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25.1 Overview

Margulis [Mar88] and Lubotzky, Phillips and Sarnak [LPS88] presented the first explicit construc-
tions of infinite families of Ramanujan graphs. These had degrees p+ 1, for primes p. There have
been a few other explicit constructions, [Piz90, Chi92, JL97, Mor94], all of which produce graphs of
degree q + 1 for some prime power q. Over this lecture and the next we will prove the existence of
infinite families of bipartite Ramanujan of every degree. While today’s proof of existence does not
lend itself to an explicit construction, it is easier to understand than the presently known explicit
constructions.

We think that much stronger results should be true. There is good reason to think that random
d-regular graphs should be Ramanujan [MNS08]. And, Friedman [Fri08] showed that a random
d-regular graph is almost Ramanujan: for sufficiently large n such a graph is a 2

√
d− 1 + ε approx-

imation of the complete graph with high probability, for every ε > 0.

In today’s lecture, we will use the method of interlacing families of polynomials to prove (half) a
conjecture of Bilu and Linial [BL06] that every bipartite Ramanujan graph has a 2-lift that is also
Ramanujan. This theorem comes from [MSS15a], but today’s proof is informed by the techniques
of [HPS15]. We will use theorems about the matching polynomials of graphs that we will prove
next lecture.

In the same way that a Ramanujan graph approximates the complete graph, a bipartite Ramanujan
graph approximates a complete bipartite graph. We say that a d-regular graph is a bipartite
Ramanujan graph if all of its adjacency matrix eigenvalues, other than d and −d, have absolute
value at most 2

√
d− 1. The eigenvalue of d is a consequence of being d-regular and the eigenvalue

of −d is a consequence of being bipartite. In particular, recall that the adjacency matrix eigenvalues
of a bipartite graph are symmetric about the origin. This is a special case of the following claim,
which you can prove when you have a sparse moment.

Claim 25.1.1. The eigenvalues of a symmetric matrix of the form(
0 A

AT 0

)
are symmetric about the origin.

We remark that one can derive bipartite Ramanujan graphs from ordinary Ramanujan graphs—just
take the double cover. However, we do not know any way to derive ordinary Ramanujan graphs
from the bipartite ones.

25-1
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As opposed to reasoning directly about eigenvalues, we will work with characteristic polynomials.
For a matrix M , we write its characteristic polynomial in the variable x as

χx(M )
def
= det(xI −M ).

25.2 2-Lifts

We saw 2-lifts of graphs in Problem 3 from Problem Set 2:

We define a signed adjacency matrix of G to be a symmetric matrix S with the same
nonzero pattern as the adjacency matrix A, but such that each nonzero entry is either
1 or −1.

We will use it to define a graph GS . Like the double-cover, the graph GS will have
two vertices for every vertex of G and two edges for every edge of G. For each edge
(u, v) ∈ E, if S(u, v) = −1 then GS has the two edges

(u1, v2) and (v1, u2),

just like the double-cover. If S(u, v) = 1, then GS has the two edges

(u1, v1) and (v2, u2).

You should check that G−A is the double-cover of G and that GA consists of two disjoint
copies of G.

Prove that the eigenvalues of the adjacency matrix of GS are the union of the eigenvalues
of A and the eigenvalues of S .

The graphs GS that we form this way are called 2-lifts of G.

Bilu and Linial [BL06] conjectured that every d-regular graph G has a signed adjacency matrix
S so that ‖S‖ ≤ 2

√
d− 1. This would give a simple procedure for constructing infinite families

of Ramanujan graphs. We would begin with any small d-regular Ramanujan graph, such as the
complete graph on d+ 1 vertices. Then, given any d-regular Ramanujan graph we could construct
a new Ramanujan graph on twice as many vertices by using GS where ‖S‖ ≤ 2

√
d− 1.

We will prove something close to their conjecture.

Theorem 25.2.1. Every d-regular graph G has a signed adjacency matrix S for which the minimum
eigenvalue of S is at least −2

√
d− 1.

