
Proceedings of the International Congress of Mathematicians

Hyderabad, India, 2010

Algorithms, Graph Theory, and Linear Equa-

tions in Laplacian Matrices

Daniel A. Spielman ∗

Abstract. The Laplacian matrices of graphs are fundamental. In addition to facilitating
the application of linear algebra to graph theory, they arise in many practical problems.

In this talk we survey recent progress on the design of provably fast algorithms for
solving linear equations in the Laplacian matrices of graphs. These algorithms motivate
and rely upon fascinating primitives in graph theory, including low-stretch spanning trees,
graph sparsifiers, ultra-sparsifiers, and local graph clustering. These are all connected by a
definition of what it means for one graph to approximate another. While this definition is
dictated by Numerical Linear Algebra, it proves useful and natural from a graph theoretic
perspective.

Mathematics Subject Classification (2000). Primary 68Q25; Secondary 65F08.

Keywords. keywords

1. Introduction

We all learn one way of solving linear equations when we first encounter linear
algebra: Gaussian Elimination. In this survey, I will tell the story of some remark-
able connections between algorithms, spectral graph theory, functional analysis
and numerical linear algebra that arise in the search for asymptotically faster al-
gorithms. I will only consider the problem of solving systems of linear equations
in the Laplacian matrices of graphs. This is a very special case, but it is also a
very interesting case. I begin by introducing the main characters in the story.

1. Laplacian Matrices and Graphs. We will consider weighted, undirected,
simple graphs G given by a triple (V, E, w), where V is a set of vertices, E
is a set of edges, and w is a weight function that assigns a positive weight to
every edge. The Laplacian matrix L of a graph is most naturally defined by
the quadratic form it induces. For a vector x ∈ IRV , the Laplacian quadratic
form of G is

xT Lx =
∑

(u,v)∈E

wu,v (x (u) − x (v))
2
.

∗This material is based upon work supported by the National Science Foundation under Grant

Nos. 0634957 and 0915487. Any opinions, findings, and conclusions or recommendations ex-

pressed in this material are those of the authors and do not necessarily reflect the views of the

National Science Foundation.

2 Daniel A. Spielman

Thus, L provides a measure of the smoothness of x over the edges in G. The
more x jumps over an edge, the larger the quadratic form becomes.

The Laplacian L also has a simple description as a matrix. Define the
weighted degree of a vertex u by

d(u) =
∑

v∈V

wu,v.

Define D to be the diagonal matrix whose diagonal contains d, and define
the weighted adjacency matrix of G by

A(u, v) =

{

wu,v if (u, v) ∈ E

0 otherwise.

We have

L = D − A.

It is often convenient to consider the normalized Laplacian of a graph instead
of the Laplacian. It is given by D−1/2LD−1/2, and is more closely related to
the behavior of random walks.

5 4

32

1

1

1
2

1

1 1













2 −1 0 0 −1
−1 3 −1 −1 0
0 −1 2 −1 0
0 −1 −1 4 −2
−1 0 0 −2 3













Figure 1. A Graph on five vertices and its Laplacian matrix. The weights of edges are
indicated by the numbers next to them. All edges have weight 1, except for the edge
between vertices 4 and 5 which has weight 2.

2. Cuts in Graphs. A large amount of algorithmic research is devoted to find-
ing algorithms for partitioning the vertices and edges of graphs (see [LR99,
ARV09, GW95, Kar00]). Given a set of vertices S ⊂ V , we define the bound-
ary of S, written ∂ (S) to be the set of edges of G with exactly one vertex in
S.

For a subset of vertices S, let χS ∈ IRV denote the characteristic vector of S
(one on S and zero outside). If all edge weights are 1, then χT

SLχS equals
the number of edges in ∂ (S). When the edges are weighted, it measures the
sum of their weights.

Computer Scientists are often interested in finding the sets of vertices S that
minimize or maximize the size of the boundary of S. In this survey, we will
be interested in the sets of vertices that minimize the size of ∂ (S) divided

Algorithms, Graph Theory, and Linear Equations in Laplacians 3

by a measure of the size of S. When we measure the number of vertices in
S, we obtain the isoperimetric number of S,

i(S)
def
=

|∂ (S)|
min(|S| , |V − S|) .

If we instead measure the S by the weight of its edges, we obtain the con-
ductance of S, which is given by

φ(S)
def
=

w (∂ (S))

min(d(S), d(V − S))
,

where d(S) is the sum of the weighted degrees of vertices in the set S and
w (∂ (S)) is the sum of the weights of the edges on the boundary of S. The
isoperimetric number of a graph and the conductance of a graph are defined
to be the minima of these quantities over subsets of vertices:

iG
def
= min

S⊂V
i(S) and φG

def
= min

S⊂V
φ(S).

It is often useful to divide the vertices of a graph into two pieces by finding
a set S of low isoperimetric number or conductance, and then partitioning
the vertices according to whether or not they are in S.

3. Expander Graphs. Expander graphs are the regular, unweighted graphs
having high isoperimetric number and conductance. Formally, a sequence of
graphs is said to be a sequence of expander graphs if all of the graphs in the
sequence are regular of the same degree and there exists a constant α > 0
such that φG > α for all graphs G in the family. The higher α, the better.

Expander graphs pop up all over Theoretical Computer Science (see [HLW06]),
and are examples one should consider whenever thinking about graphs.

4. Cheeger’s Inequality. The discrete versions of Cheeger’s inequality [Che70]
relate quantities like the isoperimetric number and the conductance of a
graph to the eigenvalues of the Laplacian and the normalized Laplacian. The
smallest eigenvalue of the Laplacian and the normalized Laplacian is always
zero, and it is has multiplicity 1 for a connected graph. The discrete versions
of Cheeger’s inequality (there are many, see [LS88, AM85, Alo86, Dod84,
Var85, SJ89]) concern the smallest non-zero eigenvalue, which we denote λ2.
For example, we will exploit the tight connection between conductance and
the smallest non-zero eigenvalue of the normalized Laplacian:

2φG ≥ λ2(D
−1/2LD−1/2) ≥ φ2

G/2.

The time required for a random walk on a graph to mix is essentially the
reciprocal of λ2(D

−1/2LD−1/2). Sets of vertices of small conductance are
obvious obstacles to rapid mixing. Cheeger’s inequality tells us that they are
the main obstacle. It also tells us that all non-zero eigenvalues of expander
graphs are bounded away from zero. Indeed, expander graphs are often
characterized by the gap between their Laplacian eigenvalues and zero.

