
18.413: Error-Correcting Codes Lab April 1, 2004

Lecture 14

Lecturer: Daniel A. Spielman

14.1 Related Reading

• Fan, pp. 97–105.

14.2 Convolutional Codes

This lecture, and small project 3, is about convolutional codes. Convolutional codes are classical,
and have proved to be among the most useful codes in practice. We will be able to perform precise
belief propagation on convolutional codes. Convolutional codes are to Turbo codes what parity
check codes are to LDPC codes, with some modifications of course.

Convolutional codes are generated by devices that look like this:

+

+

+

Figure 14.1: A convolutional encoder.

To interpret these diagrams, I should say that a square box is a delay, and a “+” node outputs the
parity of its inputs. One may assume that these encoders are initialized with 0’s in both of their
memories/delays. At each time step, one bit will come in on the arrow from the left, and each
delay will output the bit it has stored and take in a new bit. The filled-in circles represent points
that forward their input to both of their outputs. We assume that all of these operations occur at
once.

For example, consider the second encoder, assume that it starts with 0’s in both delays, and that
a 1 comes in from the left-hand-side. Then, we can immediately see that a 1 will go out the top
output on the right-hand-side. The input 1 will also go down, until it encounters the left-most

14-1



Lecture 14: April 1, 2004 14-2

+

+

+

Figure 14.2: A recursive convolutional encoder, and the one we will use in small project 3

parity gate. At this point, it will be xored with another input, which we can see is the parity of
the bits stored at the delays. Since both of these are zeros, the xor will be 1, and a 1 will be passed
into the left-most delay. This 1 will also pass to the bottom parity gate, where it will be xored
with the output of the right delay, which is 0. So, the bottom output on the right will be a 1. One
should also note that the right delay will store the output of the left delay, which is a 0.

By going through such arguments for all possible states of the delays and each input, one can
figure out what the device will output for each possible input. We see that the device is a finite
automaton, which can be depicted as in Figure 3.

00

10

11

01

1/111/11

0/01 0/01

1/10

0/00

1/10

0/00

Figure 14.3: The finite automaton for the encoder in Figure 2. Each state is labeled with the Each
transition has a label of the form w/v1v2, where w represents the input bit and v1 and v2 represent
the two output bits. In this case, we always have w = v1.

The second encoder has the nice property that its input appears among its outputs. Such encoders



Lecture 14: April 1, 2004 14-3

are called systematic. However, the second encoder has the complication that it involves feedback.
In contrast, all the arrows in the first encoder move forwards. For conventional uses of convolutional
codes, it is often preferable to use codes without feedback. However, for the construction of Turbo
codes, we will need to use systematic codes with feedback.

14.3 Trellis Representation

On any input, the sequence of state transitions and outputs of a convolutional encoder can be
represented as a path through a trellis, which looks like this:

Figure 14.4: A trellis might make a nice tatoo.

To blow this up, each trellis section looks like this:

00

10

01

11

01

10

00

11

0/0

1/1 1/1

1/0

0/1

1/0

0/1

0/0

Figure 14.5: A trellis section. The nodes represent the states, and the transisions are labeled by
input/other output.

The trellis structure is very close to the normal graph that we will use for decoding convolutional
codes.



Lecture 14: April 1, 2004 14-4

14.4 Decoding convolutional codes

To describe the decoding algorithm, which is often called the forward-backward or BCJR algorithm,
we will set up a normal graph. The internal edges of the graph will contain variables representing
the states of the encoder at various times. We will have one external edge for each input and one
external edge for each output. Nodes will enforce valid transitions: each node will be attached to
one input edge, one output edge, and internal edges representing the previous and next state. The
constraint at the node will enforce that the output and next state properly follow from the input
and previous state.

s1s0 s2 s3 s4 s5 s6

w1 w2 w3 w4 w5 w6

v1 v2 v3 v4 v5 v6

Figure 14.6: The normal graph.

Here, we let the wis denote the inputs and the vis denote the outputs.

The channel will provide us with the probabilities that each vi and wi was 1 given the symbol
received for these bits. Our goal is to determine the probability that each wi was 1 given all of the
received symbols. As in the case of the repitition code and the parity-check code, there is a very
efficient way to do this if the convolutional encoder does not have too many delays. The reason is
that the normal graph is a tree, so the belief propagation algorithm will provide the exact answer
here.

The belief propogation algorithm will begin by computing messages in each direction for each
internal edge. These messages carry the probabilities of each state given all the received channel
outputs to the left or right.

To derive the correct update formula, we recall Lemma 7.0.1 (the three variable lemma):

Lemma 14.4.1. If X1, X2 and X3 lie in A1, A2 and A3, and (X1, X2) ∈ C12 ⊆ A1 × A2 and and

(X2, X3) ∈ C23 ⊆ A2 ×A3, and if (X1, X2, X3) are chosen uniformly subject to this condition, then

Pext [X1 = a1|Y2Y3 = b2b3] =
∑

a2:(a1,a2)∈C12

P [X2 = a2|X1 = a1]

· Pext [X2 = a2|Y2 = b2]

· Pext [X2 = a2|Y3 = b3] .

In this case, we will set



Lecture 14: April 1, 2004 14-5

X3 = {s0, . . . , sj−1, v1, . . . , vj , w1, . . . , wj}

X2 = {sj, xj+1, wj+1}

X1 = {sj+1} .

We then have that

Pext [sj+1 = a1|v0, . . . , vj+1, w0, . . . , wj+1] =
∑

sj , wj+1, and the induced vj+1 that result in sj+1

(1/2)

· Pext [wj+1vj+1|channel output for these]

· Pext [X2 = a2|Y3] .

Here the first term, P [X2 = a2|X1 = a1] is 1/2 because there are only two choices for sj , wj+1 that
lead to sj+1. The second term, Pext [X2 = a2|Y2 = b2] is simplified because we only have channel
outputs for wj+1 and vj+1. The third term, Pext [X2 = a2|Y3], can also be simplified because wj+1

does not depend upon the previous variables. So, we can reduce it to (1/2)Pext [sj|Y3]. You will
now note that this is exactly like what we are computing for X1, and so we can propagate all these
terms forwards.

Propagating backwards will be almost the same, with one crucial difference: the base case. We
should have observed that we can be sure that s0 = 00. On the other hand, if we end transmission
after time t, then we have P [st =??] = 1/4 for all values. You might wonder how one can go from
having equal probability at the last state, and propagate back useful information. The answer lies
in the fact that if you know exactly the input and output of the encoder at two consecutive time
steps, then you can determine the states at those times.

Our discussion of how to decode is almost finished. As we said, we should produce all forwards
and backwards messages for the internal edges. It then remains to produce the outputs for the
external edges corresponding to the input bits. We do this in two (artificial) stages. We first get
the extrinsic probability that wi = 1. To obtain this, we must compute the probability that wi = 1
and wi = 0 given all the vjs, and all the wjs for j 6= i. To do that, we sum over all si−i, si, and vi

that produce 0 or 1 respectively, and in each term of the sum take the product of the respective
probabilities. To now compute the posterior probability, we multiply the extrinsic probability by
the probability coming from the channel output for wi.


