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Abstract

We show how to construct holographic (or transparent)
proofs of size n't¢ that can be checked by a verifier that
is allowed to read only O(1) bits of the proof and has
access to O(logn) random bits, for all ¢ > 0. In gen-
eral, we construct proofs of size pl+27 2w (log n)O(Q(”))
checkable by the query of 2A4(")) bits, for any ¢(n) =
O(loglogn). An essential element of our construction
is a proof that the low-degree test used by Arora and
Safra [AS92] is effective on domains of size linear in the
degree of the encoded polynomial.

1. Introduction

Babai, Fortnow, Levin and Szegedy [BFLS91] introduce
the notion of a holographic (or transparent) proof: a
proof whose validity can be probabilistically checked
by examining a few randomly chosen bits of the proof.
They describe a system whereby any length-n proof of
a theorem can be converted into a length-n'*¢ holo-
graphic proof of the theorem that can be checked by
examining (log n)'/¢tA1) bits of the proof. Focusing on
different parameters suggested by [FGLT91], Arora and
Safra [AS92] define the class PC'P(r(n),q(n)) of lan-
guages that have proofs of membership which can be
probabilistically checked by a polynomial-time verifier
that has access to O(r(n)) random bits and is allowed
to examine O(¢(n)) bits of the proof.

In their celebrated paper, Arora et al. [ALM*192]
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show that NP = PCP(logn,1), which means that
there exist holographic proofs of membership in any
N P language that can be checked by examining only
a constant number of bits of the proof. However, their
process of converting a proof into a holographic proof
produces a super-quadratic increase in size. We con-
struct holographic proofs that combine the advantages
of small size with constant-query checkability. We prove
that NP = PCP(logn,1) with proofs of size nl*¢
for any ¢ > 0. In general, we construct proofs of
size nlt27 7@ (log n)X4(7) checkable by the query of
24(”)) bits, for any g(n) = O(loglogn). For simplic-
ity of exposition, we will explain our results in terms of

proofs of language membership, and discuss the frame-
work of [BFLS91] at the end of the paper.

Requiring that a proof be holographic can be viewed
as requiring that a set of data have a special format such
that one can probabalistically check whether the data
has been properly formatted by examining it in only few
places. Recent results showing that low-degree poly-
nomials are efficiently checkable, self-test/correctable,
and randomly-self-reducible [BLR90, Rub90, GLR*91,
GS92, Lip91l, BF90, Sud92] demonstrate that multi-
variate polynomials have presentations that naturally
possess such a format. Thus, it is not surprising that
the checkability of holographic proofs has rested on the
checkability of multivariate polynomials.

Arora and Safra [AS92] achieved a major break-
through when they demonstrated that one could effi-
ciently test and self-correct presentations of multivari-
ate polynomials that were of size cubic in the degree of
the polynomials. Sudan [Sud92] obtained a quadratic
bound. The improvement of this bound to linear in
Section 5 is an important element of our construction of
nearly-linear size holographic proofs. One of the advan-
tages of our techniques is that they enable us to present
an elementary, self-contained explanation of why this
maximum-degree test works as well as it does.

Another key ingredient of our construction is the use
in Section 6 of a reduction from the problem of veri-



fying that a circuit has an accepting input to a prob-
lem of coloring a graph related to a de Bruijn graph.
[BFLS91] demonstrated that any computation can be
reduced to a coloring problem on a related graph, and
our reduction can be thought of as a special case of their
theorem, but with a simpler proof. We provide an alge-
braic description of a de Bruijn graph that enables us to
identify the nodes of the graph with points in a vector
space in such a way that the names of the neighbors of
a node can be expressed as a low-degree polynomial in
the name of that node. It seems that our technique of
using a low-degree polynomial to address the neighbors
of a node is actually necessary for the n'*t¢ proof size
claimed in [BFLS91].

Our holographic proofs have a recursive structure.
We first construct holographic proofs that can be
checked by making a constant number of queries of size
roughly \/n. We then observe that the checks can be
performed by circuits of size \/ﬁlogo(l) n. For each level
of recursion, we can reduce the size of the queries by a
square-root, while only increasing the proof size by a
polylogarithmic factor. We terminate the recursion by
applying the circuit-verifiers of [ALM192].

2. Polynomial Codes

This and the next three Sections will be devoted to prov-
ing the effectiveness of the bivariate maximum-degree
test. We view the presentations of multivariate poly-
nomials that appear in the holographic proof literature
as error-correcting codes. We begin by explaining this
perspective.

The simplest polynomial code is the Reed-Solomon
code [MS77], which can be described in the following
fashion: Let F be a field and let {z1,...,z,} be a sub-
set of F. The messages to be transmitted will be the
polynomials of degree d with coefficients in F. The en-
coding of a polynomial p(z) will be the list of values
that p(z) has at z1,...,2,. That is,

E(p(2)) = (p(21), p(22), .-, p(2n)) -

Because any two distinct degree d polynomials can agree
in value in at most d places, any two distinct codewords
must differ in at least n — d places.

The generalization of Reed-Solomon codes to mul-
tivariate polynomials has been an important building
block in the construction of holographic proofs. In a
mazimum degree code of dimension m and degree d,
the messages correspond to polynomials p(z1,...,2m)
such that the degree of p in each variable is at most d.
We encode p by writing down the list of values of p at
each point in some set H™ where H C F and [H| > d.
The advantage of these codes over Reed-Solomon codes
is that one can verify that a list of values represents

a valid encoding by performing many tests where each
test only looks at a small portion of the list. We will
show in Proposition 2 that in order to check that a list
of values corresponds to the values obtained from some
maximum degree d bivariate polynomial, it suffices to
check that the list looks like a degree d polynomial in
each row and column.