4 Daniel A. Spielman

5. The Condition Number of a Matrix. The condition number of a sym-
metric matrix, written κ(A), is given by

κ(A)
def
= λmax(A)/λmin(A),

where λmax(A) and λmin(A) denote the largest and smallest eigenvalues
of A (for general matrices, we measure the singular values instead of the
eigenvalues). For singular matrices, such as Laplacians, we instead measure
the finite condition number, κf (A), which is the ratio between the largest
and smallest non-zero eigenvalues.

The condition number is a fundamental object of study in Numerical Linear
Algebra. It tells us how much the solution to a system of equations in A
can change when one perturbs A, and it may be used to bound the rate of
convergence of iterative algorithms for solving linear equations in A. From
Cheeger’s inequality, we see that expander graphs are exactly the graphs
whose Laplacian matrices have low condition number. Formally, families of
expanders may be defined by the condition that there is an absolute constant
c such that κf (G) ≤ c for all graphs in the family.

Spectrally speaking, the best expander graphs are the Ramanujan Graphs [LPS88,
Mar88], which are d-regular graphs for which

κf (G) ≤ d + 2
√

d − 1

d − 2
√

d − 1
.

As d grows large, this bound quickly approaches 1.

6. Random Matrix Theory. Researchers in random matrix theory are par-
ticularly concerned with the singular values and eigenvalues of random ma-
trices. Researchers in Computer Science often exploit results from this field,
and study random matrices that are obtained by down-sampling other ma-
trices [AM07, FK99]. We will be interested in the Laplacian matrices of
randomly chosen subgraphs of a given graph.

7. Spanning Trees. A tree is a connected graph with no cycles. As trees
are simple and easy to understand, it often proves useful to approximate a
more complex graph by a tree (see [Bar96, Bar98, FRT04, ACF+04]). A
spanning tree T of a graph G is a tree that connects all the vertices of G
and whose edges are a subset of the edges of G. Many varieties of spanning
trees are studied in Computer Science, including maximum-weight spanning
trees, random spanning trees, shortest path trees, and low-stretch spanning
trees. I find it amazing that spanning trees should have anything to do with
solving systems of linear equations.

This survey begins with an explanation of where Laplacian matrices come from,
and gives some reasons they appear in systems of linear equations. We then briefly
explore some of the popular approaches to solving systems of linear equations,
quickly jumping to preconditioned iterative methods. These methods solve linear

Algorithms, Graph Theory, and Linear Equations in Laplacians 5

equations in a matrix A by multiplying vectors by A and solving linear equations
in another matrix, called a preconditioner. These methods work well when the
preconditioner is a good approximation for A and when linear equations in the
preconditioner can be solved quickly. We will precondition Laplacian matrices of
graphs by Laplacian matrices of other graphs (usually subgraphs), and will use
tools from graph theory to reason about the quality of the approximations and the
speed of the resulting linear equation solvers. In the end, we will see that linear
equations in any Laplacian matrix can be solved to accuracy ǫ in time

O((m + n log n(log log n)2) log ǫ−1),

if one allows polynomial time to precompute the preconditioners. Here n is the
dimension and m is the number of non-zeros in the matrix. When m is much less
than n2, this is less time than would be required to even read the inverse of a
general n-by-n matrix.

The best balance we presently know between the complexity of computing the
preconditioners and solving the linear equations yields an algorithm of complexity

O(m logc n log 1/ǫ),

for some large constant c. We hope this becomes a small constant, say 1 or 2, in
the near future (In fact, it just did [KMP10]).

Highlights of this story include a definition of what it means to approximate
one graph by another, a proof that every graph can be approximated by a sparse
graph, an examination of which trees best approximate a given graph, and local
algorithms for finding clusters of vertices in graphs.

2. Laplacian Matrices

Laplacian matrices of graphs are symmetric, have zero row-sums, and have non-
positive off-diagonal entries. We call any matrix that satisfies these properties a
Laplacian matrix, as there always exists some graph for which it is the Laplacian.

We now briefly list some applications in which the Laplacian matrices of graphs
arise.

1. Regression on Graphs. Imagine that you have been told the value of a
function f on a subset W of the vertices of G, and wish to estimate the
values of f at the remaining vertices. Of course, this is not possible unless
f respects the graph structure in some way. One reasonable assumption is
that the quadratic form in the Laplacian is small, in which case one may
estimate f by solving for the function f : V → IR minimizing f T Lf subject
to f taking the given values on W (see [ZGL03]). Alternatively, one could
assume that the value of f at every vertex v is the weighted average of f at
the neighbors of v, with the weights being proportional to the edge weights.
In this case, one should minimize

∥

∥D−1Lf
∥

∥

6 Daniel A. Spielman

subject to f taking the given values on W . These problems inspire many
uses of graph Laplacians in Machine Learning.

2. Spectral Graph Theory. In Spectral Graph Theory, one studies graphs
by examining the eigenvalues and eigenvectors of matrices related to these
graphs. Fiedler [Fie73] was the first to identify the importance of the eigen-
values and eigenvectors of the Laplacian matrix of a graph. The book of
Chung [Chu97] is devoted to the Laplacian matrix and its normalized ver-
sion.

3. Solving Maximum Flow by Interior Point Algorithms. The Maxi-
mum Flow and Minimum Cost Flow problems are specific linear program-
ming problems that arise in the study of network flow. If one solves these
linear programs by interior point algorithms, then the interior point algo-
rithms will spend most of their time solving systems of linear equations that
can be reduced to restricted Laplacian systems. We refer the reader who
would like to learn more about these reductions to one of [DS08, FG07].

4. Resistor Networks. The Laplacian matrices of graphs arise when one mod-
els electrical flow in networks of resistors. The vertices of a graph correspond
to points at which we may inject or remove current and at which we will
measure potentials. The edges correspond to resistors, with the weight of
an edge being the reciprocal of its resistance. If p ∈ IRV denotes the vec-
tor of potentials and iext ∈ IRV the vectors of currents entering and leaving
vertices, then these satisfy the relation

Lp = iext.

We exploit this formula to compute the effective resistance between pairs of
vertices. The effective resistance between vertices u and v is the difference
in potential one must impose between u and v to flow one unit of current
from u to v. To measure this, we compute the vector p for which Lp = iext,
where

iext(x) =











1 for x = u,

−1 for x = v, and

0 otherwise.

