
18.413: Error-Correcting Codes Lab April 6, 2004

Lecture 15

Lecturer: Daniel A. Spielman

15.1 Related Reading

• Fan, pp. 108–110.

15.2 Remarks on Convolutional Codes

Most of this lecture will be devoted to Turbo codes and their variants. However, since these are
built from convolutional codes, I’ll begin with a few more remarks on them.

To begin, I’ll point out that the algorithm that we discussed last class, alternately called the BCJR
algorithm, MAP decoding, forwards-backwards algorithm, or sum-product algorithm, solves the
probability estimation problem exactly. In this way, it is analogous to the computations that we
could do for the repitition code, the parity code, and LDPC codes on trees. For each message bit,
we exactly compute the probability that it was 1 given the probability that every other message
and check bit was 1.

The next point that I would like to make is that the algorithm described last lecture can run into
numerical trouble. In particular, it keeps computing values that are proportional to the probabilities
in question. However, these values will get lower and lower as the algorithm progresses through the
trellis. It is quite possible for them to become so low that they cannot be accurately represented
in floating point. To compensate for this problem, one may re-scale the values. For example, say
that we are interested in the probabilities that some state si is equal to one of {00, 01, 10, 11}. Our
algorithm computes values that are proportional to these probabilities. It is natuaral to re-scale
these so that they actually become probabilities. To do that, one just multiplies them by a constant
so that their sum becomes 1. If you keep doing this as the algorithm moves down the trellis, you
will avoid some of the potential numerical problems.

15.3 Turbo Codes

Turbo codes make use of a systematic recursive convolutional code and a random permutation, and
are encoded by a very simple algorithm:

1. Form message bits w ∈ {0, 1}n (the algorithm is so simple, I include this as a step)

2. Output w.

15-1



Lecture 15: April 6, 2004 15-2

3. Encode w using the systematic recursive convolutional code. Output the check bits generated.

4. Permute the bits of w according to the random permutation, and call the result w ′.

5. Encode w′ using the systematic recursive convolutional code. Output the check bits generated.

If the systematic recursive convolution code is the one described in the last class, which has one
stream of check bits in its output, then this is a rate 1/3 code.

Let me make one thing clear: the code is specified by the convolutional coder and the permutation.
The permutation must be known to both the encoder and the decoder. The permutation does not
really have to be random, but random ones do seem to work very well.

15.4 Decoding

Turbo codes are exciting because they have a fast decoding algorithm that performs exceptionally
well. There are many ways of describing the decoding algorithm, but Fan’s is the easiest. So, I will
follow his description. In particular, I will reproduce his figures.

=

systematic
conv code

Π systematic
conv code

w

w v1

w

w’

v2

(w,v1,v2)

w

Figure 15.1: Turbo Encoder. The “=” node can be viewed as a repetition code that sends its input
3 ways. The Π node represents the permutation. Note that the block length must be fixed so that
Π can be fixed. The object on the right just interleaves the three streams. This is Figure 3.8 in
Fan.

In Fan’s depiction, the input string, w, goes through a repetition code, denoted by the “=” node
in the figure. One of the outputs of the “=” node goes straight into the output, making this a
systematic code. The next output of the “=” node goes into a systematic convolutional encoder,
and the check bits v1 output by this encoder go into the output. Finally, the third output of
the “=” node goes through a permutation, denoted Π, and then into a systematic convolutional
encoder, and the check bits v2 output by this encoder go into the ouput.

To understand the decoding, we first observe that the output of this encoder contains the informa-
tion necessary to apply the forward-backward decoder to either convolutional code, as we obtain
channel outputs for both the inputs and outputs of each code. However, here the convolutional



Lecture 15: April 6, 2004 15-3

codes share their inputs. This sharing allows for a more powerful decoding algorithm, in which we
take the extrinsic outputs produced by each decoder and feed them into the other.

In the first stage of the decoder, depicted in Figure 15.4, the channel output for w and v1 are fed
into a node that is used to decoder the upper conv code. In the figure, we depict this by passing
the channel output for w through the “=” node, and bringing a null message up from the other
decoder. As when we initialized the LDPC decoders, combining with a null message at a “=” node
has no effect on the other message being sent, so the channel output for w goes straight through.

=

systematic
conv code

Π systematic
conv code

w

w v1

w

w’

v2

(w,v1,v2)

w
null

Figure 15.2: Decoding step 0.

On receiving the channel outputs for w and v1, the top convolutional decoder will output the
extrinsic probabilities that each bit of w was 1. It is very important that these be the extrinsic,
not the posterior, probabilities. That is, the probability that wi = 1 will not take into account
the channel output for wi. The channel output will be factored in later. This is just like what
happened at the parity nodes in LDPC codes.

In the next stage of the decoding, depicted in Figure 15.4,

=

systematic
conv code

Π systematic
conv code

w

w v1

w

w’

v2

(w,v1,v2)

w

Figure 15.3: Decoding step 1.

The extrinsic outputs from the top decoder are passed through the “=” node, where they are
combined with the channel outputs for w, and are treated as improved estimates for the probability
that each bit of w = 1. These probabilities are then passed into the lower decoder, which also takes



Lecture 15: April 6, 2004 15-4

as input the channel outputs for v2. This decoder will also produce extrinsic outputs for the
probability that each input bit is 1.

