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16.1 Introduction

Spectral graph theory is the study and exploration of graphs through
the eigenvalues and eigenvectors of matrices naturally associated with those
graphs. It is intuitively related to attempts to understand graphs through the
simulation of processes on graphs and through the consideration of physical
systems related to graphs. Spectral graph theory provides many useful algo-
rithms, as well as some that can be rigorously analyzed. We begin this chapter
by providing intuition as to why interesting properties of graphs should be
revealed by these eigenvalues and eigenvectors. We then survey a few appli-
cations of spectral graph theory.
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2 Combinatorial Scientific Computing

The figures in this chapter are accompanied by the Matlab code used to
generate them.

16.2 Preliminaries

We ordinarily view an undirected graph1 G as a pair (V,E), where V
denotes its set of vertices and E denotes its set of edges. Each edge in E is an
unordered pair of vertices, with the edge connecting distinct vertices a and b
written as (a, b). A weighted graph is a graph in which a weight (typically a
real number) has been assigned to every edge. We denote a weighted graph
by a triple (V,E,w), where (V,E) is the associated unweighted graph, and w
is a function from E to the real numbers. We restrict our attention to weight
functions w that are strictly positive. We reserve the letter n for the number
of vertices in a graph. The degree of a vertex in an unweighted graph is the
number of edges in which it is involved. We say that a graph is regular if every
vertex has the same degree, and d-regular if that degree is d.

We denote vectors by bold letters, and denote the ith component of a vector
x by x (i). Similarly, we denote the entry in the ith row and jth column of a
matrix M by M(i, j).

If we are going to discuss the eigenvectors and eigenvalues of a matrix M ,
we should be sure that they exist. When considering undirected graphs, most
of the matrices we consider are symmetric, and thus they have an orthonormal
basis of eigenvectors and n eigenvalues, counted with multiplicity. The other
matrices we associate with undirected graphs are similar to symmetric ma-
trices, and thus also have n eigenvalues, counted by multiplicity, and possess
a basis of eigenvectors. In particular, these matrices are of the form MD−1,
where M is symmetric and D is a non-singular diagonal matrix. In this case,
D−1/2MD−1/2 is symmetric, and we have

D−1/2MD−1/2v i = λiv i =⇒ MD−1(D1/2v i) = λi

(

D1/2v i

)

.

So, if v1, . . . , vn form an orthonormal basis of eigenvectors of D−1/2MD−1/2,
then we obtain a basis (not necessarily orthonormal) of eigenvectors of MD−1

by multiplying these vectors by D1/2. Moreover, these matrices have the same
eigenvalues.

The matrices we associate with directed graphs will not necessarily be
diagonalizable.

1Strictly speaking, we are considering simple graphs. These are the graphs in which all
edges go between distinct vertices and in which there can be at most one edge between a
given pair of vertices. Graphs that have multiple-edges or self-loops are often called multi-
graphs.
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16.3 The matrices associated with a graph

Many different matrices arise in the field of Spectral Graph Theory. In this
section we introduce the most prominent.

16.3.1 Operators on the vertices

Eigenvalues and eigenvectors are used to understand what happens when
one repeatedly applies an operator to a vector. If A is an n-by-nmatrix having
a basis of right-eigenvectors v1, . . . , vn with

Av i = λiv i,

then we can use these eigenvectors to understand the impact of multiplying a
vector x by A. We first express x in the eigenbasis

x =
∑

i

civ i

and then compute

Akx =
∑

i

ciA
kv i =

∑

i

ciλ
k
i v i.

If we have an operator that is naturally associated with a graph G, then
properties of this operator, and therefore of the graph, will be revealed by its
eigenvalues and eigenvectors. The first operator one typically associates with
a graph G is its adjacency operator, realized by its adjacency matrix AG and
defined by

AG(i, j) =

{

1 if (i, j) ∈ E

0 otherwise.

To understand spectral graph theory, one must view vectors x ∈ IRn as
functions from the vertices to the Reals. That is, they should be understood
as vectors in IRV . When we apply the adjacency operator to such a function,
the resulting value at a vertex a is the sum of the values of the function x
over all neighbors b of a:

(AGx ) (a) =
∑

b:(a,b)∈E

x (b).

This is very close to one of the most natural operators on a graph: the
diffusion operator. Intuitively, the diffusion operator represents a process in
which “stuff” or “mass” moves from vertices to their neighbors. As mass
should be conserved, the mass at a given vertex is distributed evenly among



4 Combinatorial Scientific Computing

its neighbors. Formally, we define the degree of a vertex a to be the number
of edges in which it participates. We naturally encode this in a vector, labeled
d :

d (a) = |{b : (a, b) ∈ E}| ,

where we write |S| to indicate the number of elements in a set S. We then
define the degree matrix DG by

DG(a, b) =

{

d(a) if a = b

0 otherwise.

The diffusion matrix of G, also called the walk matrix of G, is then given by

WG
def
= AGD

−1
G . (16.1)

It acts on a vector x by

(WGx ) (a) =
∑

b:(a,b)∈E

x (b)/d(b).