In this paper, we will consider bivariate polynomials
over a domain X x Y, where X = {z1,...,z,} C F and
Y ={wy1,.-.,yn} € F. The following definition will be
helpful:

Definition 1. A polynomial p(z,y) has degree (d,e) if
it has degree at most d in # and degree at most e in y.

Proposition 2 (Well-known). Let f(z,y) be a func-
tion on X x Y such that for 1 < j < n, f(z,y;)
agrees on X with some degree d polynomial in x, and
for 1 <i<mn, f(z;,y) agrees on Y with some degree e
polynomial iny. Then, there exists a polynomial P(z,y)
of degree (d,e) such that f(z,y) agrees with P(z,y) ev-
erywhere on X XY .

Proof:  Recall that a degree d univariate polynomial
is uniquely determined by its values at d + 1 points. For
1 <j<e+1,let pj(x) be the degree d polynomial that
agrees with f(z,y;). For 1 < j <e+1,let 6;(y) be the
degree e polynomial in y such that

5 (ye) = 1, if j =k, and
i) =0, if 1<k <e+1, butj# k.

We let P(z,y) = Z;i 6; (y)pj(x). It is clear that P
has degree (d,e). Moreover, P(z,y;) = f(z,y;) for all
ze€ X and 1 <j<d+1. To see that in fact P(z,y) =
f(z,y) for all (z,y) € X x Y, observe that P and f
agree at e + 1 points in column y. Since f agrees with
some degree e polynomial in column y, that polynomial
must be the restriction of P to column y. O

The maximum-degree testing lemma of [AS92] and its
successors can be interpreted as saying that if a list of
values resembles a degree d polynomial on most points
of most rows and columns, then the list must be close
to the list of values obtained from some degree (d,d)
polynomial.

The efficient total-degree codes used in [ALM'192]
are obtained by combining the maximum-degree testing
lemma of [AS92] with total-degree testing techniques
from [RS92]. The improvements in maximum-degree
testing made in Section 5 can similarly be combined
with the techniques of [RS92] to obtain even better
total-degree codes.



3. The First Step

Let C(z,y) be a polynomial of degree (n,d) and let
R(z,y) be a polynomial of degree (d,n) ! such that

Prob [R C < 62,
(x’y)g;(xy[ (z,y) # C(z,y)] <

In Theorem 9, we will show that there exists a polyno-

mial Q(z,y) of degree (d, d) such that
Prob [R(z,y) # Q(z,y) or C(z,y) # Q(z,y)]

(z,y)EX XY

<2 Prob
(z,y)EX XY

[R(z,y) # C(=,y)]-

As in [Sud92], we begin by finding a low-degree “error
correcting” polynomial that is zero whenever R and C'
disagree.

Lemma 3. Let S C X X Y be a set of size at most
(6n)?, where én is an integer. Then there exists a
non-zero polynomial E(z,y) of degree (én,én) such that

E(z,y) =0 for all (z,y) € S.

Proof:  The set of polynomials of degree (én,én) is a
vector space of dimension (6n + 1)2. Consider the map
that sends a polynomial to the vector of values that it
takes for each point in S. That is, let S = {s1,...,5m}
and consider the map

¢: E(z,y) — (E(s1), E(s2), .., E(5m))-

This map is a homomorphism of a vector space of di-
mension (§n+1)? into a vector space of lesser dimension;
so, there must be a non-zero polynomial in the vector
space of polynomials of degree (6n,én) that evaluates
to zero at every point in S. O

For the remainder of the paper, we will always assume
that én is an integer.
Let S be the subset of X x Y on which R and C

disagree. By Lemma 3, we can choose E(z,y) so that
R(z,y)E(z,y) = C(z,y)E(z,y) for all (z,y) € X x Y.

Moreover, C(z,y)E(z,y) is a polynomial of degree
(n 4+ én,d+ én) and R(z,y)E(z,y) is a polynomial of
degree (d+6n,n+6n). By Proposition 2, there exists a
polynomial P(z,y) of degree (d + én,d + én) such that

R(z,y)E(z,y) = C(z,y)E(z,y) = P(z,y) (1)

for all (z,y) € X x Y.
We would like to divide P by E as formal polynomials
and conclude the proof. However, the most we can say

1s that
P(z,y)
E(z,y)

1 Any function on a domain of size n can be represented by a
polynomial of degree n — 1.

= R(z,y) = C(z,y),

for all (z,y) € X xY such that E(z,y) # 0.

The next two sections will be devoted to showing that
if n is sufficiently large, then F does in fact divide P.
We will begin with one small step:

Lemma 4. Let P(z,y), E(z,y), R(z,y) and C(z,y) be
polynomials of degrees (én + d,én + d), (én,6én), (d,n)
and (n,d) respectively such that (1) holds. If |X| >
bn+d and |Y| > én + d, then for all yg € Y and for
allzg € X, P(z,y0) = R(z,y0)E(z,y0) and P(zo,y) =
C(zo,y)E(z0,y).