We can use this theorem to build infinite families of bipartite Ramanujan graphs, because their
eigenvalues are symmetric about the origin. Thus, if µn ≥ −2

√
d− 1, then we know that |µi| ≤

2
√
d− 1 for all 1 < i < n. Note that every 2-lift of a bipartite graph is also a bipartite graph.
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25.3 Random 2-Lifts

We will prove Theorem 25.2.1 by considering a random 2-lift. In particular, we consider the expected
characteristic polynomial of a random signed adjacency matrix S :

ES [χx(S)] . (25.1)

Godsil and Gutman [GG81] proved that this is equal to the matching polynomial of G! We will
learn more about the matching polynomial next lecture.

For now, we just need the following bound on its zeros which was proved by Heilmann and Lieb
[HL72].

Theorem 25.3.1. The eigenvalues of the matching polynomial of a graph of maximum degree at
most d are real and have absolute value at most 2

√
d− 1.

Now that we know that the smallest zero of (25.1) is at least −2
√
d− 1, all we need to do is to show

that there is some signed adjacency matrix whose smallest eigenvalue is at least this bound. This is
not necessarily as easy as it sounds, because the smallest zero of the average of two polynomials is
not necessarily related to the smallest zeros of those polynomials. We will show that, in this case,
it is.

25.4 Laplacianized Polynomials

Instead of directly reasoning about the characteristic polynomials of signed adjacency matrices S ,
we will work with characteristic polynomials of dI − S . It suffices for us to prove that there exists
an S for which the largest eigenvalue of dI − S is at most d+ 2

√
d− 1.

Fix an ordering on the m edges of the graph, associate each S with a vector σ ∈ {±1}m, and define

pσ(x) = χx(dI − S).

The expected polynomial is the average of all these polynomials.

We define two vectors for each edge in the graph. If the ith edge is (a, b), then we define

v i,σi = δa − σiδb.

For every σ ∈ {±1}m, we have
m∑
i=1

v i,σiv
T
i,σi = dI − S ,

where S is the signed adjacency matrix corresponding to σ. So, for every σ ∈ {±1}m,

pσ(x) = χx

(
m∑
i=1

v i,σiv
T
i,σi

)
.



Lecture 25: December 3, 2018 25-4

25.5 Interlacing Families of Polynomials

Here is the problem we face. We have a large family of polynomials, say p1(x), . . . , pm(x), for which
we know each pi is real-rooted and that their sum is real rooted. We would like to show that there
is some polynomial pi whose largest zero is at most the largest zero of the sum. This is not true in
general. But, it is true in our case because the polynomials form an interlacing family.

For a polynomial p(x) =
∏n
i=1(x−λi) of degree n and a polynomial q(x) =

∏n−1
i=1 (x−µi) of degree

n− 1, we say that q(x) interlaces p(x) if

λn ≤ µn−1 ≤ λn−1 ≤ · · · ≤ λ2 ≤ µ1 ≤ λ1.

If r(x) =
∏n
i=1(x− µi) has degree n, we write r(x)→ p(x) if

µn ≤ λn ≤ µn−1 ≤ · · · ≤ λ2 ≤ µ1 ≤ λ1.

That is, if the zeros of p and r interlace, with the zeros of p being larger. We also make these
statements if they hold of positive multiples of p, r and q.

The following lemma gives the examples of interlacing polynomials that motivate us.

Lemma 25.5.1. Let A be a symmetric matrix and let v be a vector. For a real number t let

pt(x) = χx(A + tvvT ).

Then, for t > 0, p0(x)→ pt(x) and there is a monic1 degree n− 1 polynomial q(x) so that for all t

pt(x) = χx(A)− tq(x).

Proof. The fact that p0(x)→ pt(x) for t > 0 follows from the Courant-Fischer Theorem.

We first establish the existence of q(x) in the case that v = δ1. As the matrix tδ1δ
T
1 is zeros

everywhere except for the element t in the upper left entry and the determinant is linear in each
entry of the matrix,

χx(A + tδ1δ
T
1 ) = det(xI −A− tδ1δT1 ) = det(xI −A)− t det(xI (1) −A(1)) = χx(A)− tχx(A(1)),

where A(1) is the submatrix of A obtained by removing its first row and column. The polynomial
q(x) = χx(A(1)) has degree n− 1.

