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Abstract. We survey a derivation of asymptotically good error-correcting codes
from expander graphs. These codes, called Expander Codes, can be decoded in linear
time. We explain how to modify this construction to produce asymptotically good codes
that can be encoded as well as decoded in linear time.
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1. Introduction. While there are simple randomized constructions
of good error-correcting codes and expander graphs, explicit constructions
are more difficult to find. In this paper, we survey a derivation of asymptot-
ically good error-correcting codes from explicit constructions of expander
graphs that appeared in [7,10]. These error-correcting codes have the ad-
vantage that they can be both encoded and decoded in linear time. In the
present paper, we provide a simple explanation of how these constructions
work, without optimizing the constructions. We will explain the work from
a theoretical perspective, obtaining constants but ignoring their impact on
engineering realities.

We begin with a short introduction to the theory of expander graphs,
in Section 2, and error-correcting codes, in Section 3. In Section 4, we
explain how expander graphs can be used to make asymptotically good
error-correcting codes. In Section 5 we explain how to decode them in
linear time. As known encoding algorithms for these codes use quadratic
time, we sketch, in Section 6, how this construction can be modified to
produce linear-time encodable and decodable error-correcting codes. In
Section 7, we conclude by explaining one way in which we would like to see
the construction of Section 4 improved.

Before beginning, I wish to warn the reader that all statements in
this paper should be interpreted asymptotically. While I may refer to an
expander graph, I really mean a family of expander graphs. Similarly, the
concept of an asymptotically good code only makes sense as n grows large.

2. Expander Graphs. Expander graphs have been the subject of
much study in combinatorics and computer science. While everyone agrees
that an expander graph should be a graph in which every reasonably small
set of vertices has many neighbors, there are many different ways of mea-
suring the quality of an expander. For our purposes, it is best to focus on
the size of induced subgraphs.
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Consider a d-regular graph on n vertices. The expected number of
edges in a graph induced by a randomly chosen subset of an vertices is

2dn
n

We will consider a family of d-regular graphs to be a family of good ex-
panders if all subsets of an vertices have induced subgraphs of roughly this
size. A random d-regular graph is a good expander with high probability.
Explicit constructions are more difficult to come by.

The property that we require of an expander graph can be witnessed
by the eigenvalues of its adjacency matrix. The largest eigenvalue of the
adjacency matrix of a d-regular graph is d. Let G be a d regular graph whose
next-largest eigenvalue in absolute value is A < d. Using straightforward
linear algebra, (see [1] for a proof) one can show that, for every set of an
vertices in GG, the subgraph induced by these vertices contains at most

(2.1) (a? + (a — a®)(N\/d)) d7n
edges.

Margulis and Lubotzky, Phillips, and Sarnak [3,4] have produced, for
an infinite number of degrees d, infinite families of d-regular graphs with
second-largest eigenvalues bounded by 2v/d —1. These are terrific ex-
panders. Moreover, Alon and Boppona [5] have shown that one cannot
produce infinite families of d-regular graphs with smaller second-largest
eigenvalues. Thus, these expanders are the best that we can witness using
(2.1). However, it is easy to show that random d-regular graphs have better
expansion for a < 1/d, and it is quite possible that the graphs produced
in [3,4] have better expansion as well. The actual statement proved in [3,4]
has the following form:

THEOREM 2.1. For every pair of primes p,q congruent to 1 modulo 4
such that p is a quadratic residue modulo q, there is a simply describable
(p+1)-regular Cayley graph of PSL(2,Z/qZ) with q(q> —1)/2 vertices such
that the second-largest eigenvalue of the graph is at most 2,/p.

For asymptotic purposes, weaker families of expanders suffice. All that
we really need is, for an infinite number of degrees di,ds, ..., an infinite
family of d;-regular graphs in which all graphs of degree d; have second-
largest eigenvalue at most \; and

i—00

Of course, graphs with smaller ratios of second-eigenvalue-to-degree
will be better for practical purposes.