We then measure the difference between p(u) and p(v).

5. Partial Differential Equations. Laplacian matrices often arise when one
discretizes partial differential equations. For example, the Laplacian matrices
of path graphs naturally arise when one studies the modes of vibrations
of a string. Another natural example appears when one applies the finite
element method to solve Laplace’s equation in the plane using a triangulation
with no obtuse angles (see [Str86, Section 5.4]). Boman, Hendrickson and
Vavasis [BHV08] have shown that the problem of solving general elliptic
partial differential equations by the finite element method can be reduced to
the problem of solving linear equations in restricted Laplacian matrices.

Algorithms, Graph Theory, and Linear Equations in Laplacians 7

Many of these applications require the solution of linear equations in Laplacian
matrices, or their restrictions. If the values at some vertices are restricted, then
the problem in the remaining vertices becomes one of solving a linear equation in
a diagonally dominant symmetric M -matrix. Such a matrix is called a Stieltjes
matrix, and may be expressed as a Laplacian plus a non-negative diagonal ma-
trix. A Laplacian is always positive semi-definite, and if one adds a non-negative
non-zero diagonal matrix to the Laplacian of a connected graph, the result will al-
ways be positive definite. The problem of computing the smallest eigenvalues and
corresponding eigenvectors of a Laplacian matrix is often solved by the repeated
solution of linear equations in that matrix.

3. Solving Linear Equations in Laplacian Matrices

There are two major approaches to solving linear equations in Laplacian matrices.
The first are direct methods. These are essentially variants of Gaussian elimina-
tion, and lead to exact solutions. The second are the iterative (indirect) methods.
These provide successively better approximations to a system of linear equations,
typically requiring a number of iterations proportional to log ǫ−1 to achieve accu-
racy ǫ.

3.1. Direct Methods. When one applies Gaussian Elimination to a matrix
A, one produces a factorization of A in the form LU where U is an upper-triangular
matrix and L is a lower-triangular matrix with 1s on the diagonal. Such a factor-
ization allows one to easily solve linear equations in a matrix A, as one can solve
a linear equation in an upper- or lower-triangular matrix in time proportional to
its number of non-zero entries. When solving equations in symmetric positive-
definite matrices, one uses the more compact Cholesky factorization which has the
form LLT , where L is a lower-triangular matrix. If you are familiar with Gaussian
elimination, then you can understand Cholesky factorization as doing the obvious
elimination to preserve symmetry: every row-elimination is followed by the corre-
sponding column-elimination. While Laplacian matrices are not positive-definite,
one can use essentially the same algorithm if one stops when the remaining matrix
has dimension 2.

When applying Cholesky factorization to positive definite matrices one does
not have to permute rows or columns to avoid having pivots that are zero [GL81].
However, the choice of which row and column to eliminate can have a big impact on
the running time of the algorithm. Formally speaking, the choice of an elimination
ordering corresponds to the choice of a permutation matrix P for which we factor
PAPT = LLT . By choosing an elimination ordering carefully, one can sometimes
find a factorization of the form LLT in which L is very sparse and can be computed
quickly. For the Laplacian matrices of graphs, this process has a very clean graph
theoretic interpretation. The rows and columns correspond to vertices. When one
eliminates the row and column corresponding to a vertex, the resulting matrix is
the Laplacian of a graph in which that vertex has been removed, but in which all

8 Daniel A. Spielman

of its neighbors have been connected. The weights with which they are connected
naturally depend upon the weights with which they were connected to the elimi-
nated vertex. Thus, we see that the number of entries in L depends linearly on the
sum of the degrees of vertices when they are eliminated, and the time to compute
L depends upon the sum of the squares of the degrees of eliminated vertices.

5 4

32

1
2

1

0.5 1 1













2 0 0 0 0
0 2.5 −1 −1 −0.5
0 −1 2 −1 0
0 −1 −1 4 −2
0 −0.5 0 −2 2.5













5 4

32

1
2.2

0.2
1.4













2 0 0 0 0
0 2.5 0 0 0
0 0 1.6 −1.4 −0.2
0 0 −1.4 3.6 −2.2
0 0 −0.2 −2.2 2.4

























1 0 0 0 0
−.5 1 0 0 0
0 −.4 1 0 0
0 −.4 0 1 0

−.5 −.2 0 0 1

























2 0 0 0 0
0 2.5 0 0 0
0 0 1.6 −1.4 −0.2
0 0 −1.4 3.6 −2.2
0 0 −0.2 −2.2 2.4

























1 −.5 0 0 −.5
0 1 −.4 −.4 −.2
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













Figure 2. The first line depicts the result of eliminating vertex 1 from the graph in
Figure 1. The second line depicts the result of also eliminating vertex 2. The third line
presents the factorization of the Laplacian produced so far.

For example, if G is a path graph then its Laplacian will be tri-diagonal. A
vertex at the end of the path has degree 1, and its elimination results in a path
that is shorter by one. Thus, one may produce a Cholesky factorization of a path
graph with at most 2n non-zero entries in time O(n). One may do the same if G
is a tree: a tree always has a vertex of degree 1, and its elimination results in a
smaller tree. Even when dealing with a graph that is not a tree, similar ideas may
be applied. Many practitioners use the Minimum Degree Ordering [TW67] or the
Approximate Minimum Degree Ordering [ADD96] in an attempt to minimize the
number of non-zero entries in L and the time required to compute it.

For graphs that can be disconnected into pieces of approximately the same
size without removing too many vertices, one can find orderings that result in
lower-triangular factors that are sparse. For example, George’s Nested Dissection
Algorithm [Geo73] can take as input the Laplacian of a weighted

√
n-by-

√
n grid

graph and output a lower-triangular factorization with O(n log n) non-zero entries
in time O(n3/2). This algorithm was generalized by Lipton, Rose and Tarjan to
apply to any planar graph [LRT79]. They also proved the more general result

Algorithms, Graph Theory, and Linear Equations in Laplacians 9

that if G is a graph such that all subgraphs of G having k vertices can be divided
into pieces of size at most αk (for some constant α < 1) by the removal of at
most O(kσ) vertices (for σ > 1/2), then the Laplacian of G has a lower-triangular
factorization with at most O(n2σ) non-zero entries that can be computed in time
O(n3σ). For example, this would hold if k-vertex subgraph of G has isoperimetric
number at most O(kσ).

