18.409 The Behavior of Algorithms in Practice 4/18/02 and 4/23/02

Lecture 15/16

Lecturer: Dan Spielman Scribe: Mikhail Alekhnovitch

Let a4, ...,a, be independent random gaussian points in the plane with variance 1. Today

lecture is devoted to the following question: what is the expected size of their convex hull?

Theorem 1 (Renyi-Salanke).

E [size of C.H] = 0(y/1gn).

at,...,an

In this lecture we will prove a weaker bound O(lg?n). First we notice, that

Prlo ¢ C.H] < G) "

This is because the probability that 6 ¢ C.H. of three points is exactly 3/4, so we can divide
all points into n/3 groups of 3, and each group covers o with probability 1/4. Thus, with
exponentially high probability 0 € C.H. so we can assume for the rest of the lecture that

this is always the case.

For a vector z consider the edge (aj,ay) of the convex hull that crosses z clockwise. Denote

P,(e) = Prlang(zoay)) < €.

Then clearly

2 3\ 38
E[size of C.H.] < lim —WPZ(E) +n <—> .
e—0 € 4
Denote by C'Hjj, the event that (aj,ay) is an edge of CH(ay,...,a,) and other points lie
on the origin side of the line aja;. For a fixed vector z, Cross;j is the event that the edge

(a;,ay) crosses z clockwise.

P,(e) = ZPr [C’Hj7k A Crossj,k} - Pr [ang(zéak) < €|CHj, N\Cross;i| =
j?k



AZ

Figure 1:

=Pr [ang(zéak) < €|CHj, N Cross;

for any choice of j and k (the latter equation follows because of the symmetry). Assume
that (aj,ar) crosses z. It will be convenient to choose the coordinates 6,¢,1,r instead of

aj,ay (see figure 1). Let a = ang(zoay). Then the probability P,(e) can be expressed as:

J < J [C’H]k]> J <[a<e]> (I +7r)sin(0)p(a;)p(ay) dd dt dl dr

£,0 \isj.k 1,r>0

/ ( J [OvakJ>- [ U+ r)sin@)p(az)p(ax) o dt di dr

tve Z;é]vk l7r20

We need the following claim that estimates the maximal norm of n gaussian points in the

plane.

Claim 2.

1
Pr [max||ai||>\/81gn < —.
7 n

In the assumption of the claim, we can bound t < +/8lgn; r,l < 24/8lgn. Once again we
can assume that this is always the case (it can change the expectation at most by 1). When
« is sufficiently small,

1 rsin(9) - 7 sin(6)

2 t+rcos(d) ~ 68lgn’

1
a>g tan(a) =

Thus



E[size of C.H.] < lim 2—7TPZ(6) +n <z> < lim n Pr [rsm(@) < e] +n <Z> + 1.

e—0 €

6v/8lgn

e—0 €

We estimate the latter probability using the Combination Lemma from Lecture 19. Namely,

we show that

Pr[r < e <O(/Ign-e)

Prlsin(f) < ¢] = O(lgn - €2).

Thus, the following two lemmas imply the theorem:

Lemma 1. Vt < /8lgn

[ [r <€l +r)uay)dr

r>0
[ (0 +7r)pu(ay) dr <O0(\lgn )
r>0

Lemma 2. Vt < /8lgn, I,r <2/8lgn

[lsin(0) < ¢ < f [CHj,kQ sin(0)u(a;)pa(a)
’ 7 < 0((gn o))

f( / [CHj,k]> sin(0)p(a;)p(ax)

0 \i#jk
Proof of Lemma 1.

Let ug be a unit vector along aja; (and assume that z is a unit vector). Look at

a2 (s+r)?

plag) = p(tz +rug) = e~ ze” 2,

where d and s are defined at figure 2.

Proposition 1. For s > 1, r < %

As a corollary, for 0 < 1 < 19 < —=— holds

V8lgn

w(tz + riug)(l+ 1)

< 2.
wu(tz +roug)(l +19) — €
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Figure 2:

Proposition 2. Let f be s.t. for 0 < z1 < x9 < K and % < c. Then

1
z2

< —.
- K

Proof. One can split the interval [0, K] into % subintervals of length e. The integral of f

€

K €
on each subinterval is lower bounded by ¢! [ f(z) dz, thus [ f(x)dz > %c_l [flx). O
0 0 0

It is sufficient to choose K = 1/4/8lgn to finish the proof of Lemma 1.m

Proof of Lemma 2.

Let

o60) = | [iCH I []ntai) | sin(6) ez + ruo)tes — tuo)
a 92(6)

~~

91(0)

In order to estimate the ratio (2) it will be sufficient to confine ourselves to 0 < 6 < @

in the denominator. For 0 < ¢ < f2 < 5 holds




To see this, notice that g;(f) is the probability of the rest of the points a; lying on the
origin side of the line a;a,. This probability decreases when the distance of the line ajay

to o0 decreases, thus g1 (f) is monotone.

As in Proposition 1, for t < 1/8lgn; [,r < 24/8lgn; 0 < ; < Oy < @ holds

t
pltz +rug) _
(tz + rug,)

which implies for 0 < 67 < 65 < m

2(61
g2(02)

Q
~—

< 2.

Finally, for small values of 6, sin(f) ~ 6, so for 0 < 0; < 62 < m

g(01) 161
< 2e*—.
g(02) = 62

The following fact is the analog of Proposition 2:

Proposition 3. If for x1 < xo ;Ei;g < ci—; then

It is left to set K = @. The lemma is proven.m

At the end we justify the change of variables (aj,a;) — (I,r,t,0) that we made in the
proof and compute the Jacobian of this transform. Let a = a; and b = a; be two points
in R2, specified by four parameters [, r, h, 0 as shown on figure 1. By the straightforward

calculation,

a; = lsin(f)

ay =1t —1lcos(0)
by = rsin(0)

by =t +rcos(f)



The Jacobi matrix

and the Jacobian

hence

Oay Oay Ob,, 0b,
0 0 sin(0) cos(6)
sin(d) —cos(6) 0 0
lcos(f) Isin(f) rcos(d) —rsin(0)

0

1 0 1

|det J| = (I + r)sin(0),

dadb= (I +r)sin(@)dr dl db dt.
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