This matrix is called the walk matrix of G because it encodes the dynamics
of a random walk on G. Recall that a random walk is a process that begins
at some vertex, then moves to a random neighbor of that vertex, and then a
random neighbor of that vertex, and so on. The walk matrix is used to study
the evolution of the probability distribution of a random walk. If p ∈ IRn

is a probability distribution on the vertices, then WGp is the probability
distribution obtained by selecting a vertex according to p , and then selecting
a random neighbor of that vertex. As the eigenvalues and eigenvectors of WG

provide information about the behavior of a random walk on G, they also
provide information about the graph.

Of course, adjacency and walk matrices can also be defined for weighted
graphs G = (V,E,w). For a weighted graph G, we define

AG(a, b) =

{

w(a, b) if (a, b) ∈ E

0 otherwise.

When dealing with weighted graphs, we distinguish between the weighted de-
gree of a vertex, which is defined to be the sum of the weights of its attached
edges, and the combinatorial degree of a vertex, which is the number of such
edges. We reserve the vector d for the weighted degree, so

d(a) =
∑

b:(a,b)∈E

w(a, b).

The random walk on a weighted graph moves from a vertex a to a neighbor b
with probability proportional to w(a, b), so we still define its walk matrix by
equation (16.1).
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16.3.2 The Laplacian Quadratic Form

Matrices and spectral theory also arise in the study of quadratic forms.
The most natural quadratic form to associate with a graph is the Laplacian,
which is given by

xTLGx =
∑

(a,b)∈E

w(a, b)(x (a)− x (b))2. (16.2)

This form measures the smoothness of the function x . It will be small if the
function x does not jump too much over any edge. The matrix defining this
form is the Laplacian matrix of the graph G,

LG
def
= DG −AG.

The Laplacian matrices of weighted graphs arise in many applications.
For example, they appear when applying the certain discretization schemes to
solve Laplace’s equation with Neumann boundary conditions. They also arise
when modeling networks of springs or resistors. As resistor networks provide a
very useful physical model for graphs, we explain the analogy in more detail.
We associate an edge of weight w with a resistor of resistance 1/w, since
higher weight corresponds to higher connectivity which corresponds to less
resistance.

When we inject and withdraw current from a network of resistors, we let
i ext(a) denote the amount of current we inject into node a. If this quantity is
negative then we are removing current. As electrical flow is a potential flow,
there is a vector v ∈ IRV so that the amount of current that flows across edge
(a, b) is

i(a, b) = (v(a)− v (b)) /r(a, b),

where r(a, b) is the resistance of edge (a, b). The Laplacian matrix provides a
system of linear equations that may be used to solve for v when given i ext:

i ext = LGv . (16.3)

We refer the reader to [1] or [2] for more information about the connections
between resistor networks and graphs.

16.3.3 The Normalized Laplacian

When studying random walks on a graph, it often proves useful to nor-
malize the Laplacian by its degrees. The normalized Laplacian of G is defined
by

NG = D−1/2
G LGD

−1/2
G = I −D−1/2

G AGD
−1/2
G .

It should be clear that normalized Laplacian is closely related to the walk
matrix of a graph. Chung’s monograph on spectral graph theory focuses on
the normalized Laplacian [3].
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16.3.4 Naming the Eigenvalues

When the graph G is understood, we will always let

α1 ≥ α2 ≥ · · · ≥ αn

denote the eigenvalues of the adjacency matrix. We order the eigenvalues of
the Laplacian in the other direction:

0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

We will always let
0 = ν1 ≤ ν2 ≤ · · · ≤ νn

denote the eigenvalues of the normalized Laplacian. Even though ω is not a
Greek variant of w, we use

1 = ω1 ≥ ω2 ≥ · · · ≥ ωn

to denote the eigenvalues of the walk matrix. It is easy to show that ωi = 1−νi.
For graphs in which every vertex has the same weighted degree the degree

matrix is a multiple of the identity; so, AG and LG have the same eigenvectors.
For graphs that are not regular, the eigenvectors of AG and LG can behave
very differently.

16.4 Some Examples

The most striking demonstration of the descriptive power of the eigenvec-
tors of a graph comes from Hall’s spectral approach to graph drawing [4]. To
begin a demonstration of Hall’s method, we generate the Delaunay graph of
200 randomly chosen points in the unit square.

xy = rand(200,2);
tri = delaunay(xy(:,1),xy(:,2));
elem = ones(3)-eye(3);
for i = 1:length(tri),
A(tri(i,:),tri(i,:)) = elem;

end
A = double(A > 0);
gplot(A,xy)

We will now discard the information we had about the coordinates of
the vertices, and draw a picture of the graph using only the eigenvectors of
its Laplacian matrix. We first compute the adjacency matrix A, the degree
matrix D, and the Laplacian matrix L of the graph. We then compute the
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eigenvectors of the second and third smallest eigenvalues of L, v2 and v3.
We then draw the same graph, using v2 and v3 to provide the coordinates of
vertices. That is, we locate vertex a at position (v2(a), v3(a)), and draw the
edges as straight lines between the vertices.

D = diag(sum(A));
L = D - A;
[v,e] = eigs(L, 3, ’sm’);
gplot(A,v(:,[2 1]))

Amazingly, this process produces a very nice picture of the graph, in spite
of the fact that the coordinates of the vertices were generated solely from the
combinatorial structure of the graph. Note that the interior is almost planar.
We could have obtained a similar, and possibly better, picture from the left-
eigenvectors of the walk matrix of the graph.

