Spectral Graph Theory Lecture 18

A simple construction of expander graphs
Daniel A. Spielman October 31, 2018

18.1 Overview

Our goal is to prove that for every € > 0 there is a d for which we can efficiently construct an infinite
family of d-regular e-expanders. I recall that these are graphs whose adjacency matrix eigenvalues
satisfy |u;| < ed and whose Laplacian matrix eigenvalues satisfy |d — \;| < ed. Viewed as a function
of €, the d that we obtain in this construction is rather large. But, it is a constant. The challenge
here is to construct infinite families with fixed d and e.

Before we begin, I remind you that in Lecture 5 we showed that random generalized hybercubes
were e expanders of degree f(e)logn, for some function f. The reason they do not solve today’s
problem is that their degrees depend on the number of vertices. However, today’s construction
will require some small expander graph, and these graphs or graphs like them can serve in that
role. So that we can obtain a construction for every number of vertices n, we will exploit random
generalized ring graphs. Their analysis is similar to that of random generalized hypercubes.

Claim 18.1.1. There exists a function f(€) so that for every € > 0 and every sufficiently large n
the Cayley graph with group Z/n and a random set of at least f(e)logn generators is an e-expander
with high probability.

I am going to present the simplest construction of expanders that I have been able to find. By
“simplest”, I mean optimizing the tradeoff of simplicity of construction with simplicty of analysis.
It is inspired by the Zig-Zag product and replacement product constructions presented by Reingold,
Vadhan and Wigderson [RVWO02].

For those who want the quick description, here it is. Begin with an expander. Take its line graph.
Obseve that the line graph is a union of cliques. So, replace each clique by a small expander. We
need to improve the expansion slightly, so square the graph. Square one more time. Repeat.

The analysis will be simple because all of the important parts are equalities, which I find easier to
understand than inequalities.

While this construction requires the choice of two expanders of constant size, it is explicit in the
sense that we can obtain a simple implict representation of the graph: if the name of a vertex in
the graph is written using b bits, then we can compute its neighbors in time polynomial in b.
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18.2 Squaring Graphs

We will first show that we can obtain a family of € expanders from a family of S-expanders for any
B < 1. The reason is that squaring a graph makes it a better expander, although at the cost of
increasing its degree.

Given a graph G, we define the graph G? to be the graph in which vertices v and v are connected
if they are at distance 2 in G. Formally, G? should be a weighted graph in which the weight of an
edge is the number of such paths. When first thinking about this, I suggest that you ignore the
issue. When you want to think about it, I suggest treating such weighted edges as multiedges.

We may form the adjacency matrix of G? from the adjacency matrix of G. Let M be the adjacency
matrix of G. Then M?(u,v) is the number of paths of length 2 between v and v in G, and M? (v, v)
is always d. We will eliminate those self-loops. So,

M = M% —dI,.
If G has no cycles of length up to 4, then all of the edges in its square will have weight 1. The
following claim is immediate from this definition.

Claim 18.2.1. The adjacency matriz eigenvalues of G? are precicely

:U’zz_da

where (1, ..., Uy are the adjacency matriz eigenvalues of G.
Lemma 18.2.2. If {G;}; is an infinite family of d-regular -expanders for § > 1/v/d —1, then
{Gf}Z is an infinite family of d(d — 1)-reqular 3% expanders.

We remark that the case of 5 > 1/4/d — 1, or even larger, is the case of interest. We are not
expecting to work with graphs that beat the Ramanujan bound, 2v/d — 1/d.
Proof. For pu an adjacency matrix eigenvalue of G; other than d, we have

2 2 2
p—d pt—d _p 2
= < — < .
d(d—1) Z_d= @ =P

On the other hand, every adjacency eigenvalue of G? is at least —d, which is at least —3%d(d—1). O

So, by squaring enough times, we can convert a family of § expanders for any 5 < 1 into a family
of € expanders.

18.3 The Relative Spectral Gap

To measure the qualities of the graphs that appear in our construction, we define a quantity that
we will call the relative spectral gap of a d-regular graph:

H(C) ™ min ()\Q(G) 2d — )\n> |

d ' d
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The graphs with larger relative spectral gaps are better expanders. An e-expander has relative
spectral gap at least 1 — ¢, and vice versa. Because we can square graphs, we know that it suffices
to find an infinite family of graphs with relative spectral gap strictly greater than 0.

We now state exactly how squaring impacts the relative spectral gap of a graph.

Corollary 18.3.1. If G has relative spectral gap 3, then G? has relative spectral gap at least
28 — B2

Note that when ( is small, this gap is approximately 25.

18.4 Line Graphs

Our construction will leverage small expanders to make bigger expanders. To begin, we need a way
to make a graph bigger and still say something about its spectrum.

