n−1 edges, the sum of these probabilities
must be n− 1.

We can use this to bound the expected number of edges in H:∑
(a,b)∈E

pa,b =
∑

(a,b)∈E

min
(
1, C(log n)qa,b/ε

2
)
≤

∑
(a,b)∈E

C(log n)qa,b/ε
2 ≤ Cn log n/ε2

One can use a Chernoff bound (on real variables rather than matrices) to prove that it is exponen-
tially unlikely that the number of edges in H is more than any small multiple of this.

The other advantage of sampling by effective resistances is that it guarantees that all the random
matrices have small norm. Let

X a,b =

{
(wa,b/pa,b)L

+/2
G L(a,b)L

+/2
G with probability pa,b

0 otherwise,
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so that
L

+/2
G LHL

+/2
G =

∑
(a,b)∈E

X a,b.

We have

‖X a,b‖ = (wa,b/pa,b)
∥∥∥L+/2

G L(a,b)L
+/2
G

∥∥∥
= (wa,b/pa,b)

∥∥∥L+/2
G (δa − δb)(δa − δb)

TL
+/2
G

∥∥∥
= (wa,b/pa,b)Tr

(
L

+/2
G (δa − δb)(δa − δb)

TL
+/2
G

)
= (wa,b/pa,b)Tr

(
(δa − δb)

TL
+/2
G L

+/2
G (δa − δb)

)
= (wa,b/pa,b)Tr

(
(δa − δb)

TL+
G(δa − δb)

)
=
wa,bReff(a, b)

pa,b
.

In the above chain of equalities, the equality of the norm and the trace follows from the fact that
the matrix in question has rank 1. But, we really only needed the fact that the norm of a positive
semidefinite matrix is at most its trace.

So, when pa,b < 1, we have

‖X a,b‖ ≤
1

C(log n)ε−2
.

The point is that all of these norms are the same, and do not depend on (a, b). We choose the
probabilities pa,b for exactly this reason.

17.6 The analysis

We have that ∑
(a,b)∈E

EX a,b = Π.

It remains to show that it is unlikely to deviate from this by too much.

We first consider the case in which p(a,b) < 1 for all edges (a, b). If this were the case, then we could
apply Theorem 17.3.1 with the bound

‖X a,b‖ ≤
1

C(log n)ε−2

def
= R.

Theorem 17.3.1 tells us that

Pr

∑
a,b

X a,b ≥ (1 + ε)Π

 ≤ n exp
(
−ε2Cε−2 log n/3

)
= n exp (−(C/3) log n) = n−(C/3)+1,

which is small for C > 3.
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For the lower bound, we need to remember that we can just work orthogonal to the all-1s vector,
and so treat the smallest eigenvalue of Π as 1. We then find that

Pr

∑
a,b

X a,b ≤ (1− ε)Π

 ≤ n exp
(
−ε2Cε−2 log n/2

)
= n exp (−(C/2) log n) = n−(C/2)+1,

which is small for C > 2. So, we should choose something like C = 4.

We finally return to deal with the fact that there might be some edges for which pa,b = 1 and so
definitely appear in H. As these aren’t really random, our intuition is that they shouldn’t affect
the bound. I will make this formal in a way that will look like cheating. The only reason these
edges pose a difficulty is that the corresponding X a,b can have large norm. But, they are certainly
independent.

For each (a, b) for which pa,b = 1, we split X a,b into many independent random variables. For
example, we could replace it with K copies of the random variable X a,b/K for some large K. This
does not change the expectation of their sum, or the distribution of their sum as they all appear
in H with probability 1. Each of these now has small norm, and so we can apply Theorem 17.3.1
as desired.

What is going on here is that we are really using another slight variation of Theorem 17.3.1 that
we can derive from the original.

17.7 Open Problem

If I have time in class, I will sketch a way to quickly approximate the effective resistances of every
edge in the graph. The basic idea, which can be found in [SS11] and which is carried out better
in [LKP12], is that we can compute the effective resistance of an edge (a, b) from the solution
to a logarithmic number of systems of random linear equations in LG. That is, after solving a
logarithmic number of systems of linear equations in LG, we have information from which we can
estimates all of the effective resistances.

In order to sparsify graphs, we do not actually need estimates of effective resistances that are always
accurate. We just need a way to identify many edges of low effective resistance, without listing
any that have high effective resistance. I believe that better algorithms for doing this remain to be
found. Current fast algorithms that make progress in this direction and that exploit such estimates
may be found in [LKP12, Kou14, CLM+14, LPS15].
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