18.413: Error-Correcting Codes Lab February 5, 2004

Lecture 2
Lecturer: Daniel A. Spielman
2.1 Channels
A channel is given by a set of input symbols ay,...,am, a set of output symbols by,...,b,, and a
set of transition probabilities p; j, where
pi,j = Pr |bj is received|a; is sent] .

Given a general channel, we now examine how to determine the probability that a particular input
was transmitted given that a particular output was received. That is, we examine how to interpret
the output of the channel. Our derivation follows from many applications of the law of conditional
probability. We let x be the random variable corresponding to the input to the channel, and y be
the output. We assume that x is chosen uniformly from aq, ..., an.

Pr [iﬂ:ai\y:bj] — Pr [z = a; and y = bj]

Pr [y = b;]
_ Pr [y = bj|3: = ai] Pr [z = a;]
Pr[y = b;]
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2.2 Capacity and Mutual Information

The capacity of a channel provides a sharp threshold: If one communicates over a channel using
any code of rate greater than the capacity, then the probabiliy that one will have a communication
error tends to 1. On the other hand, there exist codes of every rate less than capacity that drive
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the probability of communication error to zero. It is easy to compute the capacity of symmetric
channels.

Definition 2.2.1. A channel is symmetric if

e For all iy and ig, the vectors (piy1,---,Diyn) and (Dig1,-..,Disn) are permutations of each
other, and

o For all ji and ja, the vectors (p1,j,,---,Pmyj1) and (P, --->Pm,j,) are permutations of each
other.

Most of the channels we consider will be symmetric.

Let x be the random variable uniformly chosen from a1, ...,a, and let y be the random variable
giving the output of the channel on input x. Then, the capacity of the channel is the mutual
information of z and y, written I(z;y) and defined by

I(z;y) aof ZPr [z = a; and y = bj] log,

<Pr [t =a; and y = bj]>
0,

Pr [z = a;] Pr [y = bj]

If a channel has a simple description, the one can compute I(x;y) directly. Otherwise, one can
estimate [(x;y) by experiment if one can compute the quantity Pr[y = bjlz = a;] /Pr [y = b;]:
repeatedly choose x at random, generate y, compute

i )dﬁflo Pr [z = a; and y = b;]
)= 08 Priz=a)]Priy=10b;] /)’

and take the average of all the i(x;y) values obtained.

2.3 What I should have said

We will extend the definition of a symmetric channel to the following:

Definition 2.3.1. A channel is symmetric if its output symbols can be partitioned into sets such
that for each set S in the partition,

o For all iy and iy, the vectors (ps, j)jes and (P, j)jes are permutations of each other, and

e Forallj1 € S and jo € S, the vectors (p1jy,---,Pm,j1) and (Plig,---+Pm,j») are permutations
of each other.

2
In particular, this defition includes the “nice” channels that I defined in class, which satisfy:

e The channel has two input symbols, a1 and as = 1, and
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Figure 2.1: A “nice” channel.

e The output symbols come in pairs, b; and b;s such that py ; = p(2,j') and po; = p(1, j').

For example, the following channel is symmetric:
The channels we will encounter in Small Project 1 are all nice.
Note that for any output symbol b; of a nice channel, it is easy to compute Pr [y = b;]:
Prly=b;]=Prlx =0and y =b;] + Pr[z =1 and y = b;]
=Prly=bjlt =0]Prjz =0+ Pr[y =bjlzr =1]Priz =1].