Proof:  For fixed yo, P(z,y0) and R(z,y0)E(z,yo)
are degree én + d polynomials that have the same
value on at least d + én + 1 points, so P(z,y) =
R(z,y0)E(z,yo) as formal polynomials. O

4. Resultants

In this section, we will review some standard facts about
resultants. A more complete presentation can be found
in [Lan93, vdW53]. We note that Sudan [Sud92] intro-
duced the idea of using the resultant to prove that E
divides P.

Let F be a field and let

P(z) = Py+ Pz + -+ Pgz?, and
E(z) = Ey+Eiz+ -+ E.x°

be polynomials in & with coefficients in the field F.

Proposition 5. P(z) and E(z) have @ non-trivial
common factor if and only if there exist polynomials
A(z) of degree e — 1 and B(z) of degree d — 1 such that
P(z)A(z) — E(z)B(z) = 0.

Proof: If there exist F(z), P(:L‘) and E’(m) such
that deg F(z) > 1, P(z) = F(z)P(z), and E(z) =
F(z)E(z), then we can choose A(z) = E(z) and B(z) =

To go the other direction, assume that such A(z) and
B(z) exist. Since the degree of P(z) is greater than the
degree of B(z), P(z) and E(z) must share a common
factor. O

We can reformulate this as a system of linear equations
in the coefficients of A and B:

PijAe1 = E.Bg_:
Pi_1Ac1+ PgAes = E._1Bg 1+ FE.Bj_»
PyAy = EyBy

If we treat the coefficients of A and B as the variables
of a system of linear equations, then we find that the



above equations have a solution if and only if the matrix

M (P, E) has determinant zero, where M (P, E) =

Py Py, ... ... B 0 ... 0
0 Py ... P Py .. 0
: ) : : : € TOWS
0 .. 0 Pd Pl PO
Ee Ee—l EO 0 0
d rows
: " .0
0 0 E. FE..1 ... Ej

We now define R(P, E), the resultant of P and E, to be
the polynomial in the coefficients of P and E obtained
by taking the determinant of M (P, E). We obtain:

Proposition 6. The polynomials P(z) and E(z) share
a common factor if and only if R(P,E) = 0.

The following fact about the derivative of the determi-
nant of a matrix of polynomials will play a crucial role
in our proof: Let M(z) = (pm(x))m be an n-by-n ma-
trix of polynomials in z over F and let R(z) be the
determinant of M(z).

Proposition 7. R'(z), the derivative of R(z), can be
expressed as

Pia(z)
p?,n(x)

P/1,1(x) Pll,Q(CL’)

R/(l’) — p2’1($) pZ’Q(I‘)
Pn,2(l’) pn,n(l')

p1a(x)  p1a(x) P1n(2)

p21(x)  poa(x) P2.n(2)

pai(z)

P;m(’?) PZ,2(93) P%n(l’)
5. Piecing it Together

Since the propositions of the previous section concerned
univariate polynomials, you may be wondering how we
are going to apply them to bivariate polynomials. The
idea is to treat the polynomials P(z,y) and E(z,y) as
polynomials in y over F(z), the field of rational func-
tions in z. F(z) is the field comprising terms of the
form p(z)/q(z), where p(z) and ¢(z) are polynomials in
F. 1t is easy to verify that this is in fact a field.

We can now consider P and E as polynomials in y
with coefficients in F(z) by writing

Po(z) + Pi(z)y + -+ + Psnya(z)y’+e
Eo(z)+ E1(z)y+ -+ Esn (;L‘)y‘ﬁn.

We will show that F divides P as a polynomial in y over
the field F(z). By Gauss’ Lemma?, this implies that E
divides P over F|z], the ring of polynomials in z, which
means that E(z,y) divides P(z,y).

We will begin our proof by dividing £ and P by their
greatest common divisor. If that greatest common di-
visor is not F, then we obtain two polynomials with no
common factor. To obtain a contradiction, we will show
that these two polynomials have a common factor when
considered as polynomials in y over F(z). By Gauss’
Lemma, this will imply that they share a common fac-
tor when considered as polynomials in z and y.

Lemma 8. Let E(z,y) be a polynomial of degree (b,a)
and let P(z,y) be a polynomial of degree (b+d, a+d). If
there exist distinct z1,. .., zn such that E(z;,y) divides
P(z;,y) for 1 < i < n, distinct y1,...,yn such that
E(z,y;) divides P(z,y;) for 1 <i<n and if

n > min{2b + 2d, 2a + 2d},
then E(z,y) divides P(z,y).

Proof:  Assume, without loss of generality, that a >
b. Let F(z,y) be the largest common factor of P(z,y)
and E(z,y). Assume by way of contradiction that F' #
E and that F(z,y) has degree (f,e). Set

P(z,y) = P(z,y)F(z,y) and E(z,y) = E(z,y)F(z,y).

We will now divide P and E by F' and apply the lemma
to P and E. The conditions of the lemma are satisfied
by P and E because n— f > 2b+2d— f > 2(b—f)+2d.
(We need to take n — f because F(z,y) could be the
zero polynomial for as many as f values of z.) Thus,
we can assume without loss of generality that P(z,y)
and E(z,y) have no common factors. We will use this
assumption to obtain a contradiction. Write

P(z,y) = Po(z)+ Pi(z)y+ -+ Papa(z)y**?
E(a:,y) = EQ(CL’)—}—El(x)y_}_..._|_Ea(x)ya)

and form the matrix M (P, E)(z) =

Pa+d($) Po(])) 0
0 Puta(s) Po(x)

E.(z) Eq(z) 0 0
: . . 0 a4 d
0 0 Eau(z) . Ey(z)

2The usual statement of Gauss’ Lemma is that if a polynomial
with integer coefficients can be factored over the rationals, then
it can be factored over the integers. A proof of Gauss’' Lemma
can be found in most undergraduate algebra textbooks.



