Min-Max-Boundary Domain Decomposition*

Marcos Kiwif Daniel A. Spielman? Shang-Hua Teng?

Abstract

Domain decomposition is one of the most effective and popular parallel computing
techniques for solving large scale numerical systems. In the special case when the
amount of computation in a subdomain is proportional to the volume of the subdomain,
domain decomposition amounts to minimizing the surface area of each subdomain while
dividing the volume evenly. Motivated by this fact, we study the following min-maz
boundary multi-way partitioning problem: Given a graph G and an integer k > 1, we
would like to divide G into k subgraphs G1, ..., Gy (by removing edges) such that (i)
|G;| = ©(|G|/k) for all : € {1,...,k}; and (ii) the maximum boundary size of any
subgraph (the set of edges connecting it with other subgraphs) is minimized.

We provide an algorithm that given G, a well-shaped mesh in d dimensions, finds a
partition of G into k subgraphs G, ..., Gk, such that for all i, G; has ©(|G|/k) vertices
and the number of edges connecting G; with the other subgraphs is O((|G|/k)'~1/%).
Our algorithm can find such a partition in O(|G|logk) time. Finally, we extend our
results to vertex-weighted and vertex—based graph decomposition. Our results can be
used to simultaneously balance the computational and memory loads on a distributed—
memory parallel computer without incurring large communication overhead.

1 Introduction

Domain decomposition is one of the most effective and popular divide-and—conquer tech-
niques for solving large scale numerical systems on parallel computers [7, 9]. Using domain

*Part of this work was done while Daniel Spielman and Shang-Hua Teng were visiting U. Chile.

tDepartamento de Ingenieria Matemaética, Fac. de Cs. Fisicas y Matemdticas, U. Chile, Santiago 170
3, Correo 3, Chile. mkiwi@dim.uchile.cl, www.dim.uchile.cl/~mkiwi. Supported in part by Fondecyt
No. 1981182 and Fondap in Applied Mathematics 1998.

tDepartment of Mathematics, M.I.T., Cambridge, MA 02139, USA. spielman@math.mit.edu,
www-math.mit.edu/~spielman. Supported in part by an NSF CAREER award (CCR-9701304) and an
Alfred P. Sloan Research Fellowship.

$Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
steng@cs.uiuc.edu, www.cs.umn.edu/~steng. Supported in part by an NSF CAREER award (CCR-
9502540), an Alfred P. Sloan Research Fellowship, and an Intel research grant. Part of the work was done
while at University of Minnesota.

decomposition, one divides the domain of a problem into subdomains so that the solutions
to induced subproblems on the subdomains can be efficiently combined to solve the original
problem on the whole domain. When applying domain decomposition to the solution of par-
tial differential equations, it is desirable to decompose the domain into subdomains in such a
way that each induced subproblem requires approximately the same amount of computation
and the communication among the subdomains is minimized [7].

We first focus on the special case in which the amount of computational work associ-
ated with a subdomain is proportional to its volume. In this case, domain decomposition
amounts to dividing the volume among the subdomains equally while minimizing the bound-
ary/surface area of each. The ratio of the measure of the boundary to the measure of the
computational work of a subdomain is sometimes referred to as the surface—to—-volume ratio
or the communication—to—computation ratio of the subdomain. Minimizing this ratio plays
a key role in efficient parallel iterative methods [9].

To solve partial differential equations numerically, one discretizes the domain into a mesh
of well-shaped elements such as simplices or hexahedral elements. As the density of mesh
points, and hence the size of mesh elements, may vary within the domain, one may obtain
an unstructured mesh [5, 14, 18]. Obtaining good partitions of unstructured meshes is, in
general, significantly more challenging than partitioning their uniform/regular counterparts.

The main result established in this work is that every d-dimensional well-shaped un-
structured mesh has a k—way partition in which the surface-to—volume ratio of every sub—
mesh is almost as small as that of a regular d-dimensional grid that has the same number
of nodes.

In Section 2, we introduce the problem of min-max-boundary multi—-way partition-
ing. In Section 3, we describe a multi-way partitioning algorithm and present our main
result. In Section 4, we extend the results of Section 3 to graphs with non-negative weights
at each vertex. More precisely, we propose an efficient algorithm that partitions vertex—
weighted graphs into subgraphs of similar total weight and vertex size while maintaining
low surface-to—volume ratio in each subgraph. Such multi-way partitioning algorithms can
be used to simultaneously balance the computational work and the memory requirements
on a distributed—memory parallel computer while keeping communication overhead low. In
Section 5, we present some experimental results and discuss the vertex-based partitioning
problem.

2 Multi—way Partitioning

A bisection of a graph G is a division of its vertices into two disjoint subsets whose sizes
differ by at most one. The cut-size of a bisection is the number of edges with endpoints in
both subsets. In general, for every integer £ > 1, a k-way partition of G is a division of its
vertex set into k disjoint subsets of size [|G|/k] or ||G|/k]|, where |G| denotes the number
of vertices in G.