From any infinite family of d-regular graphs with second-largest eigen-
value bounded by some A < d, we can produce a family that satisfies (2.2).
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Given a d-regular graph on n vertices, G, consider the graph whose adja-
cency matrix is the square of the adjacency matrix of G. This graph will
be a d?-regular graph on n vertices. Each vertex will have d self-loops.
After removing these self-loops, we obtain a d(d — 1) regular graph that
we call G2. If the second-largest eigenvalue of G is at most A, then the
second-largest eigenvalue of G2 will be at most A2 —d. As iteration of this
process produces graphs whose ratio of second-largest to largest eigenvalue
becomes arbitrarily small, we see that we can obtain a family that satisfies
(2.2).

3. Error-Correcting Codes. Error-correcting codes were developed
to compensate for interference in communication. When a message is trans-
mitted over a channel, what comes out at the other end is usually a slightly
distorted version of the original. Thus, instead of sending a raw message,
one sends the message along with some additional redundant information
so that the receiver can figure out the intended message, even if some dis-
tortion occurs. A convenient mathematical abstraction of this situation is
to imagine messages as bit strings in {0,1}" which are encoded as strings
in {0,1}" (n > m) and then transmitted over the channel. If the channel
corrupts transmissions by randomly flipping bits that pass through it, then
the receiver will receive a string in {0,1}" that differs in some places from
the original transmission. It would be natural for the receiver to assume
that the intended message is the one whose encoding differs in the least
number of places from that which it receives. Thus, one should use a code
in which each pair of messages in {0,1}"" map to words in {0,1}" that
differ in as many places as possible.

The standard formal language for these concepts is to define a code to
be an injective mapping from {0,1}"™ into {0,1}". The strings in the image
of the mapping are codewords. The length of the codewords, n, is the block
length of the code. The phrase error-correcting code has no additional for-
mal meaning, but it has the connotation that each pair of codewords differ
in many places. The Hamming distance (usually shortened to distance)
between two words is just the number of places in which they differ. One
measure of the quality of a code is its minimum distance—the minimum of
the distance between all pairs of codewords. As a computer scientist, I like
to let n grow large and consider the minimum relative distance of a code,
which is its minimum distance divided by n. Another important parameter
of a code is its rate, m/n, which measures how much information is being
transmitted with each bit. One objective of the study of error-correcting
codes is to find codes of maximal minimum distance for their rate. Re-
markably, it is possible to find infinite families of error-correcting codes in
which the rate and relative minimum distance remain constant, even as the
block-length grows. Such families are called asymptotically good.

3.1. Linear Codes. A convenient way to make an error-correcting
code is to divide the n bits of a code into m message bits and n — m check
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bits. A linear code is one in which the check bits are linear combinations
of the message bits. In our case, these are linear combinations over GF(2).
Alternatively, one could just define a linear code to be one in which the
codewords form an m-dimensional subspace of GF(2)", as one can always
divide such a code into message bits and check bits. A convenient property
of linear codes is that the minimum distance between two codewords is
equal to the minimum weight of a non-zero codeword, where the weight of
a codeword is its distance from the all-0 word.

If one defines a code by choosing a random subspace of GF(2)" of the
desired dimension, then one probably obtains a good code. In particular,
it probably achieves the Gilbert-Varshamov bound:

THEOREM 3.1. Let 6 < 1/2 and let C be a random linear code of length
n and rate r = 1 — H(J), where H(x) = —(zlogz + (1 — x)log(1 — x)) is
the binary entropy function. With arbitrarily high probability as n grows
large, C' has relative minimum distance ot least §.

It is unknown whether there exist codes over GF(2) with a better
tradeoff between rate and minimum relative distance.