R(P, E)(z), the resultant of P and E, is the determinant
of M (P, E)(z) and can therefore be viewed as a poly-
nomial in z. M (P, E)(z) has a rows of coefficients of P
and a+d rows of coefficients of E, so R(P, E')(z) will be
a polynomial of degree at most a(b+ d) + (a+ d)b. We
will show that R(P, E')(z) is in fact the zero polynomial
by demonstrating that it has more than a(b+d)+(a+d)b
roots.

For 1 <i < n, E(z;,y) divides P(z;,y), so we can see
that the first @ rows of M (P, E)(z;) are dependent on
the last a + d rows of M (P, E)(z;). This implies that
M (P, E)(z;) is a matrix of rank at most a+d (actually,
the rank is exactly a + d). By Proposition 7, the k-th
derivative of R(P, E)(z) at z; is the sum of determinants
of matrices of rank at most a4+ d+ k. Since M (P, E)(z)
is a matrix of side 2a + d, R*)(P, E)(;) is zero for
k < a. That is, R(P, E)(z) has a zero of multiplicity a
at each of z1,...,xz,. Because we assumed that

na > 2ab + 2ad > 2ab+d(a +b) = a(b + d) + (¢ + d)b,

R(P, E)(z) must be the zero polynomial. Applying
Proposition 6, we see that £ and P must have a non-
trivial common factor when considered as polynomials
in y over F(z), which is a contradiction. DO

This lemmais a variation on Bezout’s Theorem. In fact,
the proof is similar to the proof of Bezout’s Theorem
in [vdWb3]. We can now prove:

Theorem 9 (Bivariate Testing). Let F be a field,
let X ={2y,...,2,} CF, and let Y = {w1,...,yn} C
F. Let R(z,y) be a polynomial over F of degree (d,n)
and let C(z,y) be a polynomial over F of degree (n,d).
If
Prob [R(=z, C(z,y)] < 6%,
(x’y)g(xy[ (z,y) # C(z,y)]

and n > 26n+2d, then there exists a polynomial Q(z,y)
of degree (d,d) such that

Prob [R(z,y) # Q(z,y) or C(z,y) # Q(z,y)] < 262.

(z,y)EX XY

Proof:  Let S be the set of points such that R(z,y) #
C(z,y). By Lemma 3, there exists a polynomial E(z, y)
of degree (én,én) such that S is contained in the zero
set of . By Lemmas 4 and 8, there exists a polynomial

Q(z,y) of degree (d, d) such that
R(z,y)E(z,y) = C(z,y)E(z,y) = Q(z,y)E(z, y),

for all (z,y) € X x Y.

This implies that in any row on which E(z, y) is non-
zero, () agrees with R on that entire row. However,
E can be identically zero on at most én rows; so, E
must be non-zero on at least (1 — §)n rows. Thus, @

must agree with R on at least (1 — 8)n rows. We can
similarly show that () must agree with C' on at least
(1 — 6)n columns. We could stop now, content in the
knowledge that R and C' agree on the intersection of
(1 = é)n columns and rows; however, we will show that
they agree on many more points.

As before, let S be the set of points at which R(z, y) #
C(z,y). Let T be the set of points at which R(z,y) =
C(z,y), but Q(z,y) # R(z,y). We will show that |T| <
|S|, which will complete the proof of the theorem. Call
the rows on which R disagrees with @ bad and define
bad columns similarly. Let b, be the number of bad rows
and let b, be the number of bad columns. Call good any
row or column that is not bad. We will say that a row
and column disagree if R and C' take different values at
their intersection. We first observe that there can be at
most d + b, points of T' in any bad column: if a column
has more than d + b, points of T', then it must have at
least d 4+ 1 points in good rows at which C' agrees with
R and therefore @, implying that that column is in fact
good. Thus, every bad column must have at least n/2
points of S in the intersection of that column with the
good rows. We can analyze the rows similarly to see
that |T'| < |S|. (the basic idea is that the points of T
must lie in the lower left-hand corner of Figure 1). O

d rows

d }br
cols

Figure 1: The arrangement of bad rows and columns.

We will make use of the following variation of Theo-
rem 9:

Theorem 10. There exists a constant k such that
the following holds: Let F be a field and let X =
{z1,..,2n} CF, Y =A{y1,...,un} C F, and Z =
{z1,...,zm} C F. Let Pi(z,y,2), Pao(z,y,2) and
Ps(z,y,z) be polynomials over F of degrees (d,n,m),
(n,d,m) and (n,n,d,) respectively. If

Prob[Py(z,y,2) = Pa(z,y,2) = Ps(z,y,2)] > 1§,



and n > kén+kd and m > kém+kd,, then there exists
a polynomial Q(z,y, z) of degree (d,d,d,) such that

Prob[Q(z,y,z) = Pi(z,y,2) = Pa(z,y,2) = Ps(z,y,2)]

>1— 48,

where the probabilities are taken over (z,y,z) € X X
Y x Z.

