
Spectral Graph Theory Lecture 26

Bipartite Ramanujan Graphs of Every Degree

Daniel A. Spielman December 9, 2015

Disclaimer

These notes are not necessarily an accurate representation of what happened in class. The notes
written before class say what I think I should say. I sometimes edit the notes after class to make
them way what I wish I had said.

There may be small mistakes, so I recommend that you check any mathematically precise statement
before using it in your own work.

These notes were last revised on December 9, 2015.

These notes are still very rough.

26.1 Overview

In today’s lecture, we will prove the existence of infinite families of bipartite Ramanujan of every
degree. We do this by proving (half) a conjecture of Bilu and Linial [BL06] that every bipartite
Ramanujan graph has a 2-lift that is also Ramanujan.

Today’s theorem comes from [MSS15], and the proof is informed by the techniques of [HPS15]. We
will use theorems about the matching polynomials of graphs that we proved last lecture.

26.2 2-Lifts

We saw 2-lifts of graphs in Problem 4 from Problem Set 2:

We define a signed adjacency matrix of G to be a symmetric matrix S with the same
nonzero pattern as the adjacency matrix A, but such that each nonzero entry is either
1 or −1.

We will use it to define a graph GS . Like the double-cover, the graph GS will have
two vertices for every vertex of G and two edges for every edge of G. For each edge
(u, v) ∈ E, if S(u, v) = −1 then GS has the two edges

(u1, v2) and (v1, u2),
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just like the double-cover. If S(u, v) = 1, then GS has the two edges

(u1, v1) and (v2, u2).

You should check that G−A is the double-cover of G and that GA consists of two disjoint
copies of G.

Prove that the eigenvalues of the adjacency matrix of GS are the union of the eigenvalues
of A and the eigenvalues of S .

The graphs GS that we form this way are called 2-lifts of G.

For your convenience, I now recall the solution to this problem.

Let A+ be the matrix with entries

A+(u, v) =

{
1 if S(u, v) = 1

0 otherwise.

Let A− = −(S −A+). So,

S = A+ −A− and A = A+ + A−.

The adjacency matrix of GS can be expressed in terms of these matrices as

AS def
=

(
A+ A−
A− A+

)
.

Let ψ1, . . . ,ψn be an orthonormal basis of eigenvectors of A of eigenvalues λ1, . . . , λn, and let
φ1, . . . ,φn be an orthonormal basis of eigenvectors of S of eigenvalues µ1, . . . , µn. We will prove
that the vectors

ψ+
i

def
=

(
ψi
ψi

)
and φ−i

def
=

(
φi
−φi

)
are an orthogonal basis of 2n eigenvectors of AS with eigenvalues λ1, . . . , λn and µ1, . . . , µn.

For i 6= j, it is immediately clear that ψ+
i and ψ+

j are orthogonal, and that φ+
i and φ+

j are
orthogonal. Also, for every i and j,

(ψ+
i )Tφ−j =

(
ψi
ψi

)T (
φi
−φi

)
= ψTi φj −ψTi φj = 0.

To show that these are the eigenvectors with the claimed eigenvalues, compute

ASψ+
i =

(
A+ A−
A− A+

)(
ψi
ψi

)
=

(
A+ψi + A−ψi
A−ψi + A+ψi

)
=

(
Aψi
Aψi

)
= λi

(
ψi
ψi

)
,

and

ASφ−i =

(
A+ A−
A− A+

)(
φi
−φi

)
=

(
A+φi −A−φi
−A−φi + A+φi

)
=

(
Sφi
Sφi

)
= µi

(
φi
φi

)
.
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Bilu and Linial [?] conjectured that every d-regular graph G has a signed adjacency matrix S so that
‖S‖ ≤ 2

√
d− 1. This would give a simple procedure for constructing infinite families of Ramanujan

graphs. We would begin with any small d-regular Ramanujan graph, such as the complete graph on
d+ 1 vertices. Then, given any d-regular Ramanujan graph we could construct a new Ramanujan
graph on twice as many vertices by using GS where ‖S‖ ≤ 2

√
d− 1.

We will prove something close to their conjecture.

Theorem 26.2.1. Every d-regular graph G has a signed adjacency matrix S for which the maximum
eigenvalue of S is at most 2

√
d− 1.

We can use this theorem to build infinite families of bipartite Ramanujan graphs, because their
eigenvalues are symmetric about the origin. Thus, if µ2 ≤ 2

√
d− 1, then we know that |µi| ≤

2
√
d− 1 for all 1 < i < n. Note that the 2-lift of a bipartite graph is also a bipartite graph.

26.3 Random 2-Lifts

We will prove Theorem 26.2.1 by considering a random 2-lift, and then applying the method of
interlacing polynomials. In particular, we consider

Eχx(S). (26.1)

Godsil and Gutman [GG81] proved that this is equal to the matching polynomial of G!

Lemma 26.3.1. Let G be a graph and let S be a uniform random signed adjacency matrix of G.
Then,

Eχx(S) = µx [G] .

