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Lecture 17

Lecturer: Dan Spielman Scribe: Steve Weis

Shadow Vertex Rule Review

To briefly review the shadow vertex rule, suppose we have a convex polytope given as the

convex hull of a collection of points, an objective function and an initial vector. Moreover,

assume that we know the facet of the polytope pierced by the ray through the initial

vector. The algorithm continuously modifies the initial vector until it becomes the objective

function, all the while tracing the point where the ray through the vector pierces the hull

of the polytope. Of course, when one actually implements the algorithm, it takes discrete

steps jumping from facet to facet of the convex hull. We need to try and prove a bound on

the number of facets this algorithm will crawl over.

In order to show this, we will look at an evenly distributed collection of M rays in the plane

spanned by the initial vector and the objective funciton, and count the number of times two

adjacent rays pierce different facets. The probability this occurs is upper bounded by c
M .

To bound the constant c in this probability, we consider the cone of largest angle around

a ray that only pierces the facet the ray pierces, and prove that the probability that this

angle is less than ε is at most cε.

Dan’s Favorite LP

Given an objective function c and a convex hull CH(0, a1, . . . , an), maximize α such that

α · c ∈ CH.

Let Opt 4z (a1, . . . , an) denote set of indices of the corners of the simplex on the convex

hull pierced by the ray through z.

Theorem 1. Let c and c’ be vectors. Let a1, . . . , an be Gaussian random vectors centered

at â1, . . . , ân, which have norm ≤ 1 and variance σ2. Then:

E[| ∪θ Opt4c sin θ+c′ cos θ (a1, . . . , an)|] ≤ poly(n, d,
1
σ

)

This expected value is the number of facets which pass through the plane generated by

the objective function vector and the initial vector. Consider (z1, . . . , zm) regularly spaced

vectors in the plane defined by span(c, c′). We need to measure the probability two adjacent

rays do not pierce the same simplex, i.e Pr[Opt4zi 6= Opt4zi+1 ]. By calculating this
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probability we can take the limit as we increase the number of rays to get the expected

value from Theorem 1:

E[| ∪θ Opt4c sin θ+c′ cos θ (a1, . . . , an)|] = lim
M→∞

∑
i

Pr[Opt4zi 6= Opt4zi+1 ]

Definition 2.

ang(z, ∂ 4 (aπ1 , . . . , aπd
)) = min

x∈∂4(aπ1 ,...,aπd
)
ang(xOz)

angz(a1, . . . , an) = ang(z, ∂Opt4z (a1, . . . , an))

This definition refers to the angle of a ray with relation to a point on a simplex. Note that

where ang(xOz) is the angle between the rays x and z at the origin. If Opt4zi 6= Opt4zi+1

then angzi ≤ 2π
M , so: Pr[Opt4zi 6= Opt4zi+1 ] ≤ Pr[angzi(a1, . . . , an) ≤ 2π

M ].

Definition 3. For any z, Pz(ξ) = Pr[angz(a1, . . . , an) ≤ ξ]

Using these definitions, we can bound the expected value from Theorem 1:

lim
M→∞

∑
i

Pr[Opt4zi 6= Opt4zi+1 ] ≤ max
z

lim
ξ→0

2π

ξ
Pz(ξ)

We are going to make a very brute force argument about the value of Pz(ξ).

Claim 4. For any z,

Pz(ξ) =
∑

π1,...,πd

Pr[opt4z = {π1, . . . , πd}
∧

ang(z, δ 4 (aπ1 , . . . , aπd
)) ≤ ξ] =

∑
π1,...,πd

Pr[opt4z = {π1, . . . , πd}]Pr[ang(z, δ 4 (aπ1 , . . . , aπd
))|opt4z = {π1, . . . , πd}]

The second line is derived from the basic law of conditional probability. It will suffice to

bound the second term only.

Definition 5. CHπ1,...,πd
= the event aπ1 , . . . , aπd

are on the convex hull. That is, ∃||ω|| =
1, r ≥ 0 such that < ω, aπi >= r for i=1,...,d; ∀j /∈ {π1, . . . , πd} < ω, aπj >≤ r

Definition 6. Crossz,π1,...,πd
= event that the ray through z crosses 4(aπ1 , . . . , aπd

)
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Note that opt4z = {π1, . . . , πd} if and only if CHπ1,...,πd
and Crossz,π1,...,πd

.

These definitions suggest a change of variables. Replace aπ1 , . . . , aπd
with ω, r, bπ1 , . . . , bπd

where aπ1 , . . . , aπd
lie in on the plane specified by ω and r, and bπ1 , . . . , bπd

indicate where

on that plane aπ1 , . . . , aπd
lie. Thus, bπi ∈ Rd−1 while aπi ∈ Rd. Note that we originally

had d2 variables. There is a one-to-one correspondence with the new variables since bπ

contributes d(d − 1) variables, ω contributes (d − 1) and r is a single variable. Since we

have a change of variables, we need to compute its Jacobian. See web page for this lecture

for some references.

Dan’s Aggravation

To be more concrete, we need to indicate how aπ1 , . . . , aπd
are computed from ω, r, bπ1 , . . . , bπd

.

Fix some vector z. Choose a basis for the plane in Rd orthogonal to z through the origin.

The points bπ1 , . . . , bπd
lie in this plane. Now, for ω = z, r ≥ 0 we can use aπi=bπi + rz. To

handle other values of ω, let Tω be the orthogonal linear transformation that maps z to ω

and is the identity on the orthogonal space. In general, we will apply this as follows:

aπi = Tω(bπi + rz) = Tω(bπi) + rz

There is one catch in that this is not well-defined for ω = −z. But, this is a set of measure

zero, so it does not matter. Now we can define the derivatives in each variable: The

Jacobian of this change of variables is the subject of a theorem of Blaschke: daπ1 ·. . .·daπd
=

V ol(4(bπ1 , . . . , bπd
)) · dr · dω · ·dbπ1 · . . . · dbπd

. This allows us to define the second term of

Claim 4:

Pr[ang(z, δ 4 (aπ1 , . . . , aπd
))|opt4z = {π1, . . . , πd}] =∫

ω,r

 ∏
j /∈{π1,...,πd}

∫
aj

[< aj , ω >≤ r]µj(aj)

 ·

∫
bπ1 ,...,bπd

[Crossz] · [ang(z, δ 4 (aπ1 , . . . , aπd
) ≤ ξ] · µ(aπ1) · . . . µ(aπd

) · V ol(4(aπ1 , . . . , aπd
))

Let νω,r
πi (bπi) = µπi(Tω(bπi) + rω). We want to understand ang(z, δ 4 (aπ1 , . . . , aπd

), which

is the angle of incidence between the plane and a vector. Let zω,r and θ be the point and

angle where z intersects the plane. Let x be a boundary point of 4(aπ1 , . . . , aπd
) and α

be the angle ang(x0z). Let T = dist(O, zω,r) and δ = dist(x, zω,r). From all this, we can

arrive at the following bound: α ≈ tan(α) = δ sin θ
T−δ cos θ ≥

δ sin θ

2(1+4
√

d log n)
. This can replace the

[ang . . .] term in the above integral.
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Claim 7. Pr[∃i||ai|| > 4
√

d log(n)] ≤ e−4d log n

There are at most
(
n
d

)
facets and

(
n
d

)
e−4d log n ≤ e−3d log n. So, assuming max ||ai|| ≤√

(d log(n)), our estimate is off by at most 1.

4