Proof: [Sketch] It is not difficult to prove a version of
Theorem 9 for the case that X and Y are of different
sizes, as long as the ratio of the size of X to the size of
Y is the same as the ratio of the degree of R to the de-
gree of C': you just need to construct an error-correcting
polynomial that is unbalanced in the same ratio. To go
from a bivariate theorem to a trivariate theorem, first
apply the unbalanced bivariate theorem in every plane
perpendicular to the x or y-axis. We thereby obtain
a polynomial R(z,y) of degree (d,n) and a polynomial
C(z,y) of degree (n,d) over F[z] that satisfy the condi-
tions of Theorem 9. 0O

6. A Graph Coloring Problem

Consider a boolean circuit C' with m binary gates and n
inputs. One way to represent such a circuit is to draw a
picture containing the inputs, the gates, and lines rep-
resenting the edges that connect them (See Figure 2).
We will show how such a picture can be “drawn” on any
network on which one can perform routing with merg-
ing. We will draw a circuit with m gates and n inputs

Figure 2: A drawing of a circuit

on a leveled routing network of (57 4+ 1)2" nodes, where
2" > n+m. The routing network will consist of (5r+1)
levels of 2" nodes, where node ¢ in one level will be con-
nected to node j in the next if (¢,7) is an edge of a
de Bruijn graph [Lei92] (See Figure 3).

We will associate each input and gate in the circuit
with two nodes in the same row of the routing network,
one in the first level and one in the last. View each
wire of the circuit as a packet to be routed from the
first-level node representing its origin to the last-level
node representing its destination. Allow every internal
node to act as a switch, or, if it has only one incoming
message, to send it to both outputs. Using standard

input
not

and

input
and

* Or*

input

Figure 3: A (toy) de Bruijn router

packet-routing techniques [Lei92], we can find switching
actions for each node that establish collision-free paths
in the graph for each packet (Figure 3 presents such a
description of the circuit that appears in Figure 2).

We will call this description of the circuit a coloring of
the nodes of the routing network. Because each node is
identified as being a gate, the output gate, an input, or
one of 4 switches (depending on how you count them),
we will need only a small, fixed number of colors 3. We
will call a coloring of the network that represents a cir-
cuit a theorem candidate. A proof of the theorem can-
didate will be an assignment of 0’s, 1’s and blanks to
the inputs, gates, and wires of the circuit that is both a
valid computation and that causes the circuit to output
1 (See Figure 4). This can be described as a coloring of
the nodes by writing, for each node, the values on the
node’s incoming and outgoing wires. Thus, a proof can
also be described using a finite set of colors.

In order to check that a proof candidate is actually a
proof of a theorem candidate, it suffices to check that

1. for each node, the 0’s, 1’s and blanks assigned by
the proof candidate to the node and its neighbors
have been switched in accordance with the action
assigned to the node by the theorem candidate, and

2. for each gate, the output of the gate assigned by
the proof candidate on the first level is what the
gate would compute on the inputs provided by the
proof candidate on the last level.

31t is interesting to observe that this description of a circuit
differs in size from a more conventional description by only a
constant factor. In a conventional description, one must assign a
name to each input and gate, which uses logm bits per name. In
this description, it is unnecessary to assign names to gates and
inputs, because their connections are described by the routing
network.



Figure 4: A proof

These conditions will comprise our coloring rules. Our
graph coloring problem is: Given a first coloring of the
graph (a theorem candidate), find a second coloring that
satisfies all the coloring rules (a proof candidate).

7. The Arithmetization

In this section, we provide an algebraic description of
the routing network presented in Section 6. We will
first define a directed graph, G,,, on the elements of the
field GF(2"). Let « be a primitive element of GF(2")
(i.e. an element such that a®"~! = 1 and o? # 1 for
any 0 < p < 2" —1). The set of edges of G,, will be

{(v,07) : 7 € GPE)IU{(r,a7 + 1) : 7 € GF(27)} .
Lemma 11. The graph G,, is isomorphic to the de Bruiyn
graph on 2" vertices.

Proof: [Sketch] Let p(a) = a"+c1a" 1+ +¢, be
an irreducible polynomial in a over GF(2). Represent
the elements of GF(2") ~ GF(2)[a]/p(a) by polynomi-
als of degree at most n — 1 in o over GF(2). We can
construct an isomorphism of the de Bruijn graph with
G, by mapping the vertex (by,...,bs,) to

n—1
a™ by 40" 2 (by +erby) + -+ (bn + Cibn—i) '
i=1

We now see that the shift-left operation on (b1, ...,b,)
is equivalent to multiplication by «, up to the possible
addition of 1. O

Corollary 12. Let r be even, let F = GF(2'/?),
let a be a primitive element of F, and let & =
{ai :0<e < 5r}. The graph on F x F x € with edge
set

{((x,y,z),(y, az,az)):z,y€F and z € £ — a5T}U

{((:L‘,y,z),(y,ax—i— lyaz)):z,y€ F and z € S—a5r}

ts isomorphic to the routing network described in Sec-
tion 6. The x and y coordinates label the row of a node,
and the z coordinate indicates its level.

For the remainder of the paper, we will define F and &
as above. We will also define G = GF(2"). Note that
F 1s a subfield of . It will also be useful to define
E'=E—a".

This algebraic description of the routing network en-
ables us to construct an algebraic formulation of the
coloring rules. We will identify the colors with a sub-
set of F, say {c1,...,cx}. We will then view a theorem
candidate, T, and a proof candidate, P, as functions
from F x F x £ into F. Thus, we can identify a gate
as (z,y) € F x F, and determine what type of gate
it is supposed to be by examining T'(z,y, 1). Similarly,
P(z,y,1) contains the value that P claims gate (z,y)
outputs. To check that P is a proof of T, it suffices to
verify that

0. 0(P(z,y,2)) =0, for all (z,y,z) € FxFxE, where
f(w) = Hle(w — ¢;) is a polynomial that is zero if
and only if w is in the set of colors.

