18.409 The Behavior of Algorithms in Practice

4/30/2002

Lecture 18

Lecturer: Dan Spielman Scribe: Stephan Kalhamer

1 left off:

 $Prob[ang(z, \delta\Delta(a_{\pi_1},...,a_{\pi_d})) < \epsilon \mid opt\Delta_2(a...a_n) = \pi_1...\pi_d]$ where $a...a_n$ are the dist. according to $\prod_{i=1}^n \mu_i(\alpha_i)$, μ_i are Gaussian, $var\sigma^2 \leq 1$, center norm ≤ 1 .

2 key idea:

change of variables

$$a_{\pi_1} \dots a_{\pi_d} \to \parallel w \parallel = 1, r \geq 0 \text{ such that } \langle w, a_{\pi_i} \rangle = r$$

$$b_{\pi_1} \dots b_{\pi_d}$$

be local coords. of $a_{\pi_1} \dots a_{\pi_d}$ on that plane.

observe that unlikely $||a_i|| \ge 1 + 4\sqrt{d \log n}$ so let $\Gamma = 1 + \sqrt{d \log n}$.

So can say:

$$ang(z, \delta\Delta(a_{\pi_1}, \dots, a_{\pi_d})) \ge \frac{dist(z^{w,r}, \delta\Delta(b_{\pi_1}, \dots, b_{\pi_d})) < z, w > 0}{3r}$$

Let $z^{w,r}$ be a point along ray direction on plane w,r, need to bound:

$$Pr_{w,r,b_{p_1},...,b_{p_d}}[\frac{dist(z,\delta\Delta(b_{\pi_1},\ldots,b_{\pi_d})) < z,w>}{3r} < \epsilon]$$

where $w, r, b_{p_1}, \ldots, b_{p_d}$ have density:

$$\left[\prod_{j \in \pi_1 \dots \pi_d} \int_{a_j} [\langle w, a_j \rangle \leq r] \mu_i(a_j)\right] \left(\prod_{j=1}^d \mu_{\pi_i}(a_{\pi_i})\right) \left[z^{w,r} \in \Delta(b_{\pi_1}, \dots, b_{\pi_d})\right] Vol(\Delta(b_{\pi_1}, \dots, b_{\pi_d}))$$

(suitably re-normalized)

for today show: $\forall z \forall w, r \text{ such that } || z^{w,r} || \leq \Gamma$

$$Pr_{b_1}, \ldots, b_d[dist(z^{w,r}, \delta\Delta(b_{\pi_1}, \ldots, b_{\pi_d})) < \epsilon] < \frac{16e^4\Gamma^2(1+\Gamma)}{\sigma^4}\epsilon$$

Where $b_{\pi_1}, \ldots, b_{\pi_d}$ have density $(\prod_{i=1}^d \mu \pi_i(a_{\pi_i})) Vol(\Delta(b_{\pi_1}, \ldots, b_{\pi_d})) [z^{w,r} \in \Delta(b_{\pi_1}, \ldots, b_{\pi_d})]$ where the first factor of the very last formula is in terms of b_{π_i} s Gaussian each. $Var\sigma^2$ center norm ≤ 1 .

Theorem 1. re-stated

Let $b_1 \dots b_d$ be points in \Re^{d-1}

with density $\prod_{i=1}^{d} \mu_i(b_i) Vol(\Delta(b_1, \ldots, b_d))[z \in \Delta(b_1, \ldots, b_d)]$ where $\parallel z \parallel \leq \Gamma, \mu_i$ Gaussian, $var\sigma^2 \leq 1$, norm center ≤ 1 .

What is $Pr[dist(z, \delta\Delta(b_1, \ldots, b_d)) < \epsilon]$?

Two steps:

- 1. Show b_1 unlikely near aff. $(b_1 \dots b_d)$
- 2. Given b_1 is far from aff. $(b_1 \dots b_d)$, unlikely too close to aff. $(b_1 \dots b_d)$. (where aff. denotes an affine line)

to 1:
$$Pr[dist(b_1, aff.(b_2...b_d)) < \epsilon] < e^2(\frac{d(1+\Gamma)\epsilon}{\sigma^2})^3$$

to 2:
$$Pr[dist(z, aff.(b_2 \dots b_d)) < \epsilon dist(b_1, aff.(b_2 \dots b_d)) < \frac{2e^3d(2p)^2\epsilon}{\sigma^2}]$$

These imply Theorem 1. We use change of variables to show 1:

Make z the origin (for notational simplicity), so now the distances have centers of norm $\leq \Gamma + 1$.

