18.409 The Behavior of Algorithms in Practice 4/2/2002

Lecture 13

Lecturer: Dan Spielman Scribe: Nitin Thaper

In today’s class, we will:
e Analyze von Neumann'’s algorithm in terms of the condition number [this work is due
to Dantzig and Eppelman-Freund]

e Do a smoothed analysis of the condition number

1 von Neumann’s Linear Programming Algorithm

We consider the following formulation of linear programming:
Given ¢, a1, a9, ...,a, € R
Is ¢ € hull{ai,a2,...,ap} ?

In other words, does there exist z1,x9,...,z, such that:
Z a;T; = C
Y-

z; >0

We would like to find either an z s.t ||c — > a;z;i|]| < € if the linear program is feasible or
find a hyperplane separating ¢ from a1, ao, ..., a, if it is not.

For technical reasons, we’ll assume that the origin lies within the hull.

Recall von Neumann’s algorithm for this program.

1. Let y = Az
2. Choose i maximizing (¢ — y,a; — y)
3. If (¢ —vy,a; —y)/|lc —y|| <|lc —yl| then return infeasible

4. Otherwise set 2’ s.t. y' = Az’ is the point on the line ga; closest to c. Repeat.



The correctness of the algorithm derives from the following:

Claim: If y, c € hull{a1,aq,...,a,} then Ji s.t.
c—Y
i —Y) > [le =yl
Te=o

2 Analysis of the algorithm

Let r =dist(c,bdry(ch{ay,as,...,an}))

Let R = max; ||a;||

Theorem 1 (Eppelman-Freund)

(I) If the linear program is feasible, the algorithm finds x s.t. ||Az — c|| < € in at most
8(R/7)%In(2R/¢) iterations.

(IT) If infeasible, the algorithm discovers this in at most 4(R/r)? iterations.

Proof
Part (I)

Claim: If the linear program is feasible then

Az — ¢ < || Az — cl|y/1 - (==)?
Az’ —cf| < [|Az — ]| (55)

Before proving this claim, let’s see why it implies (I). Observe that

1- (%)2 < Ve-(r/2R)?
Initially,
|1Azo — || < 2R

Therefore after k iterations,

|Azy — c|| < 2RV e—k(r/2R)?

If we let 2RV e k/2R)* < ¢ we get (I).
Proof of claim

(From Fig 1. it is clear that,
dist(c, y') < dist(c, yT)



Figure 1: Getting a bound on dist(c,y’)

By similarity of triangles,
dist(c,yt) A

dist(c,y) A
Therefore,

dist(c,y") < I

dist(c,y) — h
12 _ 12
N l
= /1—(h/l)?
Since, h > r and [ < 2R, it follows that
dist(c,y") < T .,

dist(c,y) — 1= (ﬁ)



Part (IT)
Claim (Dantzig) After k iterations,

2R
Az —cf| < —
vk
Again it’s not hard to show why this implies (II). Since point y cannot go outside the convex

hull, the algorithm will stop once
2R
<r

VE
So the algorithm must terminate after (2R/r)? iterations.

Proof of claim

kth iteration. As in the previous

Let hy be the height (i.e., distance between ¢ and y) after
case, we can show that,

b1 < hgy/1 — (hg/2R)?

We claim that
hi, < 2R/VE

Proof by induction:

Note that ||c|| < R since otherwise it would be trivial to decide infeasibility.
Therefore, h1 < 2R

Let hy, < 2R/Vk

Then

hri1 < hgV/1— (he/2R)?
= 2R/VE\/1-1]k

k-1
= e

2R/VE + 1

IN

3 Condition number of a linear program

Given a linear program, c,a1,as, ..., a,, we define it’s condition number, K, as follows:



If ¢ € hull{ay,as,...,ay,},
K(c,ai1,a2,...,a,) = inf{||Ac|+; |lai|| : c+Ac ¢ hull{ai+Aai,a2+Aay,...,an+Aan}}

In other words, K measures the smallest change to infeasibility. Similarly,

If ¢ ¢ hull{ay,aq,...,a,},
K(c,a1,a9,...,a,) = inf{||Ac||+>; llai|| : c+Ac € hull{a1+Aai,a2+Aas, . ..,an+Aay}}

Claim 2 K(c,a1,a9,...,ap) =T

It is obvious that K(c,a1,az2,...,a,) <
We'll try to prove K(c,a1,a9,...,a,) >
Lemma 3 Let C = hull{a1,az,...,an},C" = hull{a1 + Aay,a2 + Aay, ..., a, + Aay}

1. 7(C,C") < max; | Ag;|
2. v(C,C") < max; || Aa|

3. y(bdry(C), bdry(C")) < max; ||Aa;]|

where v(A, B) = maxze o mingep dist(z, y)

Proof
1. Let x € C
= Jday, a9, ..., 0, S.t.
Yo = 1
(67 Z 0

Let 2’ = aj(a; + Aa;) € C'. Then,

dist(,2') = |3 ailail
(3 i) max || A

masx [ A

IA



2. This is similar to 1.

3. Let z € bdry(C)
Ay € C' s.t. dist(z, z1) < max; | Aa;]]
Similarly, 3z € C' s.t. dist(z,T2) < max; || Aa;|
Therefore, on the line from z; to z2 3 a point on bdry(C') with distance from z at

most max; || Aa|

It takes a little more work to actually use this lemma to prove the fact that K > r.
Intuitively, what it means is that the boundary of the convex hull doesn’t move much by

changing the a;’s. Therefore, it is better to just change c.

In the next lecture, John Dunagan will do a smoothed analysis of the condition number. In

particular, we shall prove the following theorem.

Theorem 4 For c,ai,as,...,a, Gaussian random vectors with variance o and centered
at ¢,a1,02,- .., 0y, such that each has norm <1,
128d'/%¢
Pr(K(c,a1,az,...,a,) <€ < ——

ag

This result actually follows trivially from an earlier result, but with a less intuitive proof.

Theorem 5 (Keith Ball '93) For any convez body K, and Gaussian random vector c,

8d!/4e

Prdist(c,bdry(K)) < €] <