While it is easy to find a good error-correcting code, explicit construc-
tions are more difficult to come by. In Section 4, we will use explicit con-
structions of expander graphs to produce explicit constructions of asymp-
totically good error-correcting codes. We emphasize that these codes are
not known to be as good as random codes. However, they will have the
advantage that they can be decoded in linear time. In contrast, all known
decoding algorithms for random linear codes require exponential time.

4. Construction of Expander Codes. Expander codes fall within
a class of codes introduced by Tanner [11] to generalize the low-density
parity check codes introduced by Gallager [2].

A family of expander codes is specified by a linear code of block length
d and an infinite family of d-regular expander graphs. Let G be an infinite
family of d-regular graphs such that A is an upper bound on the second-
largest eigenvalue of each, and let C be a code of rate r, minimum relative
distance ¢, and block length d. The family of expander codes, C(G, C), will
contain codes of rate 2r — 1 and minimum relative distance at least

§—\d\>
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From a graph G € G with n vertices, we construct a code of length dn/2,
called C(G,C). Each bit of the code is associated with an edge in the
graph G. For each vertex of G, we make the restriction that the bits on
its edges must form a codeword in C' (each edge around a vertex should be
associated with a bit in the code C). Since the restriction at each vertex

results in (1 —r)d linear constraints, and there are n vertices, the dn/2 bits
of the code suffer a total of (1 — r)dn linear constraints.
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Each word in {0, l}d"/ % can be associated with the set of edges in G
of which it is the characteristic vector. Each codeword can then be viewed
as a set of edges in the graph that induce codewords of C' at each vertex.
The reason that these codes have no low-weight non-zero codewords is that
a low weight codeword would correspond to a small set of edges in the
graph that induces codewords at each vertex. But, if the graph is a good
expander, then a small set of edges will touch many vertices. In fact, it
will touch so many vertices that some vertex will touch fewer than dd of
these edges, which implies that these edges cannot induce a codeword at
that vertex.

To make this argument formal, we use (2.1) to see that any set of

(a2 + (o — a2)()\/d)) d7n

edges much have at least an vertices as endpoints. Thus, at least one of
these vertices will have at most

dla+ (1—a)r/d)

of these edges as endpoints. Thus, the word in which these edges are set
to 1 and all others are set to zero cannot be a codeword if

(a+ (1 —a)r/d) <é.

This implies the desired bound on the relative minimum distance of the
code.

5. Decoding Expander Codes. One reason that expander codes are
exciting is that they contain families that can be decoded in linear time.
That is, we can find families of expander codes, C(G, C), for which there is
a linear-time algorithm that will map to a codeword any word of relative
distance at most € from that codeword, for some positive constant e. We
begin by describing a logarithmic-time parallel algorithm that performs this
decoding task. A natural approach to decoding these codes is to examine
the status of each vertex individually. Since the edges touching a vertex
were originally a codeword in the code C, one might attempt to decode by
adjusting the edges around each vertex according to the decoding algorithm
for C'. To specify such an algorithm, we must decide what to do when the
vertices that are the endpoints of an edge conflict in their opinions as to
whether or not that edge should be flipped. Our algorithm will flip an
edge if either of its neighbors think it should be flipped. The other natural
choice, to flip an edge only if both neighbors think it should be flipped, does
not necessarily work: for example, if C' contains the all-1’s word, and if all
of the edges neighboring some vertex are corrupted, then they will form a
codeword according to that vertex, but will appear corrupt according to
their other neighbors (see Figure 5.1).
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Fic. 5.1. If the all-1s word is a codeword, then the vertex in the middle thinks it is
looking at a codeword, while all the others think that their edge with a 1 is corrupt.

