
18.413: Error-Correcting Codes Lab February 24, 2004

Lecture 6

Lecturer: Daniel A. Spielman

6.1 Introduction

Begin by describing LDPC codes, and how they are described by many local constraints. Point out
that random graphs locally look like trees (from the birthday paradox), and so we will learn to do
belief propagation on trees. But first, we must learn to do BP on the simplest of trees: with just 2
and three nodes.

6.2 Two variables

We begin with a further examination of our fundamental formula in the case of just two variables.
Let X1 be a variable taking values in the alphabet A1 and let X2 be a variable taking values in the
alphabet A2. Then let C ∈ A1 ×A2 be a code.

Assume that we choose (X1, X2) ∈ C uniformly at random, transmit over a channel, and receive
(Y1, Y2).

We will show

Lemma 6.2.1.

Ppost [X1 = a1|Y1Y2 = b1b2] = cb1,b2P
prior [X1 = a1]Pext [X1 = a1|Y1 = b1]Pext [X1 = a1|Y2 = b2] ,

where
Pprior [X1 = a1] =

|{a2 : (a1, a2) ∈ C}|
|C|

As we already know that

Ppost [X1 = a1|Y1Y2 = b1b2] = cb1,b2P
prior [X1 = a1] Pext [X1 = a1|Y1Y2 = b1b2] ,

so it suffices to prove

Lemma 6.2.2.

Pext [X1 = a1|Y1Y2 = b1b2] = cb1,b2P
ext [X1 = a1|Y1 = b1]Pext [X1 = a1|Y2 = b2] .

6-1

Lecture 6: February 24, 2004 6-2

Proof. We begin by examining the right-hand-sides. We have

Pext [X1 = a1|Y1 = b1] = cb1P [Y1 = b1|X1 = a1] (6.1)

and

Pext [X1 = a1|Y2 = b2] = cb2P [Y2 = b2|X1 = a1]

= cb2

∑
a2:(a1,a2)∈C

P [Y2 = b2|X1X2 = a1a2] P [X2 = a2|X1 = a1]

= cb2

∑
a2:(a1,a2)∈C

P [Y2 = b2|X2 = a2] P [X2 = a2|X1 = a1] . (6.2)

Now, we examine the left-hand-side:

Pext [X1 = a1|Y1Y2 = b1b2] = cb1,b2P [Y1Y2 = b1b2|X1 = a1]

= cb1,b2

∑
a2:(a1,a2)∈C

P [Y1Y2 = b1b2|X1X2 = a1a2] P [X2 = a2|X1 = a1]

= cb1,b2

∑
a2:(a1,a2)∈C

P [Y1 = b1|X1 = a1] P [Y2 = b2|X2 = a2] P [X2 = a2|X1 = a1]

= cb1,b2P [Y1 = b1|X1 = a1]
∑

a2:(a1,a2)∈C

P [Y2 = b2|X2 = a2] P [X2 = a2|X1 = a1] .

To conclude, we observe that this last term is the product of (6.1) and (6.2).

6.3 Simplifying computations

6.4 Three Variables

We now consider the situation in which X1, X2 and X3 lie in A1, A2 and A3, and (X1, X2) ∈ C12 ⊆
A1 × A2 and and (X2, X3) ∈ C23 ⊆ A2 × A3. In particular, we will assume that (X1, X2, X3) are
chosen uniformly subject to this condition.

The variables (X1, X2, X3) then satisfy what the book calls the “Markov” property. That is, for
all a1, a2, a3,

P [X1X3 = a1a3|X2 = a2] = P [X1 = a1|X2 = a2] P [X3 = a3|X2 = a2] .

In this case, we can say that all the information that X3 contains about X1 is transmitted through
X2. This fact can be used to simplify the belief computation.

Lemma 6.4.1.

Pext [X1 = a1|Y2Y3 = b2b3] =
∑

a2:(a1,a2)∈C

P [X2 = a2|X1 = a1]Pext [X2 = a2|Y2 = b2]Pext [X2 = a2|Y3 = b3] .

Lecture 6: February 24, 2004 6-3

That is, the computation of Pext [X1 = a1|Y2Y3 = b2b3] can be done in two stages: in the first we
compute Pext [X2 = a2|Y3 = b3] for each a2, and in the second we sum over the a2s.

Proof of Lemma 6.4.1. We have

Pext [X1 = a1|Y2Y3 = b2b3]
∼ P [Y2Y3 = b2b3|X1 = a1]

=
∑

a2:(a1,a2)∈C12

P [Y2Y3 = b2b3|X1X2 = a1a2] P [X2 = a2|X1 = a1]

=
∑

a2:(a1,a2)∈C12

∑
a3:(a2,a3)∈C23

P [Y2Y3 = b2b3|X1X2X3 = a1a2a3] P [X2 = a2|X1 = a1] P [X3 = a3|X1X2 = a1a2]

=
∑

a2:(a1,a2)∈C12

∑
a3:(a2,a3)∈C23

P [Y2Y3 = b2b3|X2X3 = a2a3] P [X2 = a2|X1 = a1] P [X3 = a3|X2 = a2]

=
∑

a2:(a1,a2)∈C12

∑
a3:(a2,a3)∈C23

P [Y2 = b2|X2 = a2] P [Y3 = b3|X3 = a3] P [X2 = a2|X1 = a1] P [X3 = a3|X2 = a2]

=
∑

a2:(a1,a2)∈C12

P [X2 = a2|X1 = a1] P [Y2 = b2|X2 = a2]
∑

a3:(a2,a3)∈C23

P [Y3 = b3|X3 = a3] P [X3 = a3|X2 = a2]

∼
∑

a2:(a1,a2)∈C12

P [X2 = a2|X1 = a1] P [Y2 = b2|X2 = a2] Pext [X2 = a2|Y3 = b3]

6.5 Trees

A hypergraph is given by a collection of vertices x1, . . . , xn and a collection of edges e1, . . . , em,
where each ei ⊆ {x1, . . . , xn}. A path in a hypergraph is a sequence of vertices xi1 , . . . , xik such
that each consecutive pair in the sequence lie in some edge. That is, for each 2 ≤ j ≤ k, there
exists l such that

{
xij−1 , xij

}
⊆ el. A hypergraph is connected if for each pair of vertices there is

at least one path connecting them.

A hypergraph is a tree if for each pair of vertices there is exactly one path connecting them. An
equivalent definition is that for each i, if one replaces each edge el containing xi by e′l = el − {xi},
then the hypergraph is disconnected.

If we have variables X1, . . . , Xn chosen uniformly subject to constraints, each of which involves
only the variables in an edge, and the corresponding hypergraph is a tree, then Lemma 6.4.1 can
be extended to an algorithm for belief computation in the tree.