W = A * inv(D);
[v,e] = eigs(W’, 3);
gplot(A,v(:,[2 3]));

We defer the motivation for Hall’s graph drawing technique to Section 16.7,
so that we may first explore other examples.

One of the simplest graphs is the path graph. In the following figure, we
plot the 2nd, 3rd, 4th, and 12th eigenvectors of the Laplacian of the path
graph on 12 vertices. In each plot, the x-axis is the number of the vertex, and
the y-axis is the value of the eigenvector at that vertex. We do not bother to
plot the 1st eigenvector, as it is a constant vector.
A = diag(ones(1,11),1);
A = A + A’;
D = diag(sum(A));
L = D - A;
[v,e] = eig(L);
plot(v(:,2),’o’); hold on;
plot(v(:,2));
plot(v(:,3),’o’); hold on;
plot(v(:,3));
. . .
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Observe that the 2nd eigenvector is monotonic along the path, that the
second changes sign twice, and that the 12th alternates negative and positive.
This can be explained by viewing these eigenvectors as the fundamental modes
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of vibration of a discretization of a string. We recommend [5] for a formal
treatment.

By now, the reader should not be surprised to see that ring graphs have
the obvious spectral drawings. In this case, we obtain the ring from the path
by adding an edge between vertex 1 and 12.

A(1,12) = 1; A(12,1) = 1;
D = diag(sum(A));
L = D - A;
[v,e] = eig(L);
gplot(A,v(:,[2 3]))
hold on
gplot(A,v(:,[2 3]),’o’)

Our last example comes from the skeleton of the “Buckyball”. This is the
same as the graph between the corners of the Buckminster Fuller geodesic
dome and of the seams on a standard Soccer ball.

A = full(bucky);
D = diag(sum(A));
L = D - A;
[v,e] = eig(L);
gplot(A,v(:,[2 3]))
hold on;
gplot(A,v(:,[2 3]),’o’)
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Note that the picture looks like a squashed Buckyball. The reason is that
there is no canonical way to choose the eigenvectors v2 and v3. The smallest
non-zero eigenvalue of the Laplacian has multiplicity three. This graph should
really be drawn in three dimensions, using any set of orthonormal vectors
v2, v3, v4 of the smallest non-zero eigenvalue of the Laplacian. As this picture
hopefully shows, we obtain the standard embedding of the Buckyball in IR3.

[x,y] = gplot(A,v(:,[2 3]));
[x,z] = gplot(A,v(:,[2 4]));
plot3(x,y,z)
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The Platonic solids and all vertex-transitive convex polytopes in IRd dis-
play similar behavior. We refer the reader interested in learning more about
this phenomenon to either Godsil’s book [6] or to [7].

16.5 The Role of the Courant-Fischer Theorem

Recall that the Rayleigh quotient of a non-zero vector x with respect to a
symmetric matrix A is

xTAx

xTx
.

The Courant-Fischer characterization of the eigenvalues of a symmetric matrix
A in terms of the maximizers and minimizers of the Rayleigh quotient (see
[8]) plays a fundamental role in spectral graph theory.

Theorem 3 (Courant-Fischer) Let A be a symmetric matrix with eigen-
values α1 ≥ α2 ≥ · · · ≥ αn. Then,

αk = max
S⊆IRn

dim(S)=k

min
x∈S
x $=0

xTAx

xTx
= min

T⊆IRn

dim(T )=n−k+1

max
x∈T
x $=0

xTAx

xTx
.

The maximum in the first expression is taken over all subspaces of dimension
k, and the minimum in the second is over all subspaces of dimension n−k+1.

Henceforth, whenever we minimize of maximize Rayleigh quotients we will
only consider non-zero vectors, and thus will drop the quantifier “x &= 0”.

For example, the Courant-Fischer Theorem tells us that

α1 = max
x∈IRn

xTAx

xTx
and αn = min

x∈IRn

xTAx

xTx
.

We recall that a symmetric matrix A is positive semidefinite, written
A ! 0, if all of its eigenvalues are non-negative. From (16.2) we see that
the Laplacian is positive semidefinite. Adjacency matrices and walk matrices
of non-empty graphs are not positive semidefinite as the sum of their eigen-
values equals their trace, which is 0. For this reason, one often considers the
lazy random walk on a graph instead of the ordinary random walk. This walk
stays put at each step with probability 1/2. This means that the corresponding
matrix is (1/2)I + (1/2)WG, which can be shown to positive semidefinite.

16.5.1 Low-Rank Approximations

One explanation for the utility of the eigenvectors of extreme eigenvalues
of matrices is that they provide low-rank approximations of a matrix. Recall
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that if A is a symmetric matrix with eigenvalues α1 ≥ α2 ≥ · · · ≥ αn and a
corresponding orthonormal basis of column eigenvectors v1, . . . , vn, then

A =
∑

i

αiv iv
T
i .

We can measure how well a matrix B approximates a matrix A by either the
operator norm ‖A−B‖ or the Frobenius norm ‖A−B‖F , where we recall

‖M‖ def
= max

x

‖Mx‖
‖x‖ and ‖M‖F

def
=

√

∑

i,j

M(i, j)2.

Using the Courant-Fischer Theorem, one can prove that for every k, the
best approximation of A by a rank-k matrix is given by summing the terms
αiv ivT

i over the k values of i for which |αi| is largest. This holds regardless of
whether we measure the quality of approximation in the operator or Frobenius
norm.

