
18.409 The Behavior of Algorithms in Practice 4/18/02 and 4/23/02

Lecture 15/16

Lecturer: Dan Spielman Scribe: Mikhail Alekhnovitch

Let a1, ..., an be independent random gaussian points in the plane with variance 1. Today

lecture is devoted to the following question: what is the expected size of their convex hull?

Theorem 1 (Renyi-Salanke).

E
a1 ,...,an

[size of C.H.] = Θ(
√

lg n).

In this lecture we will prove a weaker bound O(lg2 n). First we notice, that

Pr[ō 6∈ C.H.] ≤
(

3

4

)n

3

.

This is because the probability that ō 6∈ C.H. of three points is exactly 3/4, so we can divide

all points into n/3 groups of 3, and each group covers o with probability 1/4. Thus, with

exponentially high probability ō ∈ C.H. so we can assume for the rest of the lecture that

this is always the case.

For a vector z consider the edge (aj , ak) of the convex hull that crosses z clockwise. Denote

Pz(ε) = Pr[ang(zōak)) < ε].

Then clearly

E[size of C.H.] ≤ lim
ε→0

2π

ε
Pz(ε) + n

(
3

4

)n

3

.

Denote by CHj,k the event that (aj, ak) is an edge of CH(a1, ..., an) and other points lie

on the origin side of the line ajak. For a fixed vector z, Crossjk is the event that the edge

(aj , ak) crosses z clockwise.

Pz(ε) =
∑

j,k

Pr

[

CHj,k ∧ Crossj,k

]

· Pr

[

ang(zōak) < ε|CHj,k ∧ Crossj,k

]

=

1
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Figure 1:

= Pr

[

ang(zōak) < ε|CHj,k ∧ Crossj,k

]

for any choice of j and k (the latter equation follows because of the symmetry). Assume

that (aj , ak) crosses z. It will be convenient to choose the coordinates θ, t, l, r instead of

aj , ak (see figure 1). Let α = ang(zoak). Then the probability Pz(ε) can be expressed as:

∫

t,θ

(

∫

i6=j,k

[CHj,k]

)

·
∫

l,r≥0

(

[α < ε]

)

(l + r)sin(θ)µ(aj)µ(ak) dθ dt dl dr

∫

t,θ

(

∫

i6=j,k

[CHj,k]

)

·
∫

l,r≥0

(l + r)sin(θ)µ(aj)µ(ak) dθ dt dl dr

We need the following claim that estimates the maximal norm of n gaussian points in the

plane.

Claim 2.

Pr

[

max
i

||ai|| >
√

8 lg n

]

<
1

n
.

In the assumption of the claim, we can bound t ≤ √
8 lg n; r, l ≤ 2

√
8 lg n. Once again we

can assume that this is always the case (it can change the expectation at most by 1). When

α is sufficiently small,

α >
1

2
tan(α) =

1

2
· r sin(θ)

t + r cos(θ)
≥ r sin(θ)

6
√

8 lg n
.

Thus
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E[size of C.H.] ≤ lim
ε→0

2π

ε
Pz(ε) + n

(
3

4

)n

3

≤ lim
ε→0

2π

ε
Pr

[
r sin(θ)

6
√

8 lg n
< ε

]

+ n

(
3

4

)n

3

+ 1.

We estimate the latter probability using the Combination Lemma from Lecture 19. Namely,

we show that

Pr[r < ε] < O(
√

lg n · ε)

Pr[sin(θ) < ε] = O(lg n · ε2).

Thus, the following two lemmas imply the theorem:

Lemma 1. ∀t ≤ √
8 lg n

∫

r≥0

[r < ε](l + r)µ(ak) dr

∫

r≥0

(l + r)µ(ak) dr
≤ O(

√

lg n · ε) (1)

Lemma 2. ∀t ≤
√

8 lg n, l, r ≤ 2
√

8 lg n

∫

θ

[sin(θ) ≤ ε]

(

∫

i6=j,k

[CHj,k]

)

sin(θ)µ(aj)µ(ak)

∫

θ

(

∫

i6=j,k

[CHj,k]

)

sin(θ)µ(aj)µ(ak)

≤ O((lg n · ε)2) (2)

Proof of Lemma 1.