Since C has minimum distance at least dd, it is possible to correct dd/2
errors made to codewords of C. However, if we try to use C' to correct up
to dd/2 errors, we could wind up creating more errors than we started with.
If a vertex has dd/2 + 1 corrupt neighbors, then these corrupt neighbors
might bring it closer to a different codeword. In this case, the vertex will
think that it has dd/2 — 1 corrupt neighbors, which actually correspond
to edges that are correct. If the decoding algorithm decides to flip these
correct edges that the vertex thinks are corrupt, then the number of corrupt
edges will increase. This effect is compounded by the fact that each edge
can contribute to the confusion of two vertices. To prevent this problem,
our algorithm will flip the edges suggested by a vertex only if the state
of the edges around that vertex is within distance éd/4 of a codeword of
C. This means that at least 3dd/4 of the edges around a vertex will need
to be corrupt before it can cause dd/4 additional correct edges to become
corrupt.

Our parallel decoding algorithm will consist of a logarithmic number
of rounds. In each round, each vertex whose edges are within dd/4 of
a codeword will send a flip message to each edge that differs from that
codeword. Then, each edge that receives at least one flip message will flip
its bit. To formally analyze the effect of a decoding round, we call a vertex
confused if it sends a flip message to a correct edge, and unhelpful if its
edges are not within distance dd/4 of a codeword.

Assume that at most adn/2 edges have been corrupted. As each edge
touches two vertices, there can be at most

2-adn/2  _ 4dan
36d/4 35
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confused vertices and at most

adn 40¢_n
dd/4 a )

unhelpful vertices. The edges that are corrupt after the decoding round
are those that receive inappropriate flip messages from confused vertices
and those that are already corrupt and have both endpoints in unhelpful
vertices. The number of inappropriate flip messages sent by the confused
vertices is at most

4an

dn
SO = (@)

By (2.1), the number of edges with both endpoints in unhelpful vertices is

at most

1a\? %! 40\ ? dn
Thus, the total number of corrupt edges at the end of the decoding round
is at most

4a\” 4o 4a\” dn
QM$+(5)+wM@(5 (5))>2
To ensure that the decoding algorithm will succeed in a logarithmic number
of rounds, we need this term to be less than adn/2 by a constant multi-
plicative factor. We observe that (4a/d)? can be made arbitrarily small by
choosing « to be small. We can then make (A/d)(4a/d) arbitrarily small
by choosing a family of graphs that satisfy (2.2). By Theorem 3.1, we know
that we can vary d without changing r or 6. Once we fix d, we can use a
constant-size brute-force search to find a code guaranteed by Theorem 3.1,
or just use a code from another explicit asymptotically good family.

To transform this algorithm into a linear-time algorithm, observe that
the number of vertices whose edges do not form a codeword of C' decreases
by a constant factor after each round. As the algorithm only needs to
account for those vertices whose edges do not form a codeword of C, the
total amount of work performed by the algorithm is linear.

6. Linear encoding complexity. Since expander codes are linear
codes, they can be encoded in quadratic time. However, we would like to
construct codes that can be both encoded and decoded in linear time. To
do this, we modify the construction of expander codes and then combine
the modified codes using a recursion introduced in [10].

We begin with a modification of expander codes that are linear-time
encodable: for a d-regular graph G, associate to each vertex a code C' with
d message bits and k check bits. The code R(G,C) has dn/2 message
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bits, which are identified with the edges of G. To produce the nk check
bits of the code, each vertex produces the check bits of the code C' that
correspond to the encoding of the message bits on its edges. Clearly, this
encoding operation can be performed in linear time. Moreover, if one knows
all the values of all the check bits, then it is possible to correct errors in the
message bits using the algorithm described in Section 5. Unfortunately,
this code is asymptotically very poor: if a message bit and the check bits
corresponding to the vertices it touches are corrupted, then there is no way
to recover that message bit.