Let $||\tau|| = 1, t \ge 0$ be such that $\langle b_i, \tau \rangle = t$ for i = 1..d and let $c_2..c_d$ be the local coords. of the b_i s in that plane. Jac is $Vol(\Delta(c_2..c_d))$

$$dist(b, aff.(b_2..b_d)) = t - < b_1, \tau >$$

Let $l = -\langle b_1, \tau \rangle$, let c_1 be the projection of b_1 onto the plane spee by τ, t .

 $Pr_{\tau,t,l,c_1,\ldots,c_d}[(l+t)<\epsilon]$ with density

$$(\prod_{i=1}^{d} \mu_i(b_i)) Vol(\Delta(b_1 \dots b_d)) [O \in \Delta(b_1 \dots b_d)] Vol(\Delta(c_2 \dots c_d))$$

where
$$Vol(\Delta(c_2...c_d))$$
 equals $(l+t)Vol(\Delta(c_2...c_d)) \sim (1+\alpha)t$ (*)

Note: for any $c_1, c_2, \ldots, c_d, l, t$ such that $O \in \Delta(b_1, \ldots, b_d)$ if mult. l, t by const.

 \rightarrow cl ct still have $O \in \Delta(b_1, \ldots, b_d)$.

let $l = \alpha t$ gives Jacobian $\left| \frac{\delta l}{\delta \alpha} \right| = t$

$$(*) \sum \max_{c_1,\dots,c_d,t,\alpha,s.t.O \in \Delta(b_1,\dots,b_d)} Pr[(1+\alpha)t < \epsilon]$$

where t has density

 $(\prod_{i=1}^d \mu_i(b_i))t^2(,$ near O in small region looks like a constant)

We will actually bound

$$Pr[tmax(1, \alpha) < \epsilon] \ge Pr[(1 + \alpha)t < \epsilon]$$

$$b_2 = (t, c_2)$$

$$b_1(-\alpha t, c_1)$$

can write this way:

 μ is centered at points of norm $\leq 1+\Gamma$

So, we claim for $0 \leq t \leq \frac{\sigma^2}{d(1+\Gamma)}$

 $\mu_i(t,b_i)$ varies by at most $e^{\frac{2}{d}}$ (former, we showed similar with no ds)

For
$$0 \le t \le \frac{\sigma^2}{d(1+\Gamma)}$$

 $b\mu_1(-\alpha t, b_1)$ varies by at most $e^{\frac{2}{d}}$, setting $t_0 = \frac{\sigma^2}{d(1+\Gamma)}min(1, \frac{1}{\alpha})$ then

$$\frac{\max_{0 \le t \le t_0} \prod_{i=1}^d \mu_i(b_i)}{\min_{0 \le t \le t_0} \prod_{i=1}^d \mu_i(b_i)} \le \epsilon^2 \ (**)$$

So by the following Proposition 1, we have

$$\Pr[t<\epsilon t_0] \leq e^2\epsilon^3$$
 or $\Pr[tmax(1,\alpha) < \frac{\epsilon\sigma^2}{d(1+\Gamma)}] \leq e^2\epsilon^3$

$$\Rightarrow Pr[tmax(1,\alpha) < \epsilon] \le e^2(\frac{d(1+\Gamma)}{\sigma^2}\epsilon)^3$$

Proposition 1. Let t be distributive according to $f(t)t^2$ where

$$\frac{\max_{0 \le t \le t_0} f(t)}{\min_{0 \le t \le t_0} f(t)} \le \epsilon^2$$

then

$$Pr[t < \epsilon t_0] \le e^2 \epsilon^3$$

Pf 1.
$$Pr[t < \epsilon t_0] \le \frac{Pr[t < \epsilon t_0]}{Pr[t < t_0]} = \frac{\int_{t=0}^{\epsilon t_0 f(t) t^2}}{\int_{t=0}^{t_0 f(t) t^2}} \le \frac{\max_{0 \le t \le \epsilon t_0} f(t)}{\max_{0 \le t \le t_0} f(t)} \frac{\int_{t=0}^{\epsilon t_0} t^2}{\int_{t=0}^{t_0} t^2} \le e^2 \epsilon^3$$