Of course, one can also use Fast Matrix Inversion [CW82] to compute the inverse
of a matrix in time approximately O(n2.376). This approach can also be used to
accelerate the computation of LLT factorizations in the algorithms of Lipton, Rose
and Tarjan (see [LRT79] and [BH74]).

3.2. Iterative Methods. Iterative algorithms for solving systems of linear
equations produce successively better approximate solutions. The most fundamen-
tal of these is the Conjugate Gradient algorithm. Assume for now that we wish to
solve the linear system

Ax = b,

where A is a symmetric positive definite matrix. In each iteration, the Conju-
gate Gradient multiplies a vector by A. The number of iterations taken by the
algorithm may be bounded in terms of the eigenvalues of A. In particular, the Con-
jugate Gradient is guaranteed to produce an ǫ-approximate solution x̃ in at most
O(
√

κf(A) log(1/ǫ)) iterations, where we say that x̃ is an ǫ-approximate solution
if

‖x̃ − x‖A ≤ ǫ ‖x‖A ,

where x is the actual solution and

‖x‖A =
√

xT Ax .

The Conjugate Gradient algorithm thereby reduces the problem of solving a linear
system in A to the application of many multiplications by A. This can produce a
significant speed improvement when A is sparse.

One can show that the Conjugate Gradient algorithm will never require more
than n iterations to compute the exact solution (if one uses with exact arithmetic).
Thus, if A has m non-zero entries, the Conjugate Gradient will produce solutions to
systems in A in time at most O(mn). In contrast, Lipton, Rose and Tarjan [LRT79]
prove that if A is the Laplacian matrix of a good expander having m = O(n)
edges, then under every ordering the lower-triangular factor of the Laplacian has
almost n2/2 non-zero entries and requires almost n3/6 operations to compute by
the Cholesky factorization algorithm.

While Laplacian matrices are always singular, one can apply the Conjugate
Gradient to solve linear equations in these matrices with only slight modification.
In this case, we insist that b be in the range of the matrix. This is easy to check
as the null space of the Laplacian of a connected graph is spanned by the all-ones
vector. The same bounds on the running time of the Conjugate Gradient then
apply. Thus, when discussing Laplacian matrices we will use the finite condition

10 Daniel A. Spielman

number κf , which measures the largest eigenvalue divided by the smallest non-zero
eigenvalue.

Recall that expander graphs have low condition number, and so linear equations
in the Laplacians of expanders can be solved quickly by the Conjugate Gradient.
On the other hand, if a graph and all of its subgraphs have cuts of small isoperi-
metric number, then one can apply Generalized Nested Dissection [LRT79] to solve
linear equations in its Laplacian quickly. Intuitively, this tells us that it should be
possible to solve every Laplacian system quickly as it seems that either the Conju-
gate Gradient or Cholesky factorization with the appropriate ordering should be
fast. While this argument cannot be made rigorous, it does inform our design of a
fast algorithm.

3.3. Preconditioned Iterative Methods. Iterative methods can be
greatly accelerated through the use of preconditioning. A good preconditioner for
a matrix A is another matrix B that approximates A and such that it is easy
to solve systems of linear equations in B. A preconditioned iterative solver uses
solutions to linear equations in B to obtain accurate solutions to linear equations
in A.

For example, in each iteration the Preconditioned Conjugate Gradient (PCG)
solves a system of linear equations in B and multiplies a vector by A. The number
of iterations the algorithm needs to find an ǫ-accurate solution to a system in A
may be bounded in terms of the relative condition number of A with respect to
B, written κ(A, B). For symmetric positive definite matrices A and B, this may
be defined as the ratio of the largest to the smallest eigenvalue of AB−1. One can
show that PCG will find an ǫ-accurate solution in at most O(

√

κ(A, B) log ǫ−1)
iterations. Tighter bounds can sometimes be proved if one knows more about the
eigenvalues of AB−1. Preconditioners have proved incredibly useful in practice.
For Laplacians, incomplete Cholesky factorization preconditioners [MV77] and
Multigrid preconditioners [BHM01] have proved particularly useful.

The same analysis of the PCG applies when A and B are Laplacian matrices of
connected graphs, but with κf (A, B) measuring the ratio of the largest to smallest
non-zero eigenvalue of AB+, where B+ is the Moore-Penrose pseudoinverse of B.
We recall that for a symmetric matrix B with spectral decomposition

B =
∑

i

λiv iv
T
i ,

the pseudoinverse of B is given by

B+ =
∑

i:λi 6=0

1

λi
v iv

T
i .

That is, B projects a vector onto the image of A and then acts as the inverse of A
on its image. When A and B are the Laplacian matrices of graphs, we will view
κf (A, B) as a measure of how well those graphs approximate one another.

Algorithms, Graph Theory, and Linear Equations in Laplacians 11

4. Approximation by Sparse Graphs

Sparsification is the process of approximating a given graph G by a sparse graph
H . We will say that H is an α-approximation of G if

κf (LG, LH) ≤ 1 + α, (1)

where LG and LH are the Laplacian matrices of G and H . This tells us that G
and H are similar in many ways. In particular, they have similar eigenvalues and
the effective resistances in G and H between every pair of nodes is approximately
the same.

The most obvious way that sparsification can accelerate the solution of linear
equations is by replacing the problem of solving systems in dense matrices by
the problem of solving systems in sparse matrices. Recall that the Conjugate
Gradient, used as a direct solver, can solve systems in n-dimensional matrices with
m non-zero entries in time O(mn). So, if we could find a graph H with O(n) non-
zero entries that was even a 1-approximation of G, then we could quickly solve
systems in LG by using the Preconditioned Conjugate Gradient with LH as the
preconditioner, and solving the systems in LH by the Conjugate Gradient. Each
solve in H would then take time O(n2), and the number of iterations of the PCG
required to get an ǫ-accurate solution would be O(log ǫ−1). So, the total complexity
would be

O((m + n2) log ǫ−1).

Sparsifiers are also employed in the fastest algorithms for solving linear equations
in Laplacians, as we will later see in Section 7.