When the difference between A and its best rank-k approximation is small,
it explains why the eigenvectors of the largest k eigenvalues ofA should provide
a lot of information about A. However, one must be careful when applying
this intuition as the analogous eigenvectors of the Laplacian correspond to is
smallest eigenvalues. Perhpas the best way to explain the utility of these small
eigenvectors is to observe that they provide the best low-rank approximation
of the pseudoinverse of the Laplacian.

16.6 Elementary Facts

We list some elementary facts about the extreme eigenvalues of the Lapla-
cian and adjacency matrices. We recommend deriving proofs yourself, or con-
sulting the suggested references.

1. The all-1s vector is always an eigenvector of LG of eigenvalue 0.

2. The largest eigenvalue of the adjacency matrix is at least the average
degree of a vertex of G and at most the maximum degree of a vertex of
G (see [9] or [10, Section 3.2]).

3. If G is connected, then α1 > α2 and the eigenvector of α1 may be taken
to be positive (this follows from the Perron-Frobenius theory; see [11]).

4. The all-1s vector is an eigenvector of AG with eigenvalue α1 if and only
if G is an α1-regular graph.

5. The multiplicity of 0 as an eigenvalue of LG is equal to the number of
connected components of LG.
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6. The largest eigenvalue of LG is at most twice the maximum degree of a
vertex in G.

7. αn = −α1 if and only if G is bipartite (see [12], or [10, Theorem 3.4]).

16.7 Spectral Graph Drawing

We can now explain the motivation behind Hall’s spectral graph drawing
technique [4]. Hall first considered the problem of assigning a real number
x (a) to each vertex a so that (x (a) − x (b))2 is small for most edges (a, b).
This led him to consider the problem of minimizing (16.2). So as to avoid
the degenerate solutions in which every vertex is mapped to zero, or any
other value, he introduces the restriction that x be orthogonal to b1. As the
utility of the embedding does not really depend upon its scale, he suggested
the normalization ‖x‖ = 1. By the Courant-Fischer Theorem, the solution to
the resulting optimization problem is precisely an eigenvector of the second-
smallest eigenvalue of the Laplacian.

But, what if we want to assign the vertices to points in IR2? The natural
minimization problem,

min
x ,y∈IRV

∑

(a,b)∈E

‖(x (a), y(a))− (x (b), y(b))‖2

such that
∑

a

(x (a), y(a)) = (0, 0)

typically results in the degenerate solution x = y = v2. To ensure that the two
coordinates are different, Hall introduced the restriction that x be orthogonal
to y . One can use the Courant-Fischer Theorem to show that the optimal
solution is then given by setting x = v2 and y = v3, or by taking a rotation
of this solution.

Hall observes that this embedding seems to cluster vertices that are close
in the graph, and separate vertices that are far in the graph. For more sophis-
ticated approaches to drawing graphs, we refer the reader to Chapter 15.

16.8 Algebraic Connectivity and Graph Partitioning

Many useful ideas in spectral graph theory have arisen from efforts to find
quantitative analogs of qualitative statements. For example, it is easy to show
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that λ2 > 0 if and only if G is connected. This led Fiedler [13] to label λ2

the algebraic connectivity of a graph, and to prove in various ways that better
connected graphs have higher values of λ2. This also led Fiedler to consider
dividing the nodes of a graph into two pieces by choosing a real number t, and
partitioning the nodes depending on whether or not v2(a) ≥ t. For t = 0, this
corresponds to selecting all vertices in the right-half of the spectral embedding
of the graph.

S = find(v(:,2) >= 0);
plot(v(S,2),v(S,1),’o’)

Fiedler proved [14] that for all t ≤ 0, the set of nodes a for which v2(a) ≥ t
forms a connected component. This type of “nodal domain theorem” was
extended by van der Holst [15] to the set of a such that v(a) > 0, when v is
an eigenvector of λ2 of minimal support.

The use of graph eigenvectors to partition graphs was also pioneered by
Donath and Hoffman [16, 17] and Barnes [18]. It was popularized by experi-
mental studies showing that it could give very good results [19, 20, 21, 22].

In many applications, one wants to partition the nodes of a graph into a few
pieces of roughly equal size without removing too many edges (see Chapters
10 and 13). For simplicity, consider the problem of dividing the vertices of a
graph into two pieces. In this case, we need merely identify one piece S ⊂ V .
We then define ∂(S) to be the set of edges with exactly one endpoint in
S. We will also refer to S as a cut, as it implicitly divides the vertices into
S and V − S, cutting all edges in ∂(S). A tradeoff between the number of
edges cut and the balance of the partition is obtained by dividing the first
by a measure of the second, resulting in quantities called cut ratio, sparsity,
isoperimetric number, and conductance, although these terms are sometimes
used interchangeably. Wei and Cheng [23] suggested measuring the ratio of a
cut, which they defined to be

R(S)
def
=

|∂(S)|
|S| |V − S| .

Hagen and Kahng [24] observe that this quantity is always at least λ2/n, and
that v2 can be described as a relaxation of the characteristic vector2 of the
set S that minimizes R(S).

Let χS be the characteristic vector of a set S. For an unweighted graph G

2Here, we define the characteristic vector of a set to be the vector that is one at vertices
inside the set and zero elsewhere.
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we have
χ

T
SLGχS = |∂(S)| ,

and
∑

a<b

(χS(a)− χS(b))
2 = |S| |V − S| .