1. ¢(T(z,y,2), P(z,y,2), Py, az,az), Py, az+1,az))
= 0, for all (z,y,2) € F x F x &', where ¢ is a
constant-degree polynomial that, given that its ar-
guments are colors?, is zero if and only if the pat-
terns of 0’s and 1’s assigned by P to (z,y, z) and its
neighbors have been switched in accordance with
the color assigned to (z,y,z) by T' (This arithme-
tizes condition 1 from the previous section).

2. (T (z,y,1), P(z,y,1), P(z,y,a°")) = 0, for all
(z,y) € F x F, where 1 is a constant-degree poly-
nomial that, given that its arguments are colors,
is zero if and only if the output value assigned to
(z,y) by P(z,y,1) corresponds to what the gate as-
signed to (z,y) by T(z,y, 1) would compute on the
inputs provided by P(z,y,a%") (This arithmetizes
condition 2 from the previous section).

We know that the constant-degree polynomials ¢ and
1 exist because they are constrained at only a finite
number of values of their arguments. The advantage
of being able to traverse edges by applying linear poly-
nomials is that the degree of ¢ i1s a constant times the
degree of P. If we applied polynomials of high-degree,
then the degree of ¢ would become too large for us to
obtain the compact representation of ¢ that we will use
to construct nearly-linear size holographic proofs.

4There may be values of P that are elements of F, but which
are not valid colors, that cause ¢ to become zero. This is why we
include condition 0.



8. Constructing Proofs

In this section, we will show how to construct a size
O(m log2 m) probabilistically checkable proof of circuit
satisfiability that can be checked by the examination of
a constant number of segments of the proof, each of size
O(\/Elog2 m). In the next section, we will show how
to apply this proof system recursively to decrease the
query sizes.

In the previous section, we suggested that P and
T be viewed as functions from F x F x & into F.
We may as well view them as polynomials of degree
(2772 — 1,27/ —1,57). Because F C G, we can eval-
uate the polynomials defined by P and T at points of
G.

For a polynomial, P(z,y, z), and a domain D = D; x
Dy x D3 C G x G xG, we will define a presentation of
P on D to be

1. a table of the values of P at every point of D, and

1. a table of the univariate polynomials obtained
by restricting P to each axis-parallel line passing
through D.

We will eventually select sets F C H C G of size 0(2’”/2)
and £ C K C G of size O(5br), and ask that the proof
contain a presentation of P on H x H x K. The entries
in the first table have r bits each and the entries in
the second table, which are univariate polynomials of
degree at most (27/2 — 1), have at most 2'/? bits each
(the polynomials in the z direction are smaller). The
presentation of P will have a total of O(m log® m) bits.

In general, we will define a (d,d,, d,)-presentation
on D to be

1. atable containing one element of G for each element
of D, and

i1. a table of univariate polynomials of degree d, (or
dy or d,) for every line parallel to the z-axis (or y
or z) through D.

We will say that P, a (ds, dy, d,)-presentation on D, is
e-good if there exists a degree (dy,dy, d,) polynomial P
such that the presentation of P on D differs from Pin
at most ¢ entries in tables 7 and ¢z, in which case we
say that P represents P. To test that a presentation is
e-good, the verifier will choose a point of D uniformly at
random and verify that the three polynomials provided
in the second table of the presentation passing through
that point have the value assigned to that point by the
first table. For sufficiently large domains, we can use
Theorem 10 to prove that if the probability that the
presentation passes this test is greater than (1 — ¢), for
some constant k, then the presentation is e-good. We

can repeat this test a few® times to boost our level of
confidence that the table is e-good.

The probabalistically checkable proof will contain a
presentation of P, along with some additional informa-
tion that will help the verifier check that P satisfies
conditions 0, 1, and 2 of Section 7. The construction is
based on the polynomial construction rules introduced
in [Sud92]. We will restrict our discussion to the ver-
ification that condition 1 is satisfied because it is the
most complicated of the three. The proof will consist
of presentations of polynomials that we will call Py, Ps,
61, ¢', ¢" and ¢ on certain domains®. The verifier
will begin by testing that each of these presentations
is e-good for some sufficiently small constant ¢ so that
we can hereafter assume that when the verifier queries
the presentations at randomly chosen places, it gets the
values and restrictions of the polynomials represented.

Let ¢1(z,y,2) = ¢(T(x,y,2), P(z,y, 2), P(y, azx, az),
P(y,az+1,az)). The proof will contain a presentation
of ¢1, a proof that this presentation actually represents
¢1, and a proof that ¢; is zero on the desired domain.
We will assume that the verifier has access to a pre-
sentation of T', either because it has been provided by
another source, or because the verifier has computed it.

Let Pi(z,y,2) = P(y,az,az) and let Py(z,y,2) =
P(y,az + 1,az). The proof will need to provide the
verifier access to Pi(z,y,z) and Pa(z,y,z). It will do
this by providing presentations of these polynomials on
carefully chosen domains. Let F C 7 C G be a set of
size ¢2"/2, for a constant ¢ which we will choose later,
such that Z+1 = Z. Similarly, let £ C J C G be of size
Sre. Welet H = (ZUaZ) and K = (J UaJ), so that
the proof should present P on H x ‘H x K and P; and
Pyona 'H xH xa K.