But, why should we believe that such good sparsifiers should exist? We believed
it because Benczur and Karger [BK96] developed something very similar in their
design of fast algorithms for the minimum cut problem. Benczur and Karger proved
that for every graph G there exists a graph H with O(n log n/α2) edges such that
the weight of every cut in H is approximately the same as in G. This could either
be expressed by writing

w(δH(S)) ≤ w(δG(S)) ≤ (1 + α)w(δH(S)), for every S ⊂ V ,

or by

χT
SLHχS ≤ χT

S LGχS ≤ (1 + α)χT
S LHχS , for every χS ∈ {0, 1}V

. (2)

A sparsifier H satisfies (1) if it satisfies (2) for all vectors in IRV , rather than just

{0, 1}V
. To distinguish Benczur and Karger’s type of sparsifiers from those we

require, we call their sparsifiers cut sparsifiers and ours spectral sparsifiers.
Benczur and Karger proved their sparsification theorem by demonstrating that

if one forms H at random by choosing each edge of G with an appropriate probabil-
ity, and re-scales the weights of the chosen edges, then the resulting graph probably
satisfies their requirements. Spielman and Srivastava [SS10a] prove that a different
choice probabilities results in spectral sparsifiers that also have O(n log n/α2) edges
and are α-approximations of the original graph. The probability distribution turns

12 Daniel A. Spielman

out to be very natural: one chooses each edge with probability proportional to the
product of its weight with the effective resistance between its endpoints. After
some linear algebra, their theorem follows from the following result of Rudelson
and Vershynin [RV07] that lies at the intersection of functional analysis with ran-
dom matrix theory.

Lemma 4.1. Let y ∈ IRn be a random vector for which ‖y‖ ≤ M and

E
[

yyT
]

= I.

Let y1, . . . ,yk be independent copies of y . Then,

E

[∥

∥

∥

∥

∥

1

k

k
∑

i=1

y iy
T
i − I

∥

∥

∥

∥

∥

]

≤ C

√
log k√

k
M,

for some absolute constant C, provided that the right hand side is at most 1.

For computational purposes, the drawback of the algorithm of Spielman and
Srivastava is that it requires knowledge of the effective resistances of all the edges
in the graph. While they show that it is possible to approximately compute all of
these at once in time m logO(1) n, this computation requires solving many linear
equations in the Laplacian of the matrix to be sparsified. So, it does not help us
solve linear equations quickly. We now examine two directions in which sparsifi-
cation has been improved: the discovery of sparsifiers with fewer edges and the
direct construction of sparsifiers in nearly-linear time.

4.1. Sparsifiers with a linear number of edges. Batson, Spielman
and Srivastava [BSS09] prove that for every weighted graph G and every β > 0
there is a weighted graph H with at most

⌈

n/β2
⌉

edges for which

κf (LG, LH) ≤
(

1 + β

1 − β

)2

.

For β < 1/10, this means that H is a 1 + 5β approximation of G. Thus, ev-
ery Laplacian can be well-approximated by a Laplacian with a linear number of
edges. Such approximations were previously known to exist for special families of
graphs. For example, Ramanujan expanders [LPS88, Mar88] are optimal sparse
approximations of complete graphs.

Batson, Spielman and Srivastava [BSS09] prove this result by reducing it to the
following statement about vectors in isotropic position.

Theorem 4.2. Let v1, . . . , vm be vectors in IRn such that
∑

i

v iv
T
i = I.

For every β > 0 there exist scalars si ≥ 0, at most n/β2 of which are non-zero,
such that

κ

(

∑

i

siv iv
T
i

)

≤
(

1 + β

1 − β

)2

.

Algorithms, Graph Theory, and Linear Equations in Laplacians 13

This theorem may be viewed as an extension of Rudelson’s lemma. It does not
concern random sets of vectors, but rather produces one particular set. By avoiding
the use of random vectors, it is possible to produce a set of O(n) vectors instead of
O(n log n). On the other hand, these vectors now appear with coefficients si. We
believe that these coefficients are unnecessary if all the vectors v i have the same
norm. However, this statement may be non-trivial to prove as it would imply
Weaver’s conjecture KS2, and thereby the Kadison-Singer conjecture [Wea04].

The proof of Theorem 4.2 is elementary. It involves choosing the coefficient of
one vector at a time. Potential functions are introduced to ensure that progress
is being made. Success is guaranteed by proving that at every step there is a
vector whose coefficient can be made non-zero without increasing the potential
functions. The technique introduced in this argument has also been used [SS10b]
to derive an elementary proof of Bourgain and Tzafriri’s restricted invertibility
principle [BT87].

4.2. Nearly-linear time computation. Spielman and Teng [ST08b]
present an algorithm that takes time O(m log13 n) and produces ǫ sparsifiers with
O(n log29 n/ǫ2) edges. While this algorithm takes nearly-linear time and is asymp-
totically faster than any algorithm taking time O(mc) for any c > 1, it is too
slow to be practical. Still, it is the asymptotically fastest algorithm for producing
sparsifiers that we know so far. The algorithms relies upon other graph theoretic
algorithms that are interesting in their own right.

The key insight in the construction of [ST08b] is that if G has high conductance,
then one can find a good sparsifier of G through a very simple random sampling
algorithm. On the other hand, if G does not have high conductance then one can
partition the vertices of G into two parts without removing too many edges. By
repeatedly partitioning in this way, one can divide any dense graph into parts of
high conductance while removing only a small fraction of its edges (see also [Tre05]
and [KVV04]). One can then produce a sparsifier by randomly sampling edges from
the components of high conductance, and by recursively sparsifying the remaining
edges.

However, in order to make such an algorithm fast, one requires a way of quickly
partitioning a graph into subgraphs of high conductance without removing too
many edges. Unfortunately, we do not yet know how to do this.

Problem 1. Design a nearly-linear time algorithm that partitions the vertices of a
graph G into sets V1, . . . , Vk so that the conductance of the induced graph on each
set Vi is high (say Ω(1/ logn)) and at most half of the edges of G have endpoints
in different components.

Instead, Spielman and Teng [ST08b] show that the result of O(log n) iterations
of repeated approximate partitioning suffice for the purposes of sparsification.

This leaves the question of how to approximately partition a graph in nearly-
linear time. Spielman and Teng [ST08a] found such an algorithm by designing an
algorithm for the local clustering problem, which we describe further in Section 8.

14 Daniel A. Spielman

Problem 2. Design an algorithm that on input a graph G and an α ≤ 1 produces
an α-approximation of G with O(n/α2) edges in time O(m log n).

