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Preconditioning Laplacians
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A preconditioner for a positive semidefinite matrix A is a positive semidefinite matrix B such that
it is easy to solve systems of linear equations in B and the condition number of B−1A is small. A
good preconditioner allows one to quickly solve systems of equations in A.

In this lecture, we will measure the quality of preconditioners in terms of the ratio

κ(A,B)
def
= β/α,

where α is the largest number and β is the smallest such that

αB 4 A 4 βB .

Lemma 24.0.1. Let α and β be as defined above. Then, α and β are the smallest and largest
eigenvalues of B−1A, excluding possible zero eigenvalues corresponding to a common nullspace of
A and B .

We need to exclude the common nullspace when A and B are the Laplacian matrices of connected
graphs. If these matrices have different nullspaces α = 0 or β =∞ and the condition number β/α
is infinite.

Proof of Lemma 24.0.1. We just prove the statement for β, in the case where neither matrix is
singular. We have

λmax(B−1A) = λmax(B−1/2AB−1/2)

= max
x

xTB−1/2AB−1/2x

xTx

= max
y

yTAy

yTBy
, settting y = B−1/2x ,

which equals β.

Recall that the eigenvalues of B−1A are the same as those of B−1/2AB−1/2 and A1/2B−1A1/2.

24.1 Approximate Solutions

Recall the A-norm:
‖x‖A =

√
xTAx =

∥∥∥A1/2x
∥∥∥ .

We say that x̃ is an ε-approximate solution to the problem Ax = b if

‖x̃ − x‖A ≤ ε ‖x‖A .

24-1
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24.2 Iterative Refinement

We will now see how to use a very good preconditioner to solve a system of equations. Let’s consider
a preconditioner B that satisfies

(1− ε)B 4 A 4 (1 + ε)B .

So, all of the eigenvalues of
A1/2B−1A1/2 − I

have absolute value at most ε.

The vector B−1b is a good approximation of x in the A-norm. We have∥∥B−1b − x
∥∥
A

=
∥∥∥A1/2B−1b −A1/2x

∥∥∥
=
∥∥∥A1/2B−1Ax −A1/2x

∥∥∥
=
∥∥∥A1/2B−1A1/2(A1/2x )−A1/2x

∥∥∥
≤
∥∥∥A1/2B−1A1/2 − I

∥∥∥∥∥∥A1/2x
∥∥∥

≤ ε
∥∥∥A1/2x

∥∥∥
= ε ‖x‖A .

Remark: This result crucially depends upon the use of the A-norm. It fails under the Euclidean
norm.

If we want a better solution, we can just compute the residual and solve the problem in the residual.
That is, we set

x 1 = B−1b,

and compute
r1 = b −Ax 1 = A(x − x 1).

We then use one solve in B to compute a vector x 2 such that

‖(x − x 1)− x 2‖A ≤ ε ‖x − x 1‖A ≤ ε
2 ‖x‖A .

So, x 1 + x 2, our new estimate of x , differs from x by at most an ε2 factor. Continuing in this way,
we can find an εk approximation of x after solving k linear systems in B . This procedure is called
iterative refinement.

24.3 Iterative Methods in the Matrix Norm

The iterative methods we studied last class can also be shown to produce good approximate so-
lutions in the matrix norm. Given a matrix A, these produce ε-approximation solutions after t
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iterations if there is a polynomial q of degree t for which q(0) = 1 and |q(λi)| ≤ ε for all eigenvalues
of A. To see this, recall that we can define p(x) so that q(x) = 1− xp(x), and set

x̃ = p(A)b,

to get
‖x̃ − x‖A = ‖p(A)b − x‖A = ‖p(A)Ax − x‖A .

As I , A, p(A) and A1/2 all commute, this equals∥∥∥A1/2p(A)Ax −A1/2x
∥∥∥ =

∥∥∥p(A)AA1/2x −A1/2x
∥∥∥

≤ ‖p(A)A− I ‖
∥∥∥A1/2x

∥∥∥
≤ ε ‖x‖A .

24.4 Preconditioned Iterative Methods

Preconditioned iterative methods can be viewed as the extension of Iterative Refinement by algo-
rithms like Chebyshev iteration and the Preconditioned Conjugate Gradient. These usually work
with condition numbers much larger than 2.

In each iteration of a preconditioned method we will solve a system of equations in B , multiply a
vector by A, and perform a constant number of other vector operations. For this to be worthwhile,
the cost of solving equations in B has to be low.