Partitions that evenly divide the vertices are not necessary in most applications [16]. In
most cases, balanced partitions suffice. Given a graph G = (V,), an integer & > 1 and a real

2

number § > 1, a partition P = {G1,..., Gy} is a (8, k)-partition of G if |V;| < B[|G|/k],
for all i € {1,...,k}, where V; is the vertex set of G;. We denote by 0y (G;) the set of
boundary-vertices of G;—the set of vertices in V; that are connected by an edge of G to a
vertex not in V;—and by 0g(G;) the boundary—edges of G;—the set of edges in G exactly
one of whose endpoints is in V;.

We consider the following two costs associated with a (3, k)-partition:

total-boundaryy(P) = <;|8E(GZ)|) /2

max-boundaryg(P) = max 10E(G))] .
i=1,...,
The problem of min—total-boundary (multi—way) partitioning is to construct a (5, k)-
partition that minimizes total-boundary, while min-maz-boundary (multi-way) partitioning
is to construct a (3, k)-partition that minimizes max-boundary.

3 Bounds for Min—Max—Boundary Partitioning

We first introduce some terminology. Let G be a family of graphs that is closed under the
subgraph operation (i.e., every subgraph of every graph in the family is also in the family).
For 0 < a < 1, we say G has an n®-separator theorem or G is n*-separable if there is a constant
c such that every n-node graph in G has a bisection of cut-size at most cn®. Moreover, we
refer to the latter type of bisections as n®*-separators. For example, Lipton and Tarjan [12]
showed that bounded-degree planar graphs are n'/?-separable; Gilbert, Hutchinson, and
Tarjan [11] showed that bounded-degree graphs with bounded genus are n'/?-separable;
Alon, Seymour, and Thomas [1] proved that bounded-degree graphs that do not have an h-
clique minor for a constant h are n'/?-separable. Miller, Teng, Thurston, and Vavasis [14, 15,
17] showed that well-shaped meshes in IR and nearest neighbor graphs in IR* are (n'~1/?)-
separable. (More information concerning small separators can be found in [12, 17].) We
denote by G(«) a family of graphs that is n®-separable and closed under the subgraph
operation.

The min-total-boundary partitioning problem was addressed by Simon and Teng [16],
who showed:

Lemma 3.1 Let k be an integer such that k > 1. Then, for every bounded degree graph G in
G(a) a k-way partition P such that total-boundaryy(P) = O(k'~%|G|*) can be constructed.

A related problem is that of finding bifurcators [6]. A graph G has an (Fy, Fi,..., F;)-
decomposition tree if G' can be decomposed into two subgraphs Gy and G; by removing no
more than Fjy edges from (G, and in turn, both Gy and G; can be decomposed into smaller
subgraphs by removing no more than F; edges from each, and so on. An n-node graph has

a (-bifurcator of size F if it has an (F,F/3,F/?,...,1)-decomposition tree. Bhatt and

Leighton [6] showed that every graph in G(a) has a v/2-bifurcator of size O(y/n) if a < 1/2,
and has a /2-bifurcator of size O(n®) if a > 1/2.

The following theorem concerning min—max-boundary partitioning is the main result
of this section.

Theorem 3.2 Let k be an integer such that k > 1 and ¢ - (1 — 2'Y/%) > 4k/|G|. Let G be
a bounded-degree graph in G(c«). Then, one can construct a (1 + 1, k)-partition P of G such
that max-boundary ,(P) = (w1 =(|G|/k)®).

Notice that Theorem 3.2 essentially implies Lemma 3.1. Thus, our main result can be seen
as an extension of the result of [16] cited above.

3.1 Simultaneous Partition of Vertices and Boundary

We first examine a simple example. Consider a y/n X \/n grid in two dimensions where we
assume both &k and /n are powers of two. One way of partitioning the grid is to divide it
into two /1 x v/n/2 grids by removing the edge in the middle of every row (a /n-separator),
and then divide each of the two sub—grids into two y/n/2 x /n/2 sub—grids by removing
the middle edge of every column. This process can be continued by recursively dividing the
sub—grids until & disconnected sub-grids are found. Clearly, each final sub—grid has n/k

vertices and at most 4\/% boundary—edges. However, the naive recursive application of
the separator theorem of Lipton and Tarjan does not, in general, guarantee the generation
of a k-way partition P with max-boundary(P) = O(W) for all bounded degree n-node
planar graphs. The following somewhat stronger version of the small-separator theorem was
used in partitioning the 2D grid: at every stage of the divide-and—conquer,

(1) Each subgraph was divided into two subgraphs of the same size by removing a set of
edges whose size is on the order of the square-root of the size of the subgraph (a la
the standard Lipton-Tarjan Theorem).

(2) The boundary—vertices of the subgraphs were divided evenly.

Our method is motivated by the latter observation, more formally given below.