5. Subgraph Preconditioners and Support Theory

The breakthrough that led to the work described in the rest of this survey was
Vaidya’s idea of preconditioning Laplacian matrices of graphs by the Laplacians
of subgraphs of those graphs [Vai90]. The family of preconditioners that followed
have been referred to as subgraph or combinatorial preconditioners, and the tools
used to analyze them are known as “support theory”.

Support theory uses combinatorial techniques to prove inequalities on the Lapla-
cian matrices of graphs. Given positive semi-definite matrices A and B, we write

A < B

if A−B is positive semi-definite. This is equivalent to saying that for all x ∈ IRV

xT Ax < xT Bx .

Boman and Hendrickson [BH03] show that if if σA,B and σB,A are the least con-
stants such that

σA,BA < B and σB,AB < A,

then

λmax(AB+) = σB,A, λmin(AB+) = σA,B , and κ(A, B) = σA,BσB,A.

Such inequalities are natural for the Laplacian matrices of graphs.
Let G = (V, E, w) be a graph and H = (V, F, w) be a subgraph, where we have

written w in both to indicate that edges that appear in both G and H should have
the same weights. Let LG and LH denote the Laplacian matrices of these graphs.
We then know that

xT LGx =
∑

(u,v)∈E

wu,v (x (u) − x (v))
2 ≥

∑

(u,v)∈F

wu,v (x (u) − x (v))
2

= xT LHx .

So, LG < LH .
For example, Vaidya [Vai90] suggested preconditioning the Laplacian of graph

by the Laplacian of a spanning tree. As we can use a direct method to solve
linear equations in the Laplacians of trees in linear time, each iteration of the
PCG with a spanning tree preconditioner would take time O(m + n), where m
is the number of edges in the original graph. In particular, Vaidya suggested
preconditioning by the Laplacian of a maximum spanning tree. One can show that
if T is a maximum spanning tree of G, then (nm)LT < LG (see [BGH+06] for
details). While maximum spanning trees can be good preconditioners, this bound
is not sufficient to prove it. From this bound, we obtain an upper bound of nm
on the relative condition number, and thus a bound of O(

√
nm) on the number

of iterations of PCG. However, we already know that PCG will not require more
than n iterations. To obtain provably faster spanning tree preconditioners, we
must measure their quality in a different way.

Algorithms, Graph Theory, and Linear Equations in Laplacians 15

6. Low-Stretch Spanning Trees

Boman and Hendrickson [BH01] recognized that for the purpose of preconditioning,
one should measure the stretch of a spanning tree. The concept of the stretch of
a spanning tree was first introduced by Alon, Karp, Peleg and West [AKPW95]
in an analysis of algorithms for the k-server problem. However, it can be cleanly
defined without reference that problem.

We begin by defining the stretch for graphs in which every edge has weight 1.
If T is a spanning tree of G = (V, E), then for every edge (u, v) ∈ E there is a
unique path in T connecting u to v. When all the weights in T and G are 1, the
stretch of (u, v) with respect to T , written stT (u, v), is the number of edges in that
path. The stretch of G with respect to T is then the sum of the stretches of all the
edges in G:

stT (G) =
∑

(u,v)∈E

stT (u, v).

For a weighted graph G = (V, E, w) and spanning tree T = (V, F, w), the stretch
of an edge e ∈ E with respect to T may be defined by assigning a length to every
edge equal to the reciprocal of its weight. The stretch of an edge e ∈ E is then
just the length of the path in T between its endpoints divided by the length of e:

stT (e) = we





∑

f∈P

1

wf



 ,

where P is the set of edges in the path in T from u to v. This may also be viewed
as the effective resistance between u and v in T divided by the resistance of the
edge e. To see this, recall that the resistances of edges are the reciprocals of their
weights and that the effective resistance of a chain of resistors is the sum of their
resistances.

Using results from [BH03], Boman and Hendrickson [BH01] proved that

stT (G)LT < LG.

Alon et al. [AKPW95] proved the surprising result that every weighted graph G
has a spanning tree T for which

stT (G) ≤ m2O(
√

log n log log n) ≤ m1+o(1),

where m is the number of edges in G. They also showed how to construct such a
tree in time O(m log n). Using these low-stretch spanning trees as preconditioners,
one can solve a linear system in a Laplacian matrix to accuracy ǫ in time

O(m3/2+o(1) log ǫ−1).

Presently the best construction of low-stretch spanning trees is that of Abraham,
Bartal and Neiman [ABN08], who employ the star-decomposition of Elkin, Emek,
Spielman and Teng [EEST08] to prove the following theorem.

16 Daniel A. Spielman

Theorem 6.1. Every weighted graph G has a spanning tree T such that

stT (G) ≤ O(m log n log log n (log log log n)3) ≤ O(m log n(log log n)2)

where m is the number of edges G. Moreover, one can compute such a tree in time
O(m log n + n log2 n).

This result is almost tight: one can show that there are graphs with 2n edges
and no cycles of length less than c log n for some c > 0 (see [Mar82] or [Bol98,
Section III.1]). For such a graph G and every spanning tree T ,

stT (G) ≥ Ω(n log n).

We ask if one can achieve this lower bound.

Problem 3. Determine whether every weighted graph G has a spanning tree T for
which

stT (G) ≤ O(m log n).

If so, find an algorithm that computes such a T in time O(m log n).

It would be particularly exciting to prove a result of this form with small
constants.

Problem 4. Is it true that every weighted graph G on n vertices has a spanning
tree T such that

κf (LG, LT) ≤ O(n)?

It turns out that one can say much more about low-stretch spanning trees as
preconditioners. Spielman and Woo [SW09] prove that stT (G) equals the trace
of LGL+

T . As the largest eigenvalue of LGL+
T is at most the trace, the bound

on the condition number of the graph with respect to a spanning tree follows
immediately. This bound proves useful in two other ways: it is the foundation of
the best constructions of preconditioners, and it tells us that low-stretch spanning
trees are even better preconditioners than we believed.

Once we know that stT (G) equals the trace of LGL+
T , we know much more

about the spectrum of LGL+
T than just lower and upper bounds on its smallest and

largest eigenvalues. We know that LGL+
T cannot have too many large eigenvalues.

In particular, we know that it has at most k eigenvalues larger than stT (G)/k.
Spielman and Woo [SW09] use this fact to prove that PCG actually only requires
O((stT (G))1/3 log 1/ǫ) iterations. Kolla, Makarychev, Saberi and Teng [KMST09]
observe that one could turn T into a much better preconditioner if one could just
fix a small number of eigenvalues. We make their argument precise in the next
section.