So,

R(S) =
χ

T
SLGχS

∑

a<b(χS(a)− χS(b))2
.

On the other hand, Fiedler [14] proved that

λ2 = n min
x $=b0

xTLGx
∑

a<b(x (a)− x (b))2
.

If we impose the restriction that x be a zero-one valued vector and then
minimize this last expression, we obtain the characteristic vector of the set
of minimum ratio. As we have imposed a constraint on the vector x , the
minimum ratio obtained must be larger than λ2. Hagen and Kahng make this
observation, and suggest using v2 to try to find a set of low ratio by choosing
some value t, and setting S = {a : v (a) ≥ t}.

One may actually prove that the set obtained in this fashion does not have
ratio too much worse than the minimum. Statements of this form follow from
discrete versions of Cheeger’s inequality [25]. The cleanest version relates to
the the conductance of a set S

φ(S)
def
=

w(∂(S))

min(d(S),d(V − S))
,

where d(S) denotes the sum of the degrees of the vertices in S and w(∂(S))
denotes the sum of the weights of the edges in ∂(S). The conductance of the
graph G is defined by

φG = min
∅⊂S⊂V

φ(S).

By a similar relaxation argument, one can show

2φG ≥ ν2.

Sinclair and Jerrum’s discrete version of Cheeger’s inequality [26] says that

ν2 ≤ φ2
G/2.

Moreover, their proof reveals that if v2 is an eigenvector of ν2, then there
exists a t so that

φ
({

a : d−1/2(a)v2(a) ≥ t
})

≤
√
2ν2.

Other discretizations of Cheeger’s inequality were proved around the same
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time by a number of researchers. See [27, 28, 29, 30, 31]. We remark that
Lawler and Sokal define conductance by

w(∂(S))

d(S)d(V − S)
,

which is proportional to the normalized cut measure

w(∂(S))

d(S)
+

w(∂(V − S))

d(V − S)

popularized by Shi and Malik [21]. The advantage of this later formulation is
that it has an obvious generalization to partitions into more than two pieces.

In general, the eigenvalues and entries of eigenvectors of Laplacian matri-
ces will not be rational numbers; so, it is unreasonable to hope to compute
them exactly. Mihail [32] proves that an approximation of the second-smallest
eigenvector suffices. While her argument was stated for regular graphs, one
can apply it to irregular, weighted graphs to show that for every vector x
orthogonal to d1/2 there exists a t so that

φ
({

a : d−1/2(a)x (a) ≥ t
})

≤
√

2
xTNGx

xTx
.

While spectral partitioning heuristics are easy to implement, they are nei-
ther the most effective in practice or in theory. Theoretically better algorithms
have been obtained by linear programming [33] and by semi-definite program-
ming [34]. Fast variants of these algorithms may be found in [35, 36, 37, 38, 39].
More practical algorithms are discussed in Chapters 10 and 13.

16.8.1 Convergence of Random Walks

If G is a connected, undirected graph, then the largest eigenvalue of WG,
ω1, has multiplicity 1, equals 1, and has eigenvector d . We may convert this
eigenvector into a probability distribution π by setting

π =
d

∑

a d(a)
.

If ωn &= −1, then the distribution of every random walk eventually converges
to π. The rate of this convergence is governed by how close max(ω2,−ωn) is
to ω1. For example, let pt denote the distribution after t steps of a random
walk that starts at vertex a. Then for every vertex b,

|pt(b)− π(b)| ≤

√

d(b)

d(a)
(1−max(ω2,−ωn))

t .

One intuition behind Cheeger’s inequality is that sets of small conductance
are precisely the obstacles to the convergence of random walks.

For more information about random walks on graphs, we recommend the
survey of Lovàsz [40] and the book by Doyle and Snell [2].
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16.8.2 Expander Graphs

Some of the most fascinating graphs are those on which random walks
mix quickly and which have high conductance. These are called expander
graphs, and may be defined as the d-regular graphs for which all non-zero
Laplacian eigenvalues are bounded away from zero. In the better expander
graphs, all the Laplacian eigenvalues are close to d. One typically considers
infinite families of such graphs in which d and a lower bound on the distance of
the non-zero eigenvalues from d remain constant. These are counter-examples
to many naive conjectures about graphs, and should be kept in mind whenever
one is thinking about graphs. They have many amazing properties, and have
been used throughout Theoretical Computer Science. In addition to playing a
prominent role in countless theorems, they are used in the design of pseudo-
random generators [41, 42, 43], error-correcting codes [44, 45, 46, 47, 48],
fault-tolerant circuits [49] and routing networks [50].

The reason such graphs are called expanders is that all small sets of vertices
in these graphs have unusually large numbers of neighbors. That is, their
neighborhoods expand. For S ⊂ V , let N(S) denote the set of vertices that
are neighbors of vertices in S. Tanner [51] provides a lower bound on the size
of N(S) in bipartite graphs. In general graphs, it becomes the following.

Theorem 4 Let G = (V,E) be a d-regular graph on n vertices and set

ε = max

(

1− λ2

d
,
λn

d
− 1

)

Then, for all S ⊆ V ,

|N(S)| ≥ |S|
ε2(1− α) + α

,

where |S| = αn.