Lemma 3.3 Let k > 1 be a power of two. Let G be a bounded—degree graph in G(«) such
that |G| is a power of two. If in every stage of a divide—and—conquer partitioning procedure
the vertices and boundary—vertices of each subgraph are evenly divided by a separator whose
size 1s on the order of the a-th power of the size of the subgraph, then the divide—and—conquer
procedure, on input G, will generate a k-way partition whose max-boundary is O((|G|/k)%).

Proof: Let s(i) be the maximum possible number of boundary—vertices for graphs at level
of the divide-and-conquer partitioning procedure. It follows from the assumption of the
lemma that there exists a constant ¢ such that s(1) < ¢(|G|/2)%, and if 7 > 1,

s(d) < s(i—1)/2+c-(IG]/2)°

(Gl/2)" (z aile- 1>)

IN

4

Since o < 1, we get that s(i) = O((|G|/2%)?). Fixing ¢ = log k, we have s(i) = O((|G|/k)%).
The lemma follows from the assumption that G is a bounded—degree graph. O
Unfortunately, we may not always be able to find a small separator that evenly divides
both vertices and boundary-vertices. We show that this simultaneous partition can be
achieved approximately.
A variation of the following lemma was proved by Lipton and Tarjan [12].

Lemma 3.4 Let G = (V, E) be a graph in G(«). Let S be a subset of V. Then, one can
find an O(|G|*)-separator that divides G into two subgraphs G, = (V1, E1) and Gy = (Va, Ey)
such that |SNVi| = [[S|/2] and |S NV, = [|S]/2].

For completeness we present the algorithm and proof here.
1. Let DO =G, V; =V, =0, and i = 0.
2. Repeat until D is an empty graph,

(a) If [D®] = 1, then let F® = D® and F® = ; otherwise find a bisection of cut-
size O(|D®|) that divides the vertex set of D®) into F and F and assume,
without loss of generality that |S N F®| < |Sn FO|,

() If [SNVi| < [SNVa, let Vi = Vi U F®; otherwise let V, = Vo U F.
(c) Let DO+Y = F® and increment i by 1.

3. Return V] and V5.
Proof of Lemma 3.4: Let ¢ be the largest integer such that D® is not empty. To prove

that the algorithm is correct, we will first show that at the beginning of the i-th loop in
Step 2, for all i € {0,...,t — 1}, the following holds:

min(|S N V4|, |SN VL) + [SNFO| < [S]/2.
Indeed, since [SN F®| < [SN F®|, we get that min(|SN V4|, |SNVL|) +|SNF®| is at most
(ISNVI|+ SNV, +[SNFO| + 1SN FD|)/2 < [S|/2.

By our procedure, F® contains a single vertex which will be assigned to the V; such that
|S N V;| is smaller. It follows that |[S N V|, [S NV, < [|S|/2] is an invariant maintained
throughout the algorithm’s iterations.

We will now prove that the separator size is O(|G|®). First, note that |[D®| < [|D¢V|/2] <
(|DY] +1)/2, hence |[D®| < |G|/2¢ + 1. Thus, the separator size is

O(Z DI = O(X(I61/2)%) = O(6I"),

Using this algorithm, we can prove the following lemma:

5

Lemma 3.5 Let G = (V, E) be a bounded degree graph in G(c). Let S be a subset of V. Let
€ satisfy 1 > € > 2/|G|. Then, one can find an O(|G|*/€e'~*)-separator that divides G into
two subgraphs G1 = (V1, E1) and Gy = (Va, E3) such that |S N Vi, |[S NV, < |S]/2+ 1/,
and V1, |[Va| < (1 +€)|V]/2.

Proof: Let T be an integer such that 2/(T' 4+ 1) < € < 2/T. Find a T—way partition
Y,...,G% of G. By Lemma 3.1 this can be done so that the number of edges removed
is O(T'~*|G|*). Now, divide each G} = (V}, Ej) into two subgraphs Gj, = (V;y, Ej,) and
Gly = (Vi L) by Lemma 3.4, so that S0 V[, S 0 VAl € (1S 0 V1720, 1150 Vi |/21}
and the cut-size is O(|G;|®) = O((|G|/T)*). The total number of edges removed in order to
generate the 27" subgraphs Gj, is O(T'"*|G|*) = O(|G|*/e'~®).
Without loss of generality, assume |G} | < |G},|. Consider the following procedure for
dividing G into two subgraphs G; and G5 satisfying the conditions stated in the lemma:

1. Let Gy, G4 be empty graphs.
2. Fori=1to T,

If |Gi| > |Gy, then let G1 = G1 U G, and G = G2 U G ; otherwise let
Gl = Gl U G;,Q and GQ = GQ U Gfi,l'

Since ||SNV},|—=[SNV/,|| < 1, it follows that |[SNVa|—[SNVi[| < T. Hence [SNVi, [SNV,| <
|S|/2+1/e. Moreover, there are at most O(|G|*/e!~%) edges of G connecting G; and Gy. To
see that |Vi], |Vo| < (1 + €)|G|/2, observe that at the end of every iteration of the for-loop
in the above procedure, |G| — |Gs|| < [|G]/T].