It is possible to prove that, if G is a good expander, then the code
R(G,C) has a useful property: given a limited amount of corruption in
its message and check bits, the decoding algorithm of Section 5 can be
used to remove most of the corruption from the message bits. For this
reason, we have called these codes error-reduction codes. If the errors are
randomly distributed, then this algorithm will probably remove most of the
errors from the message bits. For all reasonably small error patterns, this
algorithm can reduce the number of errors in the message bits to half the
number of errors in the check bits. Intuitively, this is reasonable because
one error in a message bit affects two vertices, while an error in a check
bit only affects one vertex. Thus, an error in a message bit has twice as
much impact on the arguments of Section 5 as an error in a check bit. This
intuition can be made rigorous, provided one makes slight modifications to
the decoding algorithm of Section 5.

By taking advantage of the error-reducing properties of these codes, we
can construct linear-time encodable and decodable error-correcting codes.
We begin with a code R that has m message bits and m/2 check bits, that
has a linear-time encoding algorithm, and that has a linear-time decoding
algorithm that will correct em errors in the message bits, given the correct
values for all the check bits. We then encode the check bits produced
by this code with a linear-time error-correcting code, A, that takes m/2
message bits, produces 3m/2 check bits, and can correct em/2 errors in
any of its bits. Finally, the 2m bits of the code A are encoded by a code R»
that has 2m message bits, m check bits, can be encoded in linear time, and
has a linear-time error-reduction algorithm that will terminate with fewer
than em/2 errors in its message bits, if it began with at most em errors
in its message and check bits (See Figure 6.1). The check bits of the code
we have built will be all the check bits produced by R, A, and Ry. The
code A will be supplied by the recursion, and the codes R and R, will be
error-reduction codes such as those described earlier in this section.

It is clear that the code we have just described can be encoded in linear
time. To see that it can also correct em errors, we begin by applying the
error-reduction algorithm for R,. We assumed that, if at most em errors
have occurred, then the error-reduction algorithm for Rs will leave at most
em/2 errors among the 2m bits of the code A. As A is a code that can
correct em /2 errors in its 2m bits, and the message bits of A are the check

8



O OO

23 ocooo
w

Fic. 6.1. Error-reduction codes, R and Ra, are combined with a code, A, to produce a
larger code, which serves in the place of A for the next recursive construction.

bits of R, the decoding algorithm for A can be used to eliminate all the
errors from these check bits. Once no errors remain among the check bits
of R, and there are at most em errors among its message bits, the error-
correction algorithm described in Section 5 can be used to correct these
errors. Thus, we have described a code with m message bits, 3m check
bits, that is linear time encodable, and that has a linear-time algorithm
that can correct em errors. Such a code can now serve in the role of A in
the construction of a new code that is twice as large.

While this construction results in codes of rate 1/4, it is easy to modify
the construction to produce codes of any rate—one need only add or remove
a few of the error-reduction codes from the front or back of the construction.

7. The quest for a canonical construction. It should be possible
to improve the construction of expander codes presented in Section 4. We
have not specified which code should be associated with the vertices. Since
this code will be of constant size, we do not consider this terribly important—
one can search for one by brute force, or use a well-known small code.
However, we do not know how to take advantage of any particularly good
choice for this code.

There should be some way to choose a code for the vertices that some-
how respects the structure of the graph. For example, the edges in the
graphs produced in Theorem 2.1 have a very special structure; perhaps
there is a code that naturally lives on this structure. It is not clear what
one should hope to achieve by finding a canonical construction, so we will
make one suggestion: when determining the rate of the code produced in
Section 4, we made the worst-case assumption that all of the constraints
imposed by the vertices were independent. This need not be true. While
there cannot be small redundancies among the constraints imposed by the
vertices, it is possible for there to be redundancies among large sets of
these constraints. Such redundancies would increase the rate of the code.
They might even result in codes in which the number of corrupt variables
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is roughly proportional to the number of unsatisfied constraints. Such pro-
portionality is not possible with redundancies among constraints, because
without these redundancies there will be words that are far from codewords,
but which satisfy all but one constraint. For more information about pos-

sible applications of such a construction, we refer the reader to Chapter 5
of [§].

(10]
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