Proof. Expand the expected characterstic polynomial as

Eχx(S) = Edet(xI − S)

= E
∑
π∈Sn

(−1)sgn(π)x|{a:π(a)=a}|
∏

a:π(a)6=a

(S(a, π(a))).

=
∑
π∈Sn

(−1)sgn(π)x|{a:π(a)=a}|E
∏

a:π(a)6=a

(S(a, π(a))).

As ES(a, π(a)) = 0 for every a so that π(a) 6= a, the only way we can get a nonzero contribution
from a permutation π is if for all a so that π(a) 6= a,

a. (a, π(a)) ∈ E, and

b. π(π(a)) = a.
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The latter condition guarantees that whenever S(a, π(a)) appears in the product, S(π(a), a) does
as well. As these entries are constrained to be the same, their product is 1.

Thus, the only permtuations that count are the involuations. As we saw last lecture, these corre-
spond exactly to the matchings in the graph.

Thus, we know that the largest root of (26.1) is at most 2
√
d− 1. So, all we need to do is to show

that there is some signed adjacency matrix whose largest eigenvalue is at most this bound. We do
this via the method of interlacing polynomials.

To this end, choose an ordering on the m edges of the graph. We can now associate each S with a
vector σ ∈ {±1}m. Define

pσ = χx(S).

The expected polynomial is the average of all these polynomials.

To form an interlacing family, we will form a tree that has the polynomials pσ at the leaves. The
intermediate nodes will correspond to choices of the first couple signs. That is, for k < m and
σ ∈ {±1}k we define

pσ(x)
def
= Eρ∈{±1}n−kpσ,ρ(x).

So, p∅ is the polynomial at the root of the tree. It remains to show that all pairs of siblings in the
tree have a common interlacing.

Polynomials indexed by σ and τ are siblings if σ and τ have the same length, and only differ in
their last index. To show that they have a common interlacing, we recall a few results from Lecture
22.

Lemma 26.3.2. [Lemma 22.3.3] Let A be an n-dimensional symmetric matrix and let v be a
vector. Let

pt(x) = χx(A + tvvT ).

Then there is a degree n− 1 polynomial q(x) so that

pt(x) = χx(A)− tq(x).

Lemma 26.3.3. [Lemma 22.3.2] Let p and q be polynomials of degree n and n−1, and let pt(x) =
p(x)− tq(x). If pt is real rooted for all t ∈ IR, then p and q interlace.

Lemma 26.3.4. [Lemma 22.3.1] Let p and q be polynomials of degree n and n − 1 that interlace
and have positive leading coefficients. For every t > 0, define pt(x) = p(x)− tq(x). Then, pt(x) is
real rooted and

p(x)→ pt(x).

Lemma 26.3.5. Let p0(x) and p1(x) be two degree n monic polynomials for which there is a third
polynomial r(x) that has the same degree as p0 and p1 and so that

p0(x)→ r(x) and p1(x)→ r(x).

Then for all 0 ≤ s ≤ 1,

ps(x)
def
= sp1(x) + (1− s)p0(x)

is a real rooted polynomial.
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Theorem 26.3.6. Let v1, . . . , vk be independently distributed random n-dimensional vectors and
let A be a symmetric n-dimensional matrix. Then, the polynomial

Eχx

(
A +

k∑
i=1

v iv
T
i

)
is real rooted. Moreover, for every vector u in the support of vk, all the polynomials

Eχx

(
A + uuT +

k−1∑
i=1

v iv
T
i

)
have a common interlacing.

Proof. We prove this by induction on k. Assuming that we have proved it for k, we now prove it
for k + 1. Let u be any vector and let t ∈ IR. Define

pt(x) = Eχx

(
A + tuuT +

k∑
i=1

v iv
T
i

)
.

By Lemma 26.3.2, we can express this polynomial in the form

pt(x) = p0(x)− tq(x),

where q has degree n− 1. By induction, we know that pt(x) is real rooted for all t. Thus, Lemma
26.3.3 implies that q(x) interlaces p0(x), and Lemma 26.3.4 tells us that for t > 0

p0(x)→ pt(x).

So, we may conclude that for every vector u ,

Eχx

(
A +

k∑
i=1

v iv
T
i

)
→ Eχx

(
A + uuT +

k∑
i=1

v iv
T
i

)
.

We now apply this result with each u from the support of vk+1 to conclude (via Lemma ) that

Eχx

(
A +

k∑
i=1

v iv
T
i

)
→ Eχx

(
A + vk+1v

T
k+1 +

k∑
i=1

v iv
T
i

)
,

and that the latter polynomial is real rooted.

To apply this theorem to the matrices S , we must write them as a sum of outer products of random
vectors. While we cannot do this, we can do something just as good. For each edge (a, b) of G, let
va,b be the random vector that is δa − δb with probability 1/2 and δa + δb with probability 1/2.
The random matrix S is distributed according to∑

(a,b)∈E

va,bv
T
a,b − dI .

Subtracting dI shifts the roots by d, and so does not impact any results we have proved about
interlacing or real rootedness.
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