O

3.2 An Algorithm for and the Proof of the Main Theorem

Let G = (V,E) be a graph. Let ¢ be a constant satisfying the conditions of Lemma 3.5,
Y- €>2k/|G|, and © = 9|G|/k. Consider the following recursive procedure:
Algorithm: min-max-boundary-partition(G,©,¢)
1. If |G| < © then return G.

2. Apply the procedure of Lemma 3.5 to divide G into G; = (V4, E;) and
G = (Va, E3) where S is chosen to be the set of all boundary—vertices in G
(at the first level of the recursion there are no boundary vertices, so we can
just use an ordinary separator).

3. Let the set of boundary—vertices of G; and G5 be those boundary-vertices
inherited from G and those produced by the partition of the previous step.

4. Recursively call min-max-boundary-partition(Gy, ©,e€).

5. Recursively call min-max-boundary-partition(Gs, ©,¢).

If more than k£ subgraphs were generated, rename them Gy, ..., G,, 1, ordered by
size, largest to smallest. Merge together subgraphs whose indices are equivalent
modulo k.

We now prove our main separator theorem.

Proof of Theorem 3.2: Run the recursive procedure above with ¢ = (1 — 2!71/%). This
defines a separator tree 7. The size of the subgraph at a leaf is at least (1 — €)9(|G|/k)/2
and at most 1|G|/k. The graph associated to the root of the separator tree is G itself. Let
the level of a node in T be its distance from the root. Let ¢’ be a constant such that every
graph H in G(«) has a separator of cut size at most ¢/|H|*. We now prove, by induction on
the levels of the separator tree, that there is a constant ¢ such that for every node v of T,
Ov(Gy) < ¢|Gy|*/e~. The claim is true for the two children of the root, provided ¢ > ¢,
since we can find a bisection of G of cut size at most ¢'|G|*. Assume that the claim is true
for every internal node v at level 7+ — 1. Let u and w be the two children of v. The algorithm
divides G, into G, and G,,. Since 2/e < ¥|G|/k and (1 — €)1y (|G|/k)/2 < |G,|, we have that
1/e < (1—€)¥|G|/k < 2|G,]|. Let ¢; be the constant hidden in the O-notation of Lemma 3.5.
Hence, if G’ denotes either G, or G,,, we have that

N

(G < Ov(G))/24+1)e+ c1|G,|* /e
< (¢/2)|Go|*/€7% + 2%(Go[* /7 + | Gy|* /e
= (/241 +2%)|G,[*/e
< (2%c¢/2+ e +2%) /(1 — €)Y |G| e .

The last inequality follows since Lemma 3.5 ensures that |G'| > (1 — €)|G,|/2. To conclude
the inductive proof choose ¢ such that ¢ > 2%(¢/2 + ¢; +2%) /(1 — €)°, i.e.,

e ((1—e)/29—1/2) > ¢ +2°.

This can be done as long as € is bounded away from 1 — 2~/ as is the case by our choice
of e.

So far, we have shown that all of the subgraphs Gy, ..., Gy—1 produced by the min-max-
boundary-partition procedure have 0y (G;) < ¢|G;|*/e'~“. It remains to show that the k
graphs produced by the merging procedure have size at most (1 +)|G|/k and boundary at
most O(d)l%a(\GVk)a) Let Gy, ..., G)._y, denote these k graphs, with G being the union of
the graphs G, such that [is equivalent to 7 modulo k. To see that for all i < j, |G} — |G| <
|G| /k, observe that for every graph G; that is merged into G but the largest, there is a
larger graph, G, ; ;) that is merged into G;. Thus, G} can be no larger than G’ than
the size of the largest graph merged into G}, which necessarily has size at most ¥|G|/k. It

follows that G, ..., G}, is a (1 + v, k)-partition of G.
We now argue that 0g(G}) = O(W(\GVIC)O‘) Since G is a bounded-degree graph it

suffices to show that 9y (G}) = O(W(\GV@"‘) To see this, first observe that G} has
size at most (1 +1)|G|/k and it is the union of subgraphs of size at least (1 — €)y(|G|/k)/2.

7

Hence it is the union of at most O(1/v) subgraphs of size at most ¢|G|/k. The number of
boundary-vertices in each of these subgraphs is O(¢®(|G|/k)*/e'~%). The desired conclusion
follows. O

Corollary 3.6 Let k be an integer such that k > 1. Let b be a constant such that 1 -
(1 —2'7Y2) > 4k /|G|. Then, every n-node well-shaped mesh or nearest neighbor graph has
a (1 + %, k)-partition P with max-boundaryy(P) = O((n/k)*~'/?); every n-node bounded-
degree planar graph, graph with bounded genus, and graph with bounded forbidden minor has
a (14 9, k)-partition P with max-boundary,(P) = O(y/n/k).