To check that Pi(z,y,z) = P(y,az,az), the veri-
fier should choose a few points (z,y,2) € H x H X
K uniformly at random and check that P(z,y,z) =
Pi(a~'y,z,a~1z). The verifier should then perform the
analogous test for P,. If the presentations pass these
tests then the verifier will be confident that P, P; and
P satisfy the desired relations.

We now note that Z C H N a~'H and that J C
K Na 'K, and that a presentation of P on T x T x
J 1is contained in the presentation of P on H x H X
K. Similarly, the presentations of P, and P, contain
presentations on Z x Z x 7. Since |Z| > £|H| and |7 | >
%|K|, if the original presentations are e-good, then the
presentations on Z x 7 x J are 8e-good.

The proof should contain a presentation of ¢, on 7 x

5When we say “few”, we mean that there is a constant that
would enable us to prove the theorem, but that we will not use
precious space to determine that constant.

6Marcos Kiwi has pointed out that we can construct the proofs
without using P; and P;.



I x J. The constant ¢ should be chosen so that Z and J
are large enough that we can apply Theorem 10 to show
that we can test that the presentation of ¢; is e-good
(we can choose ¢ to be a constant because the degree
of ¢ is a constant). To test that ¢; has been properly
constructed, the verifier will choose a few points (z, y, 2)
of T x T x J uniformly at random and verify that the
values that the first tables of the presentations of T', P,
P;, Py and ¢; satisfy the relation

¢1(z,y,z) = ¢(T(z,y,z),P(z,y, z),Pl(z,y,z),PQ(x,y, Z))

If the presentation of ¢; passes this test then the verifier
can be confident that the presentation of ¢; represents
the desired polynomial.

Let F = {fi,..., fars2}. In order for the proof to
convince the verifier that ¢1(z, y, z) is zero on F x Fx &',
it should contain presentations of the polynomials ¢', ¢’
and ¢’ on the domain Z x 7 x J, where ¢', ¢'" and ¢’
are defined by

¢/(I,y,2) = Z?;/12¢1(fi:yaz)xi_1 (*)
¢'(2,y,2) = Yo (@, fy )y

(2, y,2) = Yooyl " (x,y,al)2!

r/2 r/2 , ,
= YU S il aat iy

Thus, ¢ = 0 if and only if ¢1(z,y,2) = 0 for all
(z,y,2) € F x F x &. To test that ¢’ satisfies the
required relation with ¢, the verifier will choose a few
lines in 7 x 7 x J parallel to the z-axis and verify that
the restrictions of ¢; and ¢’ to this line satisfy rela-
tion (*). The verifier will similarly test that ¢'' and ¢’
have been well constructed. If these tests are passed,
then the verifier can be confident that the presentation
of ¢ has been properly derived from ¢;. If ¢"' £ 0,
then ¢"/(z,y, z) # 0 for a large constant fraction of the
(z,y,2) €I x T x J, so we can check that ¢/ = 0 by
checking that it is zero at a few randomly chosen points
of TxZTxJ.

We formalize the above discussion in the following
lemma.

Lemma 13. There exists a polynomial time Turing
machine V that, when given a random string R of length
O(logm) and a circuit C of size m as input, will output
the description of a circuit C'r of size O(\/ﬁlog2 m)
such that

t. C'r expects a sequence of strings S as input, each of
which has length at most O(y/mlogm) and whose
total length ts at most O(mlog2 m), but C'r only
reads a constant number of the strings of S,

1i. if there exists an input that causes C' to output I,
then there exists a sequence of strings S so that

Probr[CRr(S) = 1] =1, and

111. if there exists a sequence of strings S such that
Probr[Cr(S) = 1] > 2, then there exists an in-
put that causes C' to output 1.

Proof:  We need to examine the size of the circuit C'g
needed to perform the tests described in the discussion
above. Let C' have n inputs and let 7 be the least integer
such that 2" > n + m. The tests that a presentation is
e-good each involved reading a univariate polynomial
of degree 0(2’/2) and evaluating it at a point of G.
This can be performed by a circuit of size 0(2’/2r2).
The tests that random points of the presentations of T,
P, P;, P; and ¢; satisfied the desired relations can be
performed by circuits of size O(r2).

To verify that relations () are satisfied, the verifier
needs to be able to test that univariate polynomials p(w)
and p'(w) satisfy the relation p/(w) = E?;f p(fi)wi—t.
To enable the verifier to do this, we will choose spe-
cial representations of p and p’: We will represent p’ by
listing its coefficients, but we will represent p by listing
its values at a set of points containing F of size one
greater than the degree of p. This makes it trivial to
check that p(w) and p(w) satisfy the relation. We note
that the size of the circuit needed to evaluate a polyno-
mial at a point does not substantially depend on which
representation we use. The verifier will expect that ¢,
use the list-of-values description of univariate polyno-
mials in the second table of its presentation, and that
the presentation of ¢’ use the coefficient description of
the polynomials in #, and the list-of-values description
of the polynomials in y and z. We can make similar re-
strictions on the presentations of ¢’ and ¢’ to simplify
the rest of the verification process. O

9. Recursion

To apply the proof systems recursively, we will make use
of the input-encoding techniques developed in [BFLS91]
and [AS92]. The statements of the lemma and theo-
rem of this section have a similar form to statements
in [ALM192], except that we analyze the sizes of the
circuits needed to perform the tests that we describe.