For arbitrary, v , let Q be a rotation matrix for which Qv = δ1. As determinants, and thus
characteristic polynomials, are unchanged by multiplication by rotation matrices,

χx(A + tvvT ) = χx(Q(A + tvvT )QT )

= χx(QAQT + tδ1δ
T
1 )) = χx(QAQT )− tq(x) = χx(A)− tq(x),

for some q(x) of degree n− 1.

1A monic polynomial is one whose leading coefficient is 1.
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For a polynomial p, let λmax(p) denote its largest zero. When polynomials interlace, we can relate
the largest zero of their sum to the largest zero of at least one of them.

Lemma 25.5.2. Let p1(x), p2(x) and r(x) be polynomials so that r(x) → pi(x). Then, r(x) →
p1(x) + p2(x) and there is an i ∈ {1, 2} for which

λmax(pi) ≤ λmax(p1 + p2).

Proof. Let µ1 be the largest zero of r(x). As each polynomial pi(x) has a positive leading coefficient,
each is eventually positive and so is their sum. As each has exactly one zero that is at least µ1 each
is nonpositive at µ1, and the same is also true of their sum. Let λ be the largest zero of p1 + p2.
We have established that λ ≥ µ1.

If pi(λ) = 0 for some i, then we are done. If not, there is an i for which pi(λ) > 0. As pi only has
one zero larger than µ1, and it is eventually positive, the largest zero of pi must be less than λ.

If p1, . . . , pm are polynomials such that there exists an r(x) for which r(x) → pi(x) for all i, then
these polynomials are said to have a common interlacing. Such polynomials satisfy the natural
generalization of Lemma 25.5.2.

The polynomials pσ(x) do not all have a common interlacing. However, they satisfy a property
that is just as useful: they form an interlacing family. Rather than defining these in general, we
will just explain the special case we need for today’s theorem.

We define polynomials that correspond to fixing the signs of the first k edges and then choosing
the rest at random. We indicate these by shorter sequences σ ∈ {±1}k. For k < m and σ ∈ {±1}k
we define

pσ(x)
def
= Eρ∈{±1}n−k [pσ,ρ(x)] .

So,
p∅(x) = Eσ∈{±1}m [pσ(x)] .

We view the strings σ, and thus the polynomials pσ, as vertices in a complete binary tree. The
nodes with σ of length m are the leaves, and ∅ corresponds to the root. For σ of length less than
n, the children of σ are (σ, 1) and (σ,−1). We call such a pair of nodes siblings. We will eventually
prove in Lemma 25.6.1 that all the polynomials pσ(x) are real rooted and in Corollary 25.6.2 that
every pair of siblings has a common interlacing.

But first, we show that this implies that there is a leaf indexed by σ ∈ {±1}m for which

λmax(pσ) ≤ λmax(p∅).

This implies Theorem 25.2.1, as we know from Theorem 25.3.1 that λmax(p∅) ≤ d+ 2
√
d− 1.

Lemma 25.5.3. There is a σ ∈ {±1}m for which

λmax(pσ) ≤ λmax(p∅).
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Proof. Corollary 25.6.2 and Lemma 25.5.2 imply that every non-leaf node in the tree has a child
whose largest zero is at most the largest zero of that node. Starting at the root of the tree, we find
a node whose largest zero is at most the largest zero of p∅. We then proceed down the tree until we
reach a leaf, at each step finding a node labeled by a polynomial whose largest zero is at most the
largest zero of the previous polynomial. The leaf we reach, σ, satisfies the desired inequality.

25.6 Common Interlacings

We can now use Lemmas 25.5.1 and 25.5.2 to show that every σ ∈ {±1}m−1 has a child (σ, s) for
which λmax(pσ,s) ≤ λmax(pσ). Let

A =

m−1∑
i=1

v i,σiv
T
i,σi .

The children of σ, (σ, 1) and (σ,−1) have polynomials p(σ,1) and p(σ,−1) that equal

χx(A + vm,1v
T
m,1) and χx(A + vm,−1v

T
m,−1).