4 Partitioning Weighted Graphs

In the following two situations, it is necessary to partition weighted graphs. In adaptive
numerical formulation, in order to efficiently achieve a desired solution accuracy, sophisti-
cated adaptive strategies that vary the solution or discretization technique within each finite
element are used. For example, the p-refinement technique applies a higher order basis func-
tion in those elements having a rapidly changing solution or a large error. The h-refinement
technique involves subdivision of the mesh elements themselves. (The p— and hybrid Ap-
refinement [4] techniques can be used to efficiently find accurate solutions to problems in
areas such as computational plasticity.) Strategies such as p— and hp-refinement may cause
the work to vary at different elements in the domain. This variation may be as high as one
or two orders of magnitude [4].

In N-body simulations for non—uniformally distributed particles [2, 8, 19], particles will
be grouped into clusters based on their geometric location. The interaction between particles
in a pair of well-separated clusters will be approximated by the interaction between their
clusters. The amount of calculation associated with some cluster/particle may be much
higher than the amount of calculation needed in some other cluster/particle.

Consider a graph where every vertex is assigned a weight that is proportional to the
amount of computation needed at the vertex. Let the total weight of a graph be the sum of
the weight of its vertices. Rather than partitioning the graph into subgraphs of equal vertex
size we would now like to partition it into subgraphs with “equal” total weight. However,
partitioning according to weights alone may cause an imbalance in the size of the resulting
subgraphs. In some applications, this may cause an imbalance in local memory requirements
since, in general, all vertices need a similar amount of storage even though the computational
work associated with them may vary. We consider the problem of partitioning vertex-
weighted graphs into subgraphs with balanced weights and vertex-set sizes and minimal
maximum boundary.

4.1 Simultaneous Partition of Vertices and Weights

Let G = (V,E,w) be a vertex-weighted graph, where w : V — IR, is a positive weight
vector. For any subgraph G' = (V', E') of G, we denote by w(G") or w(V"') the total weight

8

of G', ie., w(G") = w(V') = X ey w(v).

A variant of the following lemma was given in Lipton and Tarjan [12].

Lemma 4.1 Let 0 < A < 1/2. Let G = (V, E) be a bounded-degree graph in G(a) and
w:V = Ry be a weight-vector such that w(v) < Aw(G) for allv € V. Then, one can find
an O(|G|*)-separator that divides G into two subgraphs G1 = (Vi, E1) and Gy = (Va, E»)
such that w(Gy), w(G2) < (1 4+ Nw(G)/2.

The following is an algorithm for constructing a partition with the properties stated in the
lemma.

1. Let DO =G, Vi =V, =0, and i = 0.
2. Repeat until D® is an empty graph.

(a) If [IDD| =1, then let F®) = D% and F® = (); otherwise find a bisection of cut—
size O(|D®[) that divides the vertex set of D® into F® and F and assume,
without loss of generality, that w(F®) < w(F®).

(b) If w(Vy) < w(Vy), let Vi = Vi U FO; otherwise let Vo = Vo U F@.
(c) Let DG+Y) = F(®) and increment i by 1.

3. Return V] and V5.

The proof of the lemma is similar to that of Lemma 3.4.

Lemma 4.2 Let G = (V, E) be a bounded—degree graph in G(«). Let € satisfy 1 > € > 2/|G|
and 0 < A < 1/2. Let w : V — Ry be a weight—vector such that w(v) < Aw(G) for all
v € V. Then, one can find an O(|G|*/e'~%)-separator that divides G into two subgraphs
G1 = V1, Ey) and Gy = (Va, Es) such that [Vi],|Va] < (1 4 €)|V|/2 and w(G1), w(Gy) <
w(G)/2 4+ Mw(G)/e.

The proof is similar to that of Lemma 3.5. The only difference is that we apply Lemma 4.1
to divide each G} instead of Lemma 3.4.
Proof: Let T be an integer such that 2/(1T"+ 1) < € < 2/T. Find a T-way partition
Yy...,Gl of G. By Lemma 3.1 this can be done so that the number of edges removed is
O(T'~*|G|*). Now, fori € {1,...,T}, find a O(|G;|*) = O((|G|/T)*) separator that divides
G; = (V/, E;) into two subgraphs G}, and G;, by Lemma 4.1, so that w(G},), w(G},) <
(1 + Mw(G;)/2. Observe that the total number of edges removed in order to generate
the 27 subgraphs Gj, is O(T"*|G|*) = O(|G|*/¢'~*). Without loss of generality, assume
w(GY,) < w(Gj,). Consider the following procedure for dividing G' into two subgraphs G
and G5 satisfying the conditions stated in the lemma:

1. Let G1, G4 be empty graphs.

2. Fori=1to T,

If [G1| > |Gy, then let G; = G1 UG}, and Gy = G3 U G} ,; otherwise let
G1 G1 U G, 2 and G2 GQ U G;,l

Since |w(G,) — w(Gi,)| < Aw(Gy), it follows that |w(G2) — w(G1)| < ATw(G). Hence
w(G1),w(Gs) < (1 + MNw(G)/2 < w(G)/2 + Mw(G)/e. Moreover, there are at most
O(|G|*/e=) edges of G connecting G and Go.