7. Ultra-Sparsifiers

Perhaps because maximum spanning trees do not yield worst-case asymptotic im-
provements in the time required to solve systems of linear equations, Vaidya [Vai90]

Algorithms, Graph Theory, and Linear Equations in Laplacians 17

discovered ways of improving spanning tree preconditioners. He suggested aug-
menting a spanning tree preconditioner by adding o(n) edges to it. In this way,
one obtains a graph that looks mostly like a tree, but has a few more edges. We
will see that it is possible to obtain much better preconditioners this way. It is
intuitive that one could use this technique to find graphs with lower relative con-
dition numbers. For example, if for every edge that one added to the tree one
could “fix” one eigenvalue of LGL+

T , then by adding n2/stT (G) edges one could
produce an augmented graph with relative condition number at most (stT (G)/n)2.
We call a graph with n + o(n) edges that provides a good approximation of G an
ultra-sparsifier of G.

We must now address the question of how one would solve a system of linear
equations in an ultra-sparsifier. As an ultra-sparsifier mostly looks like a tree,
it must have many vertices of degree 1 and 2. Naturally, we use Cholesky fac-
torization to eliminate all such nodes. In fact, we continue eliminating until no
vertex of degree 1 or 2 remains. One can show that if the ultra-sparsifier has n + t
edges, then the resulting graph has at most 3t edges and vertices [ST09, Propo-
sition 4.1]. If t is sufficiently small, we could solve this system directly either by
Cholesky factorization or the Conjugate Gradient. As the matrix obtained after
the elimination is still a Laplacian, we would do even better to solve that system
recursively. This approach was first taken by Joshi [Jos97] and Reif [Rei98]. Spiel-
man and Teng [ST09, Theorem 5.5] prove that if one can find ultra-sparsifiers of
every n-vertex graph with relative condition number cχ2 and at most n + n/χ
edges, for some small constant c, then this recursive algorithm will solve Laplacian
linear systems in time

O(mχ log 1/ǫ).

Kolla et al. [KMST09] have recently shown that such ultrasparsifiers can be ob-
tained from low-stretch spanning trees with

χ = O(stT (G)/n).

For graphs with O(n) edges, this yields a Laplacian linear-equation solver with
complexity

O(n log n (log log n)2 log 1/ǫ).

While the procedure of Kolla et al. for actually constructing the ultrasparsifiers is
not nearly as fast, their result is the first to tell us that such good preconditioners
exist. The next challenge is to construct them quickly.

The intuition behind the Kolla et al. construction of ultrasparsifiers is basically
that explained in the first paragraph of this section. But, they cannot fix each
eigenvalue of the low-stretch spanning tree by the addition of one edge. Rather,
they must add a small constant number of edges to fix each eigenvalue. Their
algorithm successively chooses edges to add to the low-stretch spanning tree. At
each iteration, it makes sure that the edge it adds has the desired impact on the
eigenvalues. Progress is measured by a refinement of the barrier function approach
used by Batson, Spielman and Srivastava [BSS09] for constructing graph sparsifiers.

18 Daniel A. Spielman

Spielman and Teng [ST09] obtained nearly-linear time constructions of ultra-
sparsifiers by combining low-stretch spanning trees with nearly-linear time con-
structions of graph sparsifiers [ST08b]. They showed that in time O(m logc1 n)
one can produce graphs with n + (m/k) logc2 n edges that k-approximate a given
graph G having m edges, for some constants c1 and c2. This construction of
ultra-sparsifiers yielded the first nearly-linear time algorithm for solving systems
of linear equations in Laplacian matrices. This has led to a search for even faster
algorithms.

Two days before the day on which I submitted this paper, I was sent a paper
by Koutis, Miller and Peng [KMP10] that makes tremendous progress on this
problem. By exploiting low-stretch spanning trees and Spielman and Srivastava’s
construction of sparsifiers, they produce ultra-sparsifiers that lead to an algorithm
for solving linear systems in Laplacians that takes time

O(m log2 n (log log n)2 log ǫ−1).

This is much faster than any algorithm known to date.

Problem 5. Can one design an algorithm for solving linear equations in Laplacian
matrices that runs in time O(m log n log ǫ−1) or even in time O(m log ǫ−1)?

We remark that Koutis and Miller [KM07] have designed algorithms for solving
linear equations in the Laplacians of planar graphs that run in time O(m log ǫ−1).

8. Local Clustering

The problem of local graph clustering may be motivated by the following problem.
Imagine that one has a massive graph, and is interesting in finding a cluster of
vertices near a particular vertex of interest. Here we will define a cluster to be a
set of vertices of low conductance. We would like to do this without examining
too many vertices of the graph. In particular, we would like to find such a small
cluster while only examining a number of vertices proportional to the size of the
cluster, if it exists.

Spielman and Teng [ST08a] introduced this problem for the purpose of design-
ing fast graph partitioning algorithms. Their algorithm does not solve this problem
for every choice of initial vertex. Rather, assuming that G has a set of vertices S of
low conductance, they presented an algorithm that works when started from a ran-
dom vertex v of S. It essentially does this by approximating the distribution of a
random walk starting at v. Their analysis exploited an extension of the connection
between the mixing rate of random walks and conductance established by Lovász
and Simonovits [LS93]. Their algorithm and analysis was improved by Andersen,
Chung and Lang [ACL06], who used approximations of the Personal PageRank
vector instead of random walks and also analyzed these using the technique of
Lovász and Simonovits [LS93].

So far, the best algorithm for this problem is that of Andersen and Peres [AP09].
It is based upon the volume-biased evolving set process [MP03]. Their algorithm

Algorithms, Graph Theory, and Linear Equations in Laplacians 19

satisfies the following guarantee. If it is started from a random vertex in a set
of conductance φ, it will output a set of conductance at most O(φ1/2 log1/2 n).

Moreover, the running time of their algorithm is at most O(φ−1/2 logO(1) n) times
the number of vertices in the set their algorithm outputs.

References

[ABN08] I. Abraham, Y. Bartal, and O. Neiman. Nearly tight low stretch spanning
trees. In Proceedings of the 49th Annual IEEE Symposium on Foundations
of Computer Science, pages 781–790, Oct. 2008.