For a string z, let F(z) denote the Justesen encod-
ing of z. We will make use of the following standard
properties of Justesen codes [MST77]:

1. The length of E(z) is linear in the length of z.

2. There is a size O(|z|log’(|z|)) circuit that on input
z returns E(z).

3. There is a constant e; such that for z # y,
d(E(z), E(y)) > €, where d is the hamming dis-
tance.



We define E~1(2) to be the lexicographically first string
z that minimizes d(E(z), z). We will now prove:

Lemma 14. There exists a polynomial time Turing
machine Vq that, when given as input a random string
R of length O(logm) and a circuit C' of size m that
takes O(1) strings X1,..., Xy, as input, will output the
description of a circuit C'r of size O(\/ﬁlog4 m) such
that

t. Cr ezpects two types of inputs: Strings Y1,..., Y%,
which are supposed to encode the input strings of
C, and a sequence of strings S, each of which
has length at most O(\/Elog4 m) and whose total

length is at most O(m log4 m), but C'r only reads a
constant number of the strings of S, and a constant
number of bits from each of Y1,...,Y%,

1. if there exist strings Xy,..., Xy that cause C to
output 1, then there exists a sequence of strings S
so that Probg[Cr(S, E(X1),..., E(Xy)) = 1] =1,

and

11, if there exist Y1,...,Yy and a sequence of strings S
such that Probg[Cr(S,Y1,...,Ys) = 1] > 2, then
E=Y(Y1),..., E"Y(Y}) is an input that causes C' to
output 1.

Proof: [Sketch] Let X7i,..., X} be strings that cause
C to output 1. Consider a circuit C’ which contains
both the circuit C' as well as circuits that produce the
Justesen encodings of X1, ..., X;. The strings S should
contain a proof of the form constructed in Section 8 that
C" accepts. After checking this proof, the verifier will
choose a few bits at random of each input string Y; and
verify that these bits agree with the corresponding bits
produced by the Justesen encoding circuits contained in
('. To show that this can be done, we need to prove that
the verifier can check the outputs of individual gates of
the circuit represented in S.

Let P be the presentation of P and let (0, Yo, 20) be
the node of the de Bruijn router whose output value we
would like to examine. It does not suffice to examine
the value at (zg, yo, z0) in the first table of P because
there is no guarantee that the value contained there is
actually P(zg, yo, z0). To obtain a value that we can be
confident is correct, we use an idea from [BF93]: The
verifier should choose a few points of the form (z, y, zo)
uniformly at random and verify that the three polyno-
mials provided in the second table of the presentation
passing through that point have the value assigned to
that point by the first table. Passage of this test certifies
the sub-representation on 7 x 7 x zy. The verifier should
then perform the same test on a few points of the form
(z,Y0,20). Passage of this test certifies that the poly-
nomial representing the restriction of P to 7 x yp X zg

actually is the restriction of P to that line, so the veri-
fier can confidently use the value of that polynomial at
(l‘o, Yo, 20)-

One can verify that these tests can be performed by
circuits of the required sizes. 0O

Theorem 15. For all ¢(n) = O(loglogn), there ezists
a polynomial time Turing machine Va that, when given
a random string R and a circuit C' of size m as input,
will output the description of a circuit Cg of size 2X4(%))
such that

i. Cr expects an input II of n1+2_o(q(n))(log n)O(Q("))
bits, but Cr reads only 249") bits of 11,

1. tf there exists an input that causes C to out-
put 1, then there exists an input Il so that
Probgr[Cr(l) = 1] =1, and

i1i. if there exists an input Il such that Probgr[Cr(Il) =
1] > %, then there exists an input that causes C to
output 1.

Proof: [Sketch] V5 first runs V of Lemma 13. To the
circuit that V' produces, it applies V7 of Lemma 14. It
should repeat the tests indicated by V; a few times to
decrease the error probability to below 1/3. V5 should
then apply V1, and decrease error probability, ¢(n) — 1
more times.

At each level of the recursion, the proof size in-
creases by a factor of at most logo(l)n, the number
of queries increases by a constant factor, and the size
of the strings queried undergoes the transformation
m— /mlogm. After q(n) iterations, we have proofs
of size n(logn)X4(") to which we make 2A4(")) queries,
each of length at most n=27""" " We now apply the
main theorem of [ALM*92] to cap the recursion. This
will enable the verifier to query a constant number of
bits for each string, at the expense of a polynomial ex-
pansion of the size of each string. 0O

Corollary 16. NP = PCP(logn,1), with proofs of
size ntT¢, for any € > 0.

Proof: Let ¢g(n) be a constant in the above theorem. It
is not difficult to verify that only O(logn) random bits
are used.

10. Discussion

In [BFLS91], the authors describe how any proof in any
reasonable formal system can be described as a coloring
problem on a graph. Their framework has the advantage
that their theorem candidate is encoded so that the ver-
ifier need only read a few bits of the theorem candidate,



and the theorem candidate can be much smaller than its
proof. It is not difficult to incorporate our techniques
into their framework. They need a graph that can sort.
Such a graph can be obtained by taking O(T‘Q) levels of
de Bruijn graphs. In fact, one can represent any finite
cartesian product of line-graphs and de Bruijn graphs
in such a way that a node’s neighbors can be obtained
by applying a linear polynomial.

We also want to note that it is possible to bootstrap
a bivariate theorem such as Theorem 9 to obtain an m-
variate version in which we replace the condition n >
26n + 2d with the condition that n > m?(1)(6n + d).
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