To see that |Vi], |[V2| < (1 + €)|G|/2, observe, as in the proof of Lemma 3.5, that at the
end of every iteration of the for-loop in the above procedure, ||G1] — |G,|| < [|G|/T]. O

Let k be an integer such that £ > 1. Let G = (V, E,w) be a vertex—weighted graph.
Let P = {Gy,...,Gi} be a collection of subgraphs G; = (V;, E;) of G that have disjoint
vertex sets. We say that P is a (8, 9, k)-partition of G if the V;’s cover all of V', and for all

i€ {1,...,k} it holds that |G;| < 8[|G|/k] and w(G;) < dw(G)/k.

Corollary 4.3 Let k > 16 be a power of4 such that |G| > 13k%*. Let G = (V,E) be
a bounded-degree graph in G(a) and w : V. — IRy be a weight-vector such that w(v) <
(1/84)w(GQ)/k%* for all v € V. Then, a (3/2,3/2,k)-partition P = {Gy,...,Gi} of G
can be constructed where total-boundaryy(P) = O(k*1=2)|G|*) and |G;| > \G|/2k for all
ie{l,...,k}.

Proof: Let € be such that (1 + €)* = 4/3 (i.e., € &~ 0.0746) and let A = 2. Also, let
t = 2logk and k' = /2tk = k%2, Observe that since k is a power of four, ¢, k', k'/k, and
2! /k' are integers.

Recursively apply Lemma 4.2 until 2' subgraphs G = (V/",E!), i € {0,...,2" —
1}, are generated. In order to perform the recursion we need that e - |G|(:5€)"™! > 2
and A\ - w(G‘)(%’\/e)t_1 > w(v) for all v € V. Both inequalities are guaranteed by the
hypothesis. Note that the total number of edges removed throughout the recursion is

O(Xi5 2'(|G|/21)*) = O(|G|*2"=2) = O(|G|*k*' =),

Let & = (1+€)/2and X = (142X /e€)/2. Thus, |V/| < &|V| and w(GY) < Mw(G). Hence,
V[= V][] <&[V]and [w(GY) — w(GY)| < Mw(G). Rename the subgraphs G¥,...,G% |
according to size. Merge together subgraphs whose indices are equivalent modulo k'. Let
G; = (V/,E}),i €{0,...,k'—1}, be the graphs generated in this way. Note that ||V;|—|V][| <
éV] and |w(Gj)) — w(GY)| < (2¢/k"X'w(G). Now, rename the subgraphs Gy, ..., Gr_1
ordered by weight and merge together those whose indices are equivalent modulo k. Let
Gi=(Vi, E;), i € {0,...,k—1}, be the graphs generated in this way. Note that ||V;| —|V;|| <
(k'/k)e|V] and |w(G;) — w(G;)| < (21/k")Xw(G). Tt follows that (1 — k(k'/k)&)|V|/k <
Vi < (14 k(K /k)&)|V|/k, and w(G;) < (1 + k(2t/k)X)w(G)/k. But, k(k'/k)e = ((1+
€)/2)1/* < (1/2)1/® < 1/2. Analogously, k(2!/k")* < 1/2. Hence, |V|/(2k) < |Vj| <
3|V|/(2k) and w(G;) < 3w(Q)/(2k). O

4.2 Min—Max—Boundary Partition of Weighted Graphs

Theorem 4.4 Let k be an integer such that k > 1. Let G = (V, E) be a bounded—degree
graph in G(a). Let w : V. — R, be a weight—vector such that w(G =0 ((log(¢2))9/4>

(v)

10

for allv € V. Let |G| = Q (% (log(k))9/4>. Then, a (1 + 1,1 + ¢, k)-partition P of G

¥?
such that max-boundary g (P) = O ((i log(ﬁ))mia) (%)a) can be constructed.

To prove this theorem we follow an argument analogous to the one used in Section 3.2 to
prove Theorem 3.2. The algorithm recursively applies the following lemma to simultaneously
partition weights, vertices, and boundary.

Lemma 4.5 Let G = (V, E) be a bounded—degree graph in G(a). Let w : V — Ry be a
weight—vector such that w(v) < Aw(G) for allv € V. Let S CV be a subset of V. Let €
be such that (max{13/|G/|,84A})*/°/2 < € < 1/128. Then, one can find an O(|G|*/e*(1=2))-
separator that divides G into two subgraphs G1 = (Vi, Ey) and Gy = (Va, Ey) such that |S N
Vil, ISNVa| < [S[/2+1/2€%, Vi, [Va] < (14€)|V]/2, and w(G1), w(G2) < (1+126)w(G)/2.