By Lemma 25.5.1, χx(A)→ χx(A+ vm,sv
T
m,s) for s ∈ {±1}, and Lemma 25.5.2 implies that there

is an s for which the largest zero of p(σ,s) is at most the largest zero of their average, which is pσ.

To extend this argument to nodes higher up in the tree, we will prove the following statement.

Lemma 25.6.1. Let A be a symmetric matrix and let w i,s be vectors for 1 ≤ i ≤ k and s ∈ {0, 1}.
Then the polynomial ∑

ρ∈{0,1}k
χx

(
A +

k∑
i=1

w i,ρiw
T
i,ρi

)

is real rooted, and for each s ∈ {0, 1},

∑
ρ∈{0,1}k

χx

(
A +

k−1∑
i=1

w i,ρiw
T
i,ρi

)
→

∑
ρ∈{0,1}k

χx

(
A +

k−1∑
i=1

w i,ρiw
T
i,ρi + wk,sw

T
k,s

)
.

Corollary 25.6.2. For every k < n and σ ∈ {±1}k, the polynomials pσ,s(x) for s ∈ {±1} are real
rooted and have a common interlacing.

25.7 Real Rootedness

To prove Lemma 25.6.1, we use the following two lemmas which are known collectively as Obreschkoff’s
Theorem [Obr63].

Lemma 25.7.1. Let p and q be polynomials of degree n and n− 1, and let pt(x) = p(x)− tq(x). If
pt is real rooted for all t ∈ IR, then q interlaces p.
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Proof Sketch. Recall that the roots of a polynomial are continuous functions of its coefficients, and
thus the roots of pt are continuous functions of t. We will use this fact to obtain a contradiction.

For simplicity,2 I just consider the case in which all of the roots of p and q are distinct. If they are
not, one can prove this by dividing out their common divisors.

If p and q do not interlace, then p must have two roots that do not have a root of q between them.
Let these roots of p be λi+1 and λi. Assume, without loss of generality, that both p and q are
positive between these roots. We now consider the behavior of pt for positive t.

As we have assumed that the roots of p and q are distinct, q is positive at these roots, and so pt
is negative at λi+1 and λi. If t is very small, then pt will be close to p in value, and so there must
be some small t0 for which pt0(x) > 0 for some λi+1 < x < λi. This means that pt0 must have two
roots between λi+1 and λi.

As q is positive on the entire closed interval [λi+1, λi], when t is large pt will be negative on this
entire interval, and thus have no roots inside. As we vary t between t0 and infinity, the two roots
at t0 must vary continuously and cannot cross λi+1 or λi. This means that they must become
complex, contradicting our assumption that pt is always real rooted.

Lemma 25.7.2. Let p and q be polynomials of degree n and n− 1 that interlace and have positive
leading coefficients. For every t > 0, define pt(x) = p(x)− tq(x). Then, pt(x) is real rooted and

p(x)→ pt(x).

Proof Sketch. For simplicity, I consider the case in which all of the roots of p and q are distinct.
One can prove the general case by dividing out the common repeated roots.

To see that the largest root of pt is larger than λ1, note that q(x) is positive for all x > µ1, and
λ1 > µ1. So, pt(λ1) = p(λ1)− tq(λ1) < 0. As pt is monic, it is eventually positive and it must have
a root larger than λ1.

We will now show that for every i ≥ 1, pt has a root between λi+1 and λi. As this gives us d − 1
more roots, it accounts for all d roots of pt. For i odd, we know that q(λi) > 0 and q(λi+1) < 0.
As p is zero at both of these points, pt(λi) > 0 and pt(λi+1) < 0, which means that pt has a root
between λi and λi+1. The case of even i is similar.

Lemma 25.7.3. Let p0(x) and p1(x) be degree n monic polynomials for which there is a third
polynomial r(x) Such that

r(x)→ p0(x) and r(x)→ p1(x).

Then
r(x)→ (1/2)p0(x) + (1/2)p1(x),

and the latter is a real rooted polynomial.

