Lecture 9

Lecturer: Dan Spielman

Scribe: Stephan Kalhamer

1 Well shaped mesh

Split a partition space into simplices and get a graph on vertices:

 $aspect ration(\Delta) = \frac{largest edge}{\min_{vertices} \text{distance vertices to plane through opponent face}} \geq 1$ well - shaped = bounded aspect ratio

History:

Miller - Thorsten

Teng - Vavasis (K-nearest neighbour graph)

Every k-nearest neighbour graph in \Re^d is a $k\tau_{\alpha}$ - ply intersection graph

Definition 1. A k-ply intersection graph comes from a set of balls $B_1,...,B_n \in \mathbb{R}^d$ such that no point lies in the interior of more than k balls.

 $(i,j) \in E \text{ if } B_i \cap B_j \neq \emptyset$

 $\tau_{\delta} = kissing \ number \ in \ \Re^d$

(max. number of unit balls through another unit ball: $\tau_2 = 6$)

(planar is a 1-ply intersection graph)

An α -overlap graph is a set of interior disjoint balls $B_1, \dots B_n$:

 $(i,j) \in E \text{ if } \alpha B_i \cap B_j \neq \emptyset \text{ and } B_i \cap \alpha B_j \neq \emptyset$

Theorem 1. MTTV

Every well shaped mesh is a bounded degree subgraph of an α -overlap graph.

Pf 1. -

Claim 1. for aspect ratio $\leq \beta$, then graph has degree $\leq f(\beta)$. Can lower bound angle of a corner of a simplex, so can upper bound number of simplices at a vertex.

1

For every vertex, locate a ball at that vertex of radius 0.5 the shortest edge leaving that vertex.

Need to show:

 $\frac{longest \ edge \ on \ vertex}{shortest \ edge \ on \ vertex} \ is \ bounded \leq \beta^{number} \ of \ neighbours \ of \ vertex$

Look at a band matrix with bandwith b:

For an ordering $\tau: V \to [1..n]$ bandwith of G under τ

$$\Phi(G,\tau) = \min_{b} |\tau(u) - \tau(v)| > b$$
$$\Rightarrow (u,v) \notin E$$

Bandwith of G is $\min_{\tau} \Phi(G, \tau) = \Phi(G)$

Cuthill - Mc Kee used BFS: outputs τ such that:

$$d(\tau^{-1}(1)) < d(\tau^{-1}(1), u)$$
$$\Rightarrow \tau(u) < \tau(v)$$

G(n,p) graph on n noodes in which each edge (i,j) is chosen to be in graph with prob p indepently.

Theorem 2. For almost all $G \leftarrow G(n, p)$

$$\Phi(G) \ge n - 4\log_{\frac{1}{1-n}}n$$

Pf 2. Claim follows if $\Phi(G) \ge n - 2k$: $\exists U_1, U - 2 : |U_1| = |U_2| = U$ no edges between U_1 and U_2 . Set $k = 2 \log_{\frac{1}{1-p}} n$:

$$\binom{n}{k}\binom{n-k}{k}(1-p)^{k^2} \le (\frac{e^n}{n})^{2^k}(\frac{1}{n^2})^k = \binom{e}{k}^2 k \to 0$$

Turner: define $G_b(n,p)$ same as G(n,p), but not edges for |i - j| > b (Bandmatrix)

1) $\Phi(G_b(n,p)) \ge b - 4 \log_{\frac{1}{1-n}} b$ almost always

2) A level-set heuristic returns τ at $\Phi(G,\tau)\leq 3(1+\epsilon)b\;\forall\epsilon>0$ for almost all $G\leftarrow G_b(n,p)$

to proof 1) we use the same arguments as before, 2): Let $V_i = u : dist(u, 1) = i$

Theorem 3. for almost all $AA: G \leftarrow G_b(n,p) \ \forall \epsilon > 0, b \ge (1+\epsilon) \log_{\frac{1}{1-n}^2} n$

$$|V_1| \le (1+\epsilon)pb$$
$$|V_2| \le (1+\epsilon)(2-p)b$$
$$i \ge 3 : |V_i| \le \frac{1+\epsilon}{b}$$
$$\Phi(G,\tau) \le \max_i |V_i \cup V_{i+1}|$$

Lemma 1. $AA : G \leftarrow G_b(n,p) \ \forall u, v \ such \ that \ | \ u - v \ | \leq 2b - \alpha \ where \ \alpha = (1 + \epsilon) \log_{\frac{1}{1-p}^2} n \ exists \ a \ path \ with \ length \leq 2 \ between.$

to prove this show:

The number of possible neighbours of u and r are $2b - |u - r| \ge \alpha$.

$$\sum_{i=\alpha}^{2b-1} n(1-p^2)^i = n(1-p^2)^{\alpha} \sum_{i\geq 0} (i-p^2)^i = nn^{-1-\epsilon} - p^{-2} = n^{-2}p^{-2} \to 0$$

Lemma 2. Let $l_i = \min_i(V_i), r_i = \max_i(V_i)$. $\forall i \ge 3r_i - l_i \le b + \alpha$, follows from:

Lemma 3. $\forall i \ge 3r_i - 3b \le r_{i-3} \le l_i - (2b - \alpha)$