We use the line graph of a graph. Let G = (V, E) be a graph. The line graph of G is the graph
whose vertices are the edges of G in which two are connected if they share an endpoint in G. That
is, ((u,v), (w, 2)) is an edge of the line graph if one of {u, v} is the same as one of {w, z}. The line
graph is often written L(G), but we won’t do that in this class so that we can avoid confusion with
the Laplacian.

(a) A graph (b) Its line graph.

Let G be a d-regular graph with n vertices, and let H be its line graph!.As G has dn/2 edges, H
has dn/2 vertices. Each vertex of H, say (u,v), has degree 2(d — 1): d — 1 neighbors for the other
edges attached to v and d — 1 for v. In fact, if we just consider one vertex u in V, then all vertices
in H of form (u,v) of G will be connected. That is, H contains a d-clique for every vertex in V.
We see that each vertex of H is contained in exactly two of these cliques.

Here is the great fact about the spectrum of the line graph.

Lemma 18.4.1. Let G be a d-reqular graph with n vertices, and let H be its line graph. Then the
spectrum of the Laplacian of H is the same as the spectum of the Laplacian of G, except that it has
dn/2 — n extra eigenvalues of 2d.

f G has multiedges, which is how we interpret integer weights, then we include a vertex in the line graph for
each of those multiedges. These will be connected to each other by edges of weight two—one for each vertex that
they share. All of the following statements then work out.
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Before we prove this lemma, we need to recall the factorization of a Laplacian as the product of the
signed edge-vertex adjacency matrix times its transpose. We reserved the letter U for this matrix,
and defined it by

1 ifa=rc

U((a,b),c)=< -1 ifb=c

0 otherwise.

For an unweighted graph, we have
L;=U"U.

Recall that each edge indexes one column, and that we made an arbitrary choice when we ordered
the edge (a,b) rather than (b,a). But, this arbitrary choice factors out when we multiply by U”.

18.5 The Spectrum of the Line Graph

Define the matrix |U| to be the matrix obtained by replacing every entry of U by its absolute
value. Now, consider |U|" |U|. It looks just like the Laplacian, except that all of its off-diagonal
entries are 1 instead of —1. So,

\UI"|U|=Dg+Mg=dI + Mg,

as G is d-regular. We will also consider the matrix |U||U|”. This is a matrix with nd/2 rows and
nd/2 columns, indexed by edges of G. The entry at the intersection of row (u,v) and column (w, z)
is

(8u+6,) (80 +62).

So, it is 2 if these are the same edge, 1 if they share a vertex, and 0 otherwise. That is
U||U" = 2lh42+ Mpy.

Moreover, |U||U|" and |U|" |U| have the same eigenvalues, except that the later matrix has
nd/2 — n extra eigenvalues of 0.

Proof of Lemma 18.4.1. First, let A\; be an eigenvalue of Lg. We see that

i is an eigenvalue of Dg — Mg =

d — )\; is an eigenvalue of Mo =

2d — A; is an eigenvalue of Do+ Mo —
2d — A; is an eigenvalue of 21,3/ + Mg =
2(d — 1) — \; is an eigenvalue of M g —

A; is an eigenvalue of Dy — M py.

Of course, this last matrix is the Laplacian matrix of H. We can similarly show that the extra
dn/2 —n zero eigenvalues of 21,4/ + My become 2d in Ly. O
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While the line graph operation preserves Ao, it causes the degree of the graph to grow. So, we are
going to need to do more than just take line graphs to construct expanders.

Proposition 18.5.1. Let G be a d-regular graph with d > 7 and let H be its line graph. Then,

A2 (G)

" =5a-

>r(G)/2.

Proof. For G a d-regular graph other than K;,1, A\2(G) < d+ 1. By the Perron-Frobenius theorem
(Lemma 6.A.1) A\paz(G) < 2d (with equality if and only G is bipartite). So, Amaz(H) = 2d and
X2(H) = X2(G) < d. So, the term in the definition of the relative spectral gap corresponding to
the largest eigenvalue of H satisfies

224 = 2) = Amaa(H) _22d—2)—2d _ =~ 2
2d — 2 N 2d — 2 - d

>5/17,

as d > 7. On the other hand,
Xo(H) d
< < 2/3.
2d—2 ~ 2d—2 ~ /3

As 2/3 < 5/7,

> r(G/2).

i (20) 200=2) o)) _ ) _ 0(C)
2d—2 2d—2 7

2d — 2’ 2d —2
O

While the line graph of G has more vertices, its degree is higher and its relative spectral gap is
approximately half that of G. We can improve the relative spectral gap by squaring. In the next
section, we show how to lower the degree.