We begin by seeing how the analysis with polynomials translates. Let λi be the ith eigenvalue of
B−1A. If qt(x) = 1− xpt(x) is a polynomial such that |qt(λi)| ≤ ε for all i, then

x t
def
= pt(B

−1A)B−1b

will be an ε-approximate solution to Ax = b:

‖x − x t‖A =
∥∥∥A1/2x −A1/2x t

∥∥∥
=
∥∥∥A1/2x −A1/2pt(B

−1A)B−1b
∥∥∥

=
∥∥∥A1/2x −A1/2pt(B

−1A)B−1Ax
∥∥∥

=
∥∥∥A1/2x −A1/2pt(B

−1A)B−1A1/2(A1/2x )
∥∥∥

≤
∥∥∥I −A1/2pt(B

−1A)B−1A1/2
∥∥∥∥∥∥(A1/2x )

∥∥∥ .
We now prod this matrix into a more useful form:

I −A1/2pt(B
−1A)B−1A1/2 = I − pt(A1/2B−1A1/2)A1/2B−1A1/2 = qt(A

1/2B−1A1/2).

So, we find

‖x − x t‖A ≤
∥∥∥qt(A1/2B−1A1/2)

∥∥∥∥∥∥(A1/2x )
∥∥∥ ≤ ε ‖x‖A .
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The Preconditioned Conjugate Gradient (PCG) is a magical algorithm that after t steps (each of
which involves solving a system in B , multiplying a vector by A, and performing a constant number
of vector operations) produces the vector x t that minimizes

‖x t − x‖A

over all vectors x t that can be written in the form pt(b) for a polynomial of degree at most t.
That is, the algorithm finds the best possible solution among all iterative methods of the form
we have described. We first bound the quality of PCG by saying that it is at least as good as
Preconditioned Chebyshev, but it has the advantage of not needing to know α and β. We will then
find an improved analysis.

24.5 Preconditioning by Trees

Vaidya [Vai90] had the remarkable idea of preconditioning the Laplacian matrix of a graph by the
Laplacian matrix of a subgraph. If H is a subgraph of G, then

LH 4 LG,

so all eigenvalues of L−1H LG are at least 1. Thus, we only need to find a subgraph H such that LH
is easy to invert and such that the largest eigenvalue of L−1H LG is not too big.

It is relatively easy to show that linear equations in the Laplacian matrices of trees can be solved
exactly in linear time. One can either do this by finding an LU -factorization with a linear number
of non-zeros, or by viewing the process of solving the linear equation as a dynamic program that
passes up once from the leaves of the tree to a root, and then back down.

We will now show that a special type of tree, called a low-stretch spanning tree provides a very
good preconditioner. To begin, let T be a spanning tree of G. Write

LG =
∑

(u,v)∈E

wu,vLu,v =
∑

(u,v)∈E

wu,v(χu − χv)(χu − χv)
T .

We will actually consider the trace of L−1T LG. As the trace is linear, we have

Tr
(
L−1T LG

)
=

∑
(u,v)∈E

wu,vTr
(
L−1T Lu,v

)
=

∑
(u,v)∈E

wu,vTr
(
L−1T (χu − χv)(χu − χv)

T
)

=
∑

(u,v)∈E

wu,vTr
(
(χu − χv)

TL−1T (χu − χv)
)

=
∑

(u,v)∈E

wu,v(χu − χv)
TL−1T (χu − χv).

To evaluate this last term, we need to know the value of (χu − χv)
TL−1T (χu − χv). You already

know something about it: it is the effective resistance in T between u and v. In a tree, this equals



Lecture 24: November 28, 2018 24-5

the distance in T between u and v, when we view the length of an edge as the reciprocal of its
weight. This is because it is the resistance of a path of resistors in series. Let T (u, v) denote the
path in T from u to v, and let w1, . . . , wk denote the weights of the edges on this path. As we view
the weight of an edge as the reciprocal of its length,

(χu − χv)
TL−1T (χu − χv) =

k∑
i=1

1

wi
. (24.1)

Even better, the term (24.1) is something that has been well-studied. It was defined by Alon, Karp,
Peleg and West [AKPW95] to be the stretch of the unweighted edge (u, v) with respect to the tree
T . Moreover, the stretch of the edge (u, v) with weight wu,v with respect to the tree T is defined
to be exactly

wu,v

k∑
i=1

1

wi
,

where again w1, . . . , wk are the weights on the edges of the unique path in T from u to v. A
sequence of works, begining with [AKPW95], has shown that every graph G has a spanning tree
in which the sum of the stretches of the edges is low. The best result so far is due to [AN12], who
prove the following theorem.

Theorem 24.5.1. Every weighted graph G has a spanning tree subgraph T such that the sum of
the stretches of all edges of G with respect to T is at most

O(m log n log log n),

where m is the number of edges G. Moreover, one can compute this tree in time O(m log n log logn).