Sketch. Assume for simplicity that all the roots of r are distinct and different from the roots of p0
and p1. Let µn < µn−1 < · · · < µ1 be the roots of r. Our assumptions imply that both p0 and p1

2I thank Sushant Sachdeva for helping me work out this particularly simple proof.
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are negative at µi for odd i and positive for even i. So, the same is true of their average. This tells
us that their average must have at least n − 1 real roots between µn and µ1. As their average is
monic, it must be eventually positive and so must have a root larger than µ1. That accounts for
all n of its roots.

Proof of Lemma 25.6.1. We prove this by induction on k. Assuming that we have proved it for
k − 1, we now prove it for k. Let u be any vector and let t ∈ IR. Define

pt(x) =
∑

ρ∈{0,1}k
χx

(
A +

k−1∑
i=1

w i,ρiw
T
i,ρi + tuuT

)
.

By Lemma 25.5.1, we can express this polynomial in the form

pt(x) = p0(x)− tq(x),

where q has positive leading coefficient and degree n − 1. By absorbing tuuT into A we may use
induction on k to show that pt(x) is real rooted for all t. Thus, Lemma 25.7.1 implies that q(x)
interlaces p0(x), and Lemma 25.7.2 tells us that for t > 0

p0(x)→ pt(x).

So, we may conclude that for every s ∈ {±1},

∑
ρ∈{0,1}k−1

χx

(
A +

k−1∑
i=1

w i,ρiw
T
i,ρi

)
→

∑
ρ∈{0,1}k

χx

(
A +

k−1∑
i=1

w i,ρiw
T
i,ρi + wk,sw

T
k,s

)
.

So, Lemma 25.7.3 implies that

∑
ρ∈{0,1}k−1

χx

(
A +

k−1∑
i=1

w i,ρiw
T
i,ρi

)
→

∑
ρ∈{0,1}k

χx

(
A +

k∑
i=1

w i,ρiw
T
i,ρi

)

and that the latter polynomial is real rooted.

25.8 Conclusion

The major open problem left by this work is establishing the existence of regular (non-bipartite)
Ramanujan graphs. The reason we can not prove this using the techniques in this lecture is that the
interlacing techniques only allow us to reason about the largest or smallest eigenvalue of a matrix,
but not both.

To see related papers establishing the existence of Ramanujan graphs, see [MSS15b, HPS15]. For
a survey on this and related material, see [MSS14].
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[JL97] Bruce W Jordan and Ron Livné. Ramanujan local systems on graphs. Topology,
36(5):1007–1024, 1997.

[LPS88] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–
277, 1988.

[Mar88] G. A. Margulis. Explicit group theoretical constructions of combinatorial schemes and
their application to the design of expanders and concentrators. Problems of Information
Transmission, 24(1):39–46, July 1988.

[MNS08] Steven J. Miller, Tim Novikoff, and Anthony Sabelli. The distribution of the largest non-
trivial eigenvalues in families of random regular graphs. Experiment. Math., 17(2):231–
244, 2008.

[Mor94] M. Morgenstern. Existance and explicit constructions of q+1 regular Ramanujan graphs
for every prime power q. Journal of Combinatorial Theory, Series B, 62:44–62, 1994.

[MSS14] Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Ramanujan graphs and
the solution of the Kadison-Singer problem. In Proceedings of the International Congress
of Mathematicians, 2014.

[MSS15a] Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing families I:
Bipartite Ramanujan graphs of all degrees. Ann. of Math., 182-1:307–325, 2015.

[MSS15b] Adam W Marcus, Nikhil Srivastava, and Daniel A Spielman. Interlacing families IV: Bi-
partite Ramanujan graphs of all sizes. arXiv preprint arXiv:1505.08010, 2015. appeared
in Proceedings of the 56th IEEE Symposium on Foundations of Computer Science.



Lecture 25: December 3, 2018 25-10

[Obr63] Nikola Obrechkoff. Verteilung und berechnung der Nullstellen reeller Polynome. VEB
Deutscher Verlag der Wissenschaften, Berlin, 1963.

[Piz90] Arnold K Pizer. Ramanujan graphs and Hecke operators. Bulletin of the AMS, 23(1),
1990.