18.6 Approximations of Line Graphs

Our next step will be to construct approximations of line graphs. We already know how to approx-
imate complete graphs: we use expanders. As line graphs are sums of complete graphs, we will
approximate them by sums of expanders. That is, we replace each clique in the line graph by an
expander on d vertices. Since d will be a constant in our construction, we will be able to get these
small expanders from known constructions, like the random generalized ring graphs.

Let G be a d-regular graph and let Z be a graph on d vertices of degree k (we will use a low-degree
expander). We define the graph
GOZ

to be the graph obtained by forming the edge graph of G, H, and then replacing every d-clique in
H by a copy of Z. Actually, this does not uniquely define GO Z, as there are many ways to replace
a d-clique by a copy of Z. But, any choice will work. Note that every vertex of GO Z has degree
2k.
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Lemma 18.6.1. Let G be a d-reqular graph, let H be the line graph of G, and let Z be a k-regular
a-expander. Then,

(1-— a)SH <GOZ < (1 +a)§H

Proof. As H is a sum of d-cliques, let Hy,..., H, be those d-cliques. So,

n
Ly=) Ly,
i=1

Let Z; be the graph obtained by replacing H; with a copy of Z, on the same set of vertices. To
prove the lower bound, we compute

- ko k
LG@Z: E LZi = (1—04)& E LH, :(I—Oz)gLH
i=1 =1

The upper bound is proved similarly. O

Corollary 18.6.2. Under the conditions of Lemma 18.6.1,

l—«o

r(GDZ) > r(G).

Proof. The proof is similar to the proof of Proposition 18.5.1. We have

M(GDZ) > (1 - a)k)\Qd(G),
and
)\mam(G@Z) < (1 + a)?k.
So,

kA2 (G)

min (A\2(GOZ),2(2k) — Anaz(GOZ)) > min <(1 —a)

as A\2(G) < d. So,

r(GOZ) > —(1 — a)kr(G) =

€
2k

So, the relative spectral gap of GO Z is a little less than half that of G. But, the degree of GO Z
is 2k, which we will arrange to be much less than the degree of G, d.

We will choose k and d so that squaring this graph improves its relative spectral gap, but still leaves
its degree less than d. If G has relative spectral gap 3, then G? has relative spectral gap at least

28 — B2

It is easy to see that when [ is small, this gap is approximately 23. This is not quite enough to
compensate for the loss of (1 —¢€)/2 in the corollary above, so we will have to square the graph once
more.
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18.7 The whole construction

To begin, we need a “small” k-regular expander graph Z on
d ¥ (2k(2k — 1)) — 2k(2k — 1)

vertices. It should be an e-expander for some small e. I believe that e = 1/6 would suffice. The
other graph we will need to begin our construction will be a small d-regular expander graph Gy.
We use Claim 18.1.1 to establish the existence of both of these. Let 8 be the relative spectral gap
of Go. We will assume that § is small, but greater than 0. I believe that § = 1/5 will work. Of
course, it does not hurt to start with a graph of larger relative spectral gap.

We then construct Go@Z. The degree of this graph is 2k, and its relative spectral gap is a little
less than /2. So, we square the resulting graph, to obtain

(Go@Z).

It has degree approximately 4k2, and relative spectral gap slightly less than 3. But, for induction,
we need it to be more than 8. So, we square one more time, to get a relative spectral gap a little
less than 2. We now set

G = <(G0®Z)2>2.

The graph (G is at least as good an approximation of a complete graph as Gy, and it has degree
approximately 16k*. In general, we set

Gip1 = ((Gz‘®2)2> i

To make the inductive construction work, we need for Z to be a graph of degree k whose number
of vertices equals the degree of G. This is approximately 16k%, and is exactly

(2k(2k — 1))? — 2k(2k — 1).

I'll now carry out the computation of relative spectral gaps with more care. Let’s assume that G
has a relative spectral gap of 8 > 4/5, and assume, by way of induction, that p(G;) > 4/5. Also
assume that Z is a 1/6-expander. We then find

r(Gi©Z) > (1 - €)(4/5)/2 = 1/3.

So, G;[©Z is a 2/3-expander. Our analysis of graph squares then tells us that G, is a (2/3)*-
expander. So,
r(Git1) > 1—(2/3)1 = 65/81 > 4/5.

By induction, we conclude that every G; has relative spectral gap at least 4/5.

To improve their relative spectral gaps of the graphs we produce, we can just square them a few
times.
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18.8 Better Constructions

There is a better construction technique, called the Zig-Zag product [RVWO02]. The Zig-Zag con-
struction is a little trickier to understand, but it achieves better expansion. I chose to present
the line-graph based construction because its analysis is very closely related to an analysis of the
Zig-Zag product.
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