Thus, if we choose a low-stretch spanning tree T , we will ensure that

Tr
(
L−1T LG

)
=

∑
(u,v)∈E

wu,v(χu − χv)
TL−1T (χu − χv) ≤ O(m log n log log n).

In particular, this tells us that λmax(L−1T LG) is at most O(m log n log log n), and so the Precon-
ditioned Conjugate Gradient will require at most O(m1/2 log n) iterations, each of which requires
one multiplication by LG and one linear solve in LT . This gives an algorithm that runs in time
O(m3/2 log n log 1/ε), which is much lower than the O(n3) of Gaussian elimination when m, the
number of edges in G, is small.

This result is due to Boman and Hendrickson [BH01].

24.6 Improving the Bound on the Running Time

We can show that the Preconditioned Conjugate Gradient will actually run in closer to O(m1/3)
iterations. Since the trace is the sum of the eigenvalues, we know that for every β > 0, L−1T LG has
at most

Tr
(
L−1T LG

)
/β
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eigenvalues that are larger than β.

To exploit this fact, we use the following lemma. It basically says that we can ignore the largest
eigenvalues of B−1A if we are willing to spend one iteration for each.

Lemma 24.6.1. Let λ1, . . . , λn be positive numbers such that all of them are at least α and at most
k of them are more than β. Then, for every t ≥ k, there exists a polynomial p(X) of degree t such
that p(0) = 1 and

|p(λi)| ≤ 2

(
1 +

2√
β/α

)−(t−k)
,

for all λi.

Proof. Let r(X) be the polynomial we constructed using Chebyshev polynomials of degree t − k
for which

|r(X)| ≤ 2

(
1 +

2√
β/α

)−(t−k)
,

for all X between α and β. Now, set

p(X) = r(X)
∏

i:λi>β

(1−X/λi).

This new polynomial is zero at every λi greater than β, and for X between α and β

|p(X)| = |r(X)|
∏

i:λi>β

|(1−X/λi)| ≤ |r(X)| ,

as we always have X < λi in the product.

Applying this lemma to the analysis of the Preconditioned Conjugate Gradient, with β = Tr
(
L−1T LG

)2/3
and k = Tr

(
L−1T LG

)1/3
, we find that the algorithm produces ε-approximate solutions within

O(Tr
(
L−1T LG

)1/3
ln(1/ε)) = O(m1/3 log n ln 1/ε)

iterations.

This result is due to Spielman and Woo [SW09].

24.7 Further Improvements

We now have three families of algorithms for solving systems of equations in Laplaican matrices in
nearly-linear time.
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• By subgraph preconditioners. These basically work by adding back edges to the low-stretch
trees. The resulting systems can no longer be solved directly in linear time. Instead, we use
Gaussian elimination to eliminate the degree 1 and 2 vertices to reduce to a smaller system,
and then solve that system recursively. The first nearly linear time algorithm of this form ran
in time O(m logc n log 1/ε), for some constant c [ST09]. An approach of this form was first
made practical (and much simpler) by Koutis, Miller, and Peng [KMP11]. The asymptotically
fastest method also works this way. It runs in time O(m log1/2m logc log n log 1/ε), [CKM+14]
(Cohen, Kyng, Miller, Pachocki, Peng, Rao, Xu).

• By sparsification (see my notes from Lecture 19 from 2015). These algorithms work rather
differently, and do not exploit low-stretch spanning trees. They appear in the papers [PS14,
KLP+16].

• Accelerating Gaussian elimination by random sampling, by Kyng and Sachdeva [KS16].
This is the most elegant of the algorithms. While the running time of the algorithms,
O(m log2 n log 1/ε) is not the asymptotically best, the algorithm is so simple that it is the
best in practice. An optimized implementation appears in the package Laplacian.jl.

There are other algorithms that are often fast in practice, but for which we have no theoretical
analysis. I suggest the Algebraic Multigrid of Livne and Brandt, and the Combinatorial Multigrid
of Yiannis Koutis.

24.8 Questions

I conjecture that it is possible to construct spanning trees of even lower stretch. Does every graph
have a spanning tree of average stretch 2 log2 n? I do not see any reason this should not be true. I
also believe that this should be achievable by a practical algorithm. The best code that I know for
computing low-stretch spanning trees, and which I implemented in Laplacians.jl, is a heuristic
based on the algorithm of Alon, Karp, Peleg and West. However, I do not know an analysis of their
algorithm that gives stretch better than O(m2

√
logn). The theoretically better low-stretch trees of

Abraham and Neiman are obtained by improving constructions of [EEST08, ABN08]. However,
they seem too complicated to be practical.

The eigenvalues of L−1H LG are called generalized eigenvalues. The relation between generalized
eigenvalues and stretch is the first result of which I am aware that establishes a combinatorial
interpretation of generalized eigenvalues. Can you find any others?
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