So far, this is all pretty conventional.

Where things get interesting is in the next step. In the next step, depicted in Figure 15.4, the
extrinsic outputs from the bottom decoder are passed up through the “=” node, where they are
again combined with the outputs from the channel for w, and are fed as inputs into the top decoder,
where they are again combined with the channel outputs for v2.

=

systematic
conv code

Π systematic
conv code

w

w v1

w

w’

v2

(w,v1,v2)

w

Figure 15.4: Decoding step 2.

This process is then repeated for a few iterations: bouncing from one decoder to the next.

When we finally want to get an output, we combine the channel outputs and the last outputs from
each decoder at the “=” node, and pass the outputs out on the left. This is depicted in Figure 15.4.

=

systematic
conv code

Π systematic
conv code

w

w v1

w

w’

v2

(w,v1,v2)

w

Figure 15.5: Obtaining the outputs.

Empirically, this algorithm does incredibly well, providing good performance even at 0.6 dB!



Lecture 15: April 6, 2004 15-5

15.5 Exit charts

For the first couple of years after Turbo codes were invented and experimentally observed to work
well, no one had a good explanation for why they worked so well. The first explanation that I
thought helped, although it was still not completely rigorous, was provided by the EXIT charts of
Stephan ten Brink. These EXIT charts are essentially a heuristic version of the analysis that we
did of LDPC codes on the erasure channel. Here’s the idea:

We are going to form a chart that we hope will explain the performance of each convolutional code
individually. By then making the heuristic assumptions

• that each is behaving independently, and

• that all messages being sent in the system are Gaussian distributed of a given capacity, (even
though they are not)

we will predict the behavior of the Turbo decoder. It turns out that even though these assumptions
are false, they give a very good approximation of what actually happens.

Let me explain more concretely what we will measure. Consider just one convolutional decoder, as
in Figure 15.5. This part of the decoder can be viewed as having three inputs: channel outputs for
w, channel outputs for v1, and the messages being passed up from the other decoder, x.

=

systematic
conv code

w v1

w

x

Figure 15.6: A part of the decoder

Begin by fixing some random codeword, say w, v1. Assume that we fix the channel noise level,
and thereby fix the distributions of the channel outputs for each of the symbols in w and v1. At
each iteration of the decoding algorithm, what is changing is the messages x coming from the lower
decoder. We are going to view these as being like passing the input w through another channel,
and by ignoring the correlations among the bits, view it as a memoryless channel. In particular, we
will take x to be the output of passing w through some Gaussian channel. To try to understand the
effects of successive iterations, we will see what happens when we vary the noise of this Gaussian
channel. For each noise level of the x channel, we will perform a simulation. We will then measure,
empirically, the capacity of the meta-channel that we see if we measure the extrinsic outputs of the
top decoder. That is, form x by passing w through a Gaussian channel, apply the decoder, look at



Lecture 15: April 6, 2004 15-6

the outputs, treat the whole thing as a meta-channel, as estimate the capacity empirically as we
did in Project 1. By plotting the capacity of the channel through which we passed x against the
observed capacity of the meta-channel, we obtain a point on our exit chart. For an example, see
Figure 15.5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Exit Chart at 0.8 dB

Figure 15.7: An exit chart for the convolutional code from small project 3

From the exit charts, we would predict that if the curve stays above the x = y line, then the decoder
should converge.

The reasoning is as follows: at the first stage of the decoding, a null message is transmitted. This
corresponds to obtaining x by sending w through a channel that just erases w. So, the capacity of
the output of the first decoder will correspond to where the curve intersects the y-axis in the figure.
The messages output by the first decoder are then passed to the second decoder, which is identical.
Now, the messages output by the first decoder are not necessarily Gaussian distributed. But, we
can empirically measure their capacity, and pretend that they came from a Gaussian distirbution
of the same capacity. We then look again at the EXIT chart to figure out what the capacity should
be of the messages output by the bottom decoder, etc.

So, this heuristic analysis works by measuring the capacities of the outputs of decoders, pretending
that they were Gaussian of that capacity, and then looking on the chart for what the next capacity
should be. If all of these pretend assumptions were right, we could just follow the charts to find
out how the decoding should behave. Empirically, we find that this works very well.

If we vary the original channel through which w and v1 are passed, we get a different chart:



Lecture 15: April 6, 2004 15-7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Exit Chart at 0.6 dB

Figure 15.8: An exit chart for the convolutional code from small project 3

But, you might wonder, why are we going to the trouble of making all these heuristic assumptions?
Why not just use the distributions that actually occur? The reason is that we do not have any nice
characterization of what these distributions will be, and cannot find any way of determining them
other than by simulating the Turbo code decoding process. However, simulating the full Turbo
code decoding is computationally expensive, while simulating the decoding of the convolutional
codes is cheap. So, we prefer the cheaper simulation.

More importantly, this simulation seems to predict the behavior of the full system from just the
behavior of its components. If this simulation always yields a good prediction, then it should be
possible to design better codes by computing EXIT charts of various components, and seeing how
they fit together. In particular, it allows us to predict how the system will behave if we use two
different convolutional codes.