The term ε is small when all of the eigenvalues are close to d. Note that when
α is much less than ε2, the term on the right is approximately |S| /ε2, which
can be much larger than |S|.

An example of the pseudo-random properties of expander graphs is the
“Expander Mixing Lemma”. To understand it, consider choosing two subsets
of the vertices, S and T of sizes αn and βn, at random. Let )E(S, T ) denote the
set of ordered pairs (a, b) with a ∈ S, b ∈ T and (a, b) ∈ E. The expected size
of )E(S, T ) is αβdn. This theorem tells us that for every pair of large sets S
and T , the number of such pairs is approximately this quantity. Alternatively,
one may view an expander as an approximation of the complete graph. The
fraction of edges in the complete graph going from S to T is αβ. The following
theorem says that the same is approximately true for all sufficiently large sets
S and T .

Theorem 5 (Expander Mixing Lemma) Let G = (V,E) be a d-regular
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graph and set

ε = max

(

1− λ2

d
,
λn

d
− 1

)

Then, for every S ⊆ V and T ⊆ V ,
∣

∣

∣

∣

∣

∣

)E(S, T )
∣

∣

∣
− αβdn

∣

∣

∣
≤ εdn

√

(α− α2)(β − β2),

where |S| = αn and |T | = βn.

This bound is a slight extension by Beigel, Margulis and Spielman [52] of a
bound originally proved by Alon and Chung [53]. Observe that when α and β
are greater than ε, the term on the right is less than αβdn. Theorem 4 may
be derived from Theorem 5.

We refer readers who would like to learn more about expander graphs to
the survey of Hoory, Linial and Wigderson [54].

16.8.3 Ramanujan Graphs

Given the importance of λ2, we should know how close it can be to d.
Nilli [55] shows that it cannot be much closer than 2

√
d− 1.

Theorem 6 Let G be an unweighted d-regular graph containing two edges
(u0, u1) and (v0, v1) whose vertices are at distance at least 2k + 2 from each
other. Then

λ2 ≤ d− 2
√
d− 1 +

2
√
d− 1− 1

k + 1
.

Amazingly, Margulis [56] and Lubotzky, Phillips and Sarnak [57] have
constructed infinite families of d-regular graphs, called Ramanujan graphs,
for which λ2 ≥ d− 2

√
d− 1.

However, this is not the end of the story. Kahale [58] proves that vertex
expansion by a factor greater than d/2 cannot be derived from bounds on λ2.
Expander graphs that have expansion greater than d/2 on small sets of vertices
have been derived by Capalbo et. al. [59] through non-spectral arguments.

16.8.4 Bounding λ2

I consider λ2 to be the most interesting parameter of a connected graph.
If it is large, the graph is an expander. If it is small, then the graph can
be cut into two pieces without removing too many edges. Either way, we
learn something about the graph. Thus, it is very interesting to find ways of
estimating the value of λ2 for families of graphs.

One way to explain the success of spectral partitioning heuristics is to
prove that the graphs to which they are applied have small values of λ2 or ν2.
A line of work in this direction was started by Spielman and Teng [60], who
proved upper bounds on λ2 for planar graphs and well-shaped finite element
meshes.
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Theorem 7 ([60]) Let G be a planar graph with n vertices of maximum de-
gree d, and let λ2 be the second-smallest eigenvalue of its Laplacian. Then,

λ2 ≤ 8d

n
.

This theorem has been extended to graphs of bounded genus by Kelner [61].
Entirely new techniques were developed by Biswal, Lee and Rao [62] to extend
this bound to graphs excluding bounded minors. Bounds on higher Laplacian
eigenvalues have been obtained by Kelner, Lee, Price and Teng [63].

Theorem 8 ([63]) Let G be a graph with n vertices and constant maximum
degree. If G is planar, has constant genus, or has a constant-sized forbidden
minor, then

λk ≤ O(k/n).

Proving lower bounds on λ2 is a more difficult problem. The dominant
approach is to relate the graph under consideration to a graph with known
eigenvalues, such as the complete graph. Write

LG ! cLH

if LG − cLH ! 0. In this case, we know that

λi(G) ≥ cλi(H),

for all i. Inequalities of this form may be proved by identifying each edge
of the graph H with a path in G. The resulting bounds are called Poincaré
inequalities, and are closely related to the bounds used in the analysis of pre-
conditioners in Chapter 12 and in related works [64, 65, 66, 67]. For examples
of such arguments, we refer the reader to one of [68, 69, 70].

16.9 Coloring and Independent Sets

In the graph coloring problem one is asked to assign a color to every vertex
of a graph so that every edge connects vertices of different colors, while using
as few colors as possible. Replacing colors with numbers, we define a k-coloring
of a graph G = (V,E) to be a function c : V → {1, . . . , k} such that

c(i) &= c(j), for all (i, j) ∈ E.

The chromatic number of a graph G, written χ(G), is the least k for which G
has a k-coloring. Wilf [71] proved that the chromatic number of a graph may
be bounded above by its largest adjacency eigenvalue.
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Theorem 9 ([71])

χ(G) ≤ α1 + 1.

On the other hand, Hoffman [72] proved a lower bound on the chromatic
number in terms of the adjacency matrix eigenvalues. When reading this the-
orem, recall that αn is negative.

Theorem 10 If G is a graph with at least one edge, then

χ(G) ≥ α1 − αn

−αn
= 1 +

α1

−αn
.