Proof: The proof follows the basic idea developed in the proof of Lemma 3.5. So we only
highlight the difference. Let T be a power of 4 such that 1/(8¢) < T < 1/(2¢). Find a T—way
partition G, ..., G’ of G by Corollary 4.3. This can be done so the total number of edges
removed is O(T?0=9|G|*) = O(|G|*/e¥1=9)). Recall that |G|/(2T) < |G} < (3/2)[|G|/T
and w(G%) < (3/2)w(G)/T, for all i € {1,...,T}. We need to verify that Corollary 4.3
is indeed applicable. In other words we need to show that 7 > 16, |G| > 137°/* and
w(v) < (1/84)w(G)/T** for all v € V. Indeed, since e < 1/128 and 1/(8¢) < T, we get that
T > 16. Since (13/|G|)*?/2 < e and T < 1/(2¢), we get that 137%* < |G|. Finally, since
(840)*9/2 < e and T < 1/(2¢), we get that w(v) < (1/84)w(G)/T** for all v € V.

We now show that we can divide every G, ..., G’ into two subgraphs using Lemma 3.5.
We need to show that ¢ > 2/|G!|. Indeed, since (2/|G|)*? < (13/|G|)*°/2 < ¢, we have
|Gi| > |G|/(2T) > |G|e > 2/e. Hence, we can divide each G} = (V}/, E}) into two subgraphs
Gi, = (V/, Ejy) and G} 5 = (V/5, E} 5) by Lemma 3.5 so that [SNV], [, [SNV/,| < [SNV/[/2+
1/e, and |V/1], [V/5| < (1+¢€)[V/[/2. The T applications of Lemma 3.5 can be done so the total
number of edges removed is O(XL, |G4|*/€17%) = O(T'~2|G|*/e!=*) = O(|G|*/e21=).

Without loss of generality, assume w(G7 ;) < w(G;,). Consider the following procedure
for dividing G into two subgraphs G; and G, satisfying the conditions stated in the lemma:

1. Let Gy, G5 be empty graphs.
2. Fori=1to T,

If w(G1) > w(Gy), then let G; = G UG, and Gy = Gy UG ,; otherwise let
G1 = G1 U G;,Q and GQ = G2 U G;’,l'

Since [|S NV | =[S N V][] < 2/e, it follows that [[S N Vs —[SN V|| < 2T /e. Hence [SN
Vi, |SNV,| < [S|/24+T /e < |S]/2+1/(2€%). Moreover, there are at most O(T'~%|G|*/e'~¢) =
O(|G|*/e*17%)) edges of G connecting Gy and G;. In addition, because ||V}, —[V/,y|| < €[V/],
it follows that ||[Vi] — |Va|| < € XL, |V/| = €|V]. Hence |Vi|,|V5] < (1 + €)|V|/2. Since
(G) — w(Gi,)| < w(Gy) < (3/2)w(G)/T, by a similar argument as the one given in
Lemma 3.5 we can show that |w(G1) — w(G2)| < (3/2)w(G)/T. Hence, w(G;),w(G2) <
(14 1(3/2)w(G)/2 < (1 + 12e)w(G)/2. m

11

5 Conclusions

ExXPERIMENTAL RESULTS: To assess the quality of our algorithms, we conducted experi-
ments on several sample meshes, using the Geometric Mesh Partitioning Toolbox developed
by Gilbert and Teng [10].

Mesh Description Mesh Type Grading | Vertices | Edges

AIRFOIL2 | Three-element airfoil 2-D triangles 1.3 x 10° 4720 13722
TRIANGLE | Equilateral triangle 2-D triangles, all same size | 1.0 x 10° 5050 14850
AIRFOIL3 | Four-element airfoil 2-D triangles 3.0 x 10* 15606 45878
Pwt Pressurized wind tunnel | Thin shell in 3-space 1.3 x 10? 36519 | 144794
Boby Automobile body 3-D volumes and surfaces | 9.5 x 102 45087 | 163734
WAVE Space around airplane 3-D volumes and surfaces | 3.9 x 10° | 156317 | 1059331

Table 1: Test problems. “Grading” is the ratio of longest to shortest edge lengths.

Table 1 lists the meshes. AIRFOIL2 and AIRFOIL3 are highly graded meshes of well-
shaped 2D triangles around cross sections of airfoils, from Barth and Jesperson [3]. TRIAN-
GLE is a 2D mesh of equilateral triangles, all the same size, generated by gridt in Matlab.
The value of « for these meshes is 1/2. PWT is a mesh of 3D elements that discretize a
thin shell. BoDY is another 3D mesh with some “thin shell” parts. We obtained these two
meshes from Horst Simon at NASA. Because of the 2D embedding in 3D, the mesh partition-
ing algorithm in general generates partitions with o = (1.5/2.5). WAVE is a highly graded
mesh that fills the space around an object in 3D, which we obtained from Steve Hammond
at NCAR. In this case, the value of « is 2/3.