Let uθ be a unit vector along ajak (and assume that z is a unit vector). Look at

µ(ak) = µ(tz + ruθ) = e−
d
2

2 e−
(s+r)2

2 ,

where d and s are defined at figure 2.

Proposition 1. For s > 1, r ≤ 1
s

e−
s
2

2

e−
(s+r)2

2

≤ e2

As a corollary, for 0 < r1 < r2 < 1√
8 lg n

holds

µ(tz + r1uθ)(l + r1)

µ(tz + r2uθ)(l + r2)
≤ e2.
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Proposition 2. Let f be s.t. for 0 < x1 < x2 < K and
f(x1)
f(x2) < c. Then

ε∫

0

f(x) dx

K∫

0

f(x) dx

≤ εc

K
.

Proof. One can split the interval [0,K] into K
ε

subintervals of length ε. The integral of f

on each subinterval is lower bounded by c−1
ε∫

0

f(x) dx, thus
K∫

0

f(x) dx ≥ K
ε
c−1

ε∫

0

f(x).

It is sufficient to choose K = 1/
√

8 lg n to finish the proof of Lemma 1.

Proof of Lemma 2.

Let

g(θ) =





∫

a

[CHj,k]
∏

µ(ai)





︸ ︷︷ ︸

g1(θ)

sin(θ)µ(tz + ruθ)µ(tz − luθ)
︸ ︷︷ ︸

g2(θ)

In order to estimate the ratio (2) it will be sufficient to confine ourselves to 0 < θ < 1
16 lg n

in the denominator. For 0 < θ1 < θ2 < π
2 holds

g1(θ1)

g1(θ2)
≤ 1.
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To see this, notice that g1(θ) is the probability of the rest of the points ai lying on the

origin side of the line ajak. This probability decreases when the distance of the line ajak

to ō decreases, thus g1(θ) is monotone.

As in Proposition 1, for t <
√

8 lg n; l, r < 2
√

8 lg n; 0 < θ1 < θ2 < 1
16 lg n

holds

µ(tz + ruθ1)

µ(tz + ruθ2)
< e2,

which implies for 0 < θ1 < θ2 < 1
16 lg n

g2(θ1)

g2(θ2)
≤ e2.

Finally, for small values of θ, sin(θ) ∼ θ, so for 0 < θ1 < θ2 < 1
16 lg n

g(θ1)

g(θ2)
≤ 2e4 θ1

θ2
.

The following fact is the analog of Proposition 2:

Proposition 3. If for x1 < x2
f(x1)
f(x2) ≤ cx1

x2
then

ε∫

0

f(x) dx

K∫

0

f(x) dx

≤ 4c
( ε

K

)2

It is left to set K = 1
16 lg n

. The lemma is proven.

At the end we justify the change of variables (aj , ak) → (l, r, t, θ) that we made in the

proof and compute the Jacobian of this transform. Let a = aj and b = ak be two points

in R2, specified by four parameters l, r, h, θ as shown on figure 1. By the straightforward

calculation,

ax = l sin(θ)

ay = t − l cos(θ)

bx = r sin(θ)

by = t + r cos(θ)
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The Jacobi matrix

J =

∂ax ∂ay ∂bx ∂by








0 0 sin(θ) cos(θ)

sin(θ) − cos(θ) 0 0

l cos(θ) l sin(θ) r cos(θ) −r sin(θ)

0 1 0 1









∂r

∂l

∂θ

∂t

and the Jacobian

|det J | = (l + r) sin(θ),

hence

da db = (l + r) sin(θ) dr dl dθ dt .

6