In fact, this theorem holds for arbitrary weighted graphs. Thus, one may prove
lower bounds on the chromatic number of a graph by assigning a weight to
every edge, and then computing the resulting ratio.

It follows from Theorem 10 that G is not bipartite if |αn| < α1. Moreover,
as |αn| becomes closer to 0, more colors are needed to properly color the
graph. Another way to argue that graphs with small |αn| are far from being
bipartite was found by Trevisan [73]. To be precise, Trevisan proves a bound,
analogous to Cheeger’s inequality, relating |E|−maxS⊂V |∂(S)| to the smallest
eigenvalue of the signless Laplacian matrix, DG +AG.

An independent set of vertices in a graph G is a set S ⊆ V such that no
edge connects two vertices of S. The size of the largest independent set in
a graph is called its independence number, and is denoted α(G). As all the
nodes of one color in a coloring of G are independent, we know

α(G) ≥ n/χ(G).

For regular graphs, Hoffman derived the following upper bound on the size
of an independent set.

Theorem 11 Let G = (V,E) be a d-regular graph. Then

α(G) ≤ n
−αn

d− αn
.

This implies Theorem 10 for regular graphs.

16.10 Perturbation Theory and Random Graphs

McSherry [74] observes that the spectral partitioning heuristics and the
related spectral heuristics for graph coloring can be understood through ma-
trix perturbation theory. For example, let G be a graph and let S be a subset
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of the vertices of G. Without loss of generality, assume that S is the set of the
first |S| vertices of G. Then, we can write the adjacency matrix of G as

[

A(S) 0
0 A(V − S)

]

+

[

0 A(S, V − S)
A(V − S, S) 0

]

,

where we write A(S) to denote the restriction of the adjacency matrix to the
vertices in S, and A(S, V −S) to capture the entries in rows indexed by S and
columns indexed by V −S. The set S can be discovered from an examination of
the eigenvectors of the left-hand matrix: it has one eigenvector that is positive
on S and zero elsewhere, and another that is positive on V − S and zero
elsewhere. If the right-hand matrix is a “small” perturbation of the left-hand
matrix, then we expect similar eigenvectors to exist in A. It seems reasonable
that the right-hand matrix should be small if it contains few edges. Whether
or not this may be made rigorous depends on the locations of the edges. We
will explain McSherry’s analysis, which makes this rigorous in certain random
models.

We first recall the basics perturbation theory for matrices. Let A and B
be symmetric matrices with eigenvalues α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥
· · · ≥ βn, respectively. Let M = A − B. Weyl’s Theorem, which follows from
the Courant-Fischer Theorem, tells us that

|αi − βi| ≤ ‖M‖

for all i. As M is symmetric, ‖M‖ is merely the largest absolute value of an
eigenvalue of M .

When some eigenvalue αi is well-separated from the others, one can show
that a small perturbation does not change the corresponding eigenvector too
much. Demmel [75, Theorem 5.2] proves the following bound.

Theorem 12 Let v1, . . . , vn be an orthonormal basis of eigenvectors of A
corresponding to α1, . . . ,αn and let u1, . . . ,un be an orthonormal basis of
eigenvectors of B corresponding to β1, . . . ,βn. Let θi be the angle between v i

and w i. Then,
1

2
sin 2θi ≤

‖M‖
minj $=i |αi − αj |

.

McSherry applies these ideas from perturbation theory to analyze the be-
havior of spectral partitioning heuristics on random graphs that are generated
to have good partitions. For example, he considered the planted partition
model of Boppana [76]. This is defined by a weighted complete graph H de-
termined by a S ⊂ V in which

w(a, b) =

{

p if both or neither of a and b are in S, and

q if exactly one of a and b are in S,

for q < p. A random unweighted graph G is then constructed by including
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edge (a, b) in G with probability w(a, b). For appropriate values of q and p, the
cut determined by S is very likely to be the sparsest. If q is not too close to p,
then the largest two eigenvalues of H are far from the rest, and correspond to
the all-1s vector and a vector that is uniform and positive on S and uniform
and negative on V − S. Using results from random matrix theory of Füredi
and Komlós [77], Vu [78], and Alon, Krievlevich and Vu [79], McSherry proves
that G is a slight perturbation of H , and that the eigenvectors of G can be
used to recover the set S, with high probability.

Both McSherry [74] and Alon and Kahale [80] have shown that the eigen-
vectors of the smallest adjacency matrix eigenvalues may be used to k-color
randomly generated k-colorable graphs. These graphs are generated by first
partitioning the vertices into k sets, S1, . . . , Sk, and then adding edges between
vertices in different sets with probability p, for some small p.

For more information on these and related results, we suggest the book by
Kannan and Vempala [81].

16.11 Relative Spectral Graph Theory

Preconditioning (see Chapter 12) has inspired the study of the relative
eigenvalues of graphs. These are the eigenvalues of LGL

+
H , where LG is the

Laplacian of a graph G and L+
H is the pseudo-inverse of the Laplacian of a

graph H . We recall that the pseudo-inverse of a symmetric matrix L is given
by

∑

i:λi $=0

1

λi
v iv

T
i ,

where the λi and v i are the eigenvalues and eigenvectors of the matrix L. The
eigenvalues of LGL

+
H reveal how well H approximates G.