(o7

Mesh 2-way | 16-way | 128-way e «
AIRFOIL2 100 31 15 117 1/2
TRIANGLE | 144 55 19 122 1/2
AIRFOIL3 152 61 20 214 1/2
Pwt 529 151 55 1248 | 1.5/2.5
Boby 834 265 75 1344 | 1.5/2.5
WAVE 10377 | 3013 721 10391 | 2/3

Table 2: Maximum boundary size for multi-way partitions.

On these samples of finite element meshes in both two and three dimensions, the exper-
iments show that the boundary size is bounded from above by 1.5(|E|/k)%.

EXTENSIONS: An alternative way to partition a graph is by removing vertices rather than by
removing edges. Vertex—based decomposition has been used in nested dissection for solving
sparse linear systems [13] and overlapping domain decomposition [9]. This motivates the
following vertex-based decomposition problem. Given a graph G = (V, E) and an integer k >
1, we say that D = {V4,...,Vi} is a (B3, k)-decomposition of V if the subgraphs G; = (V;, E;)

12

of G induced by the V;’s are such that Uf_,V; =V, UL, E; = E, and |V;| < 8[|V|/k], for all
i€ {l,...,k}. Note that in such a decomposition Gy, ..., G, may be pair-wise overlapping.
Let 0(G;) denote the set of vertices in V; that are also nodes of some other subgraph Gj,
j # 1. As in multi-way graph partitioning, we consider the following two costs associated
with a (8, k)-decomposition:

k
total-boundary, (D) = Z 10(G})|
i—1

max-boundary, (D) = max |0(G;)|.

i=1,...,

Extensions of the arguments presented in Section 3 yield vertex—separator results similar in
spirit to those stated in Lemma 3.5 and Theorem 3.2.

References

[1] N. Alon, P. Seymour, and R. Thomas. A separator theorem for graphs with an excluded
minor and its applications. In Proceedings of the 22th Annual ACM Symposium on Theory of
Computing, pages 293-299. ACM, 1990.

[2] J. Barnes and P. Hut. A hierarchical O(n logn) force calculation algorithm. Nature, (324):446—
449, 1986.

[3] T. J. Barth and D. C. Jespersen. The design and application of upwind schemes on unstruc-
tured meshes. In 27th Aerospace Sciences Meeting. ATAA, 1989.

[4] M. Benantar, R. Biswas, J. E. Flaherty, and M. S. Shephard. Parallel computation with
adaptive methods for elliptic and hyperbolic systems. Comp. Methods Applied Mech. and
Eng., pages 73-93, 1990.

[6] M. Bern, D. Eppstein, and J. R. Gilbert. Provably good mesh generation. In 31-st Annual
Symposium on Foundations of Computer Science, pages 231-241. IEEE, 1990.

[6] S. N. Bhatt and F. T. Leighton. A framework for solving VLSI graph layout Problems.
J. Comp. and System Sciences, 28, pages 300-343, 1984.

[7] J. H. Bramble, J. E. Pasciak, and A. H. Schatz. An iterative method for elliptic problems on
regions partitioned into substructures. Math. Comp., 46:361-9, 1986.

[8] J. Carrier, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm for particle
simulations. SIAM J. Sci. Statist. Comput. 9:669-686, 1988.

[9] T. F. Chan and T. P. Mathew. Domain decomposition algorithms. Acta Numerica, pages
61-144, 1994.

13

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J. R. Gilbert, G. L. Miller, and S.-H. Teng. Geometric mesh partitioning: Implementation
and experiments. In SIAM J. Sci. Comput., to appear, 1999.

J.R. Gilbert, J.P. Hutchinson, and R.E. Tarjan. A separation theorem for graphs of bounded
genus. Journal of Algorithms, 5:391-407, 1984.

R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J. of Appl. Math.,
36:177-189, April 1979.

R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM J. on
Numerical Analysis, 16:346-358, 1979.

G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Finite element meshes and geometric
separators. SIAM J. Sci. Comput., 19(2): 364-386, 1998.

G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Separators for sphere-packings and
nearest neighborhood graphs. J. ACM, 44(1): 1-29, January. 1997.

H. D. Simon and S.-H. Teng. How good is recursive bisection? SIAM J. Sci. Comput., 18(5):
1436-1445, September 1997.

D. A. Spielman and S.-H. Teng. Spectral partitioning works: planar graphs and finite element
meshes. In Proceedings of the 37-th Annual Symposium on Foundation of Computer Science,
pages 96-107, IEEE, 1996,

G. Strang and G. J. Fix. An Analysis of the Finite Element Method. Prentice-Hall, Englewood
Cliffs, New Jersey, 1973.

S.-H. Teng. Provably good partitioning and load balancing algorithms for parallel adaptive
n-body simulation. SIAM J. Scientific Computing, 19 (2), 635656, March, 1998.

14