Let Kn denote the complete graph on n vertices. All of the non-trivial
eigenvalues of the Laplacian ofKn equal n. So, LKn acts as n times the identity
on the space orthogonal to b1. Thus, for every G the eigenvalues of LGL

+
Kn

are just the eigenvalues of LG divided by n, and the eigenvectors are the same.
Many results on expander graphs, including those in Section 16.8.2, can be
derived by using this perspective to treat an expander as an approximation
of the complete graph (see [82]).

Recall that when LG and LH have the same range, κf (LG, LH) is defined
to be the largest non-zero eigenvalue of LGL

+
H divided by the smallest. The

Ramanujan graphs are d-regular graphs G for which

κf (LG, LKn) ≤
d+ 2

√
d− 1

d− 2
√
d− 1

.
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Batson, Spielman and Srivastava [82] prove that every graph H can be ap-
proximated by a sparse graph almost as well as this.

Theorem 13 For every weighted graph G on n vertices and every d > 1,
there exists a weighted graph H with at most ,d(n− 1)- edges such that

κf (LG, LH) ≤ d+ 1 + 2
√
d

d+ 1− 2
√
d
.

Spielman and Srivastava [83] show that if one forms a graph H by sam-
pling O(n logn/ε2) edges of G with probability proportional to their ef-
fective resistance and rescaling their weights, then with high probability
κf (LG, LH) ≤ 1 + ε.

Spielman and Woo [84] have found a characterization of the well-studied
stretch of a spanning tree with respect to a graph in terms of relative graph
spectra. For simplicity, we just define it for unweighted graphs. If T is a
spanning tree of a graph G = (V,E), then for every (a, b) ∈ E there is a
unique path in T connecting a to b. The stretch of (a, b) with respect to T ,
written stT (a, b), is the number of edges in that path in T . The stretch of G
with respect to T is then defined to be

stT (G)
def
=

∑

(a,b)∈E

stT (a, b).

Theorem 14 ([84])

stT (G) = trace
(

LGL
+
T

)

.

See Chapter 12 for a proof.

16.12 Directed Graphs

There has been much less success in the study of the spectra of directed
graphs, perhaps because the nonsymmetric matrices naturally associated with
directed graphs are not necessarily diagonalizable. One naturally defines the
adjacency matrix of a directed graph G by

AG(a, b) =

{

1 if G has a directed edge from b to a

0 otherwise.

Similarly, if we let d(a) denote the number of edges leaving vertex a and define
D as before, then the matrix realizing the random walk on G is

WG = AGD
−1
G .
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The Perron-Frobenius Theorem (see [11, 8]) tells us that if G is strongly con-
nected, then AG has a unique positive eigenvector v with a positive eigenvalue
λ such that every other eigenvalue µ of A satisfies |µ| ≤ λ. The same holds
for WG. When |µ| < λ for all other eigenvalues µ, this vector is proportional
to the unique limiting distribution of the random walk on G.

These Perron-Frobenius eigenvectors have proved incredibly useful in a
number of situations. For instance, athey are at the heart of Google’s PageR-
ank algorithm for answering web search queries (see [85, 86]). This algorithm
constructs a directed graph by associating vertices with web pages, and cre-
ating a directed edge for each link. It also adds a large number of low-weight
edges by allowing the random walk to move to a random vertex with some
small probability at each step. The PageRank score of a web page is then
precisely the value of the Perron-Frobenius vector at the associated vertex.
Interestingly, this idea was actually proposed by Bonacich [87, 88, 89] in the
1970’s as a way of measuring the centrality of nodes in a social network. An
analogous measure, using the adjacency matrix, was proposed by Berge [90,
Chapter 4, Section 5] for ranking teams in sporting events. Palacios-Huerta
and Volij [91] and Altman and Tennenholtz [92] have given abstract, axiomatic
descriptions of the rankings produced by these vectors.

An related approach to obtaining rankings from directed graphs was pro-
posed by Kleinberg [93]. He suggested using singular vectors of the directed
adjacency matrix. Surprising, we are unaware of other combinatorially in-
teresting uses of the singular values or vectors of matrices associated with
directed graphs.

To avoid the complications of non-diagonalizable matrices, Chung [94] has
defined a symmetric Laplacian matrix for directed graphs. Her definition is
inspired by the observation that the degree matrix D used in the definition of
the undirected Laplacian is the diagonal matrix of d , which is proportional to
the limiting distribution of a random walk on an undirected graph. Chung’s
Laplacian for directed graphs is constructed by replacing d by the Perron-
Frobenius vector for the random walk on the graph. Using this Laplacian,
she derives analogs of Cheeger’s inequality, defining conductance by counting
edges by the probability they appear in a random walk [95].

16.13 Concluding Remarks

Many fascinating and useful results in Spectral Graph Theory are omitted
in this survey. For those who want to learn more, the following books and
survey papers take an approach in the spirit of this Chapter: [96, 97, 98, 81,
3, 40]. I also recommend [10, 99, 6, 100, 101].

Anyone contemplating Spectral Graph Theory should be aware that there
are graphs with very pathological spectra. Expanders could be considered ex-
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amples. But, Strongly Regular Graphs (which only have 3 distinct eigenvalues)
and Distance Regular Graphs should also be considered. Excellent treatments
of these appear in some of the aforementioned works, and also in [6, 102].
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