[ACF+04] Yossi Azar, Edith Cohen, Amos Fiat, Haim Kaplan, and Harald Rcke. Opti-
mal oblivious routing in polynomial time. Journal of Computer and System
Sciences, 69(3):383 – 394, 2004. Special Issue on STOC 2003.

[ACL06] Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using
pagerank vectors. In FOCS ’06: Proceedings of the 47th Annual IEEE Sym-
posium on Foundations of Computer Science, pages 475–486, Washington,
DC, USA, 2006. IEEE Computer Society.

[ADD96] Patrick R. Amestoy, Timothy A. Davis, and Iain S. Duff. An approximate
minimum degree ordering algorithm. SIAM Journal on Matrix Analysis and
Applications, 17(4):886–905, 1996.

[AKPW95] Noga Alon, Richard M. Karp, David Peleg, and Douglas West. A graph-
theoretic game and its application to the k-server problem. SIAM Journal
on Computing, 24(1):78–100, February 1995.

[Alo86] N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.

[AM85] Noga Alon and V. D. Milman. λ1, isoperimetric inequalities for graphs, and
superconcentrators. J. Comb. Theory, Ser. B, 38(1):73–88, 1985.

[AM07] Dimitris Achlioptas and Frank Mcsherry. Fast computation of low-rank ma-
trix approximations. J. ACM, 54(2):9, 2007.

[AP09] Reid Andersen and Yuval Peres. Finding sparse cuts locally using evolving
sets. In STOC ’09: Proceedings of the 41st annual ACM symposium on
Theory of computing, pages 235–244, New York, NY, USA, 2009. ACM.

[ARV09] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric
embeddings and graph partitioning. J. ACM, 56(2):1–37, 2009.

[Bar96] Yair Bartal. Probabilistic approximation of metric spaces and its algorithmic
applications. In Proceedings of the 37th Annual Symposium on Foundations
of Computer Science, page 184. IEEE Computer Society, 1996.

[Bar98] Yair Bartal. On approximating arbitrary metrices by tree metrics. In Pro-
ceedings of the thirtieth annual ACM symposium on Theory of computing,
pages 161–168, 1998.

[BGH+06] M. Bern, J. Gilbert, B. Hendrickson, N. Nguyen, and S. Toledo. Support-
graph preconditioners. SIAM Journal on Matrix Analysis and Applications,
27(4):930–951, 2006.

20 Daniel A. Spielman

[BH74] James R. Bunch and John E. Hopcroft. Triangular factorization and inversion
by fast matrix multiplication. Mathematics of Computation, 28(125):231–236,
1974.

[BH01] Erik Boman and B. Hendrickson. On spanning tree preconditioners.
Manuscript, Sandia National Lab., 2001.

[BH03] Erik G. Boman and Bruce Hendrickson. Support theory for preconditioning.
SIAM Journal on Matrix Analysis and Applications, 25(3):694–717, 2003.

[BHM01] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial,
2nd Edition. SIAM, 2001.

[BHV08] Erik G. Boman, Bruce Hendrickson, and Stephen Vavasis. Solving elliptic fi-
nite element systems in near-linear time with support preconditioners. SIAM
Journal on Numerical Analysis, 46(6):3264–3284, 2008.

[BK96] András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in
O(n2) time. In Proceedings of The Twenty-Eighth Annual ACM Symposium
On The Theory Of Computing (STOC ’96), pages 47–55, May 1996.

[Bol98] Béla Bollobás. Modern graph theory. Springer-Verlag, New York, 1998.

[BSS09] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-
Ramanujan sparsifiers. In Proceedings of the 41st Annual ACM Symposium
on Theory of computing, pages 255–262, 2009.

[BT87] J. Bourgain and L. Tzafriri. Invertibility of ”large” sumatricies with applica-
tions to the geometry of banach spaces and harmonic analysis. Israel Journal
of Mathematics, 57:137–224, 1987.

[Che70] J. Cheeger. A lower bound for smallest eigenvalue of the Laplacian. In
Problems in Analysis, pages 195–199, Princeton University Press, 1970.

[Chu97] Fan R. K. Chung. Spectral Graph Theory. CBMS Regional Conference Series
in Mathematics. American Mathematical Society, 1997.

[CW82] D. Coppersmith and S. Winograd. On the asymptotic complexity of matrix
multiplication. SIAM Journal on Computing, 11(3):472–492, August 1982.

[Dod84] Jozef Dodziuk. Difference equations, isoperimetric inequality and transience
of certain random walks. Transactions of the American Mathematical Society,
284(2):787–794, 1984.

[DS08] Samuel I. Daitch and Daniel A. Spielman. Faster approximate lossy gener-
alized flow via interior point algorithms. In Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, pages 451–460, 2008.

[EEST08] Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-Hua Teng.
Lower-stretch spanning trees. SIAM Journal on Computing, 32(2):608–628,
2008.

[FG07] A. Frangioni and C. Gentile. Prim-based support-graph preconditioners
for min-cost flow problems. Computational Optimization and Applications,
36(2):271–287, 2007.

[Fie73] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical
Journal, 23(98):298–305, 1973.

[FK99] Alan Frieze and Ravi Kannan. Quick approximation to matrices and appli-
cations. Combinatorica, 19(2):175–220, 1999.

Algorithms, Graph Theory, and Linear Equations in Laplacians 21

[FRT04] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on
approximating arbitrary metrics by tree metrics. Journal of Computer and
System Sciences, 69(3):485 – 497, 2004. Special Issue on STOC 2003.

[Geo73] Alan George. Nested dissection of a regular finite element mesh. SIAM
Journal on Numerical Analysis, 10(2):345–363, 1973.

[GL81] J. A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive
Definite Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[GW95] Michel X. Goemans and David P. Williamson. Improved approximation al-
gorithms for maximum cut and satisfiability problems using semidefinite pro-
gramming. J. ACM, 42(6):1115–1145, 1995.

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and
their applications. Bulletin of the American Mathematical Society, 43(4):439–
561, 2006.

[Jos97] Anil Joshi. Topics in Optimization and Sparse Linear Systems. PhD thesis,
UIUC, 1997.

[Kar00] David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76,
2000.

[KM07] Ioannis Koutis and Gary L. Miller. A linear work, o(n1/6) time, parallel
algorithm for solving planar Laplacians. In Proceedings of the 18th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1002–1011, 2007.

[KMP10] Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching
optimality for solving sdd systems. March 2010. Available at
http://arxiv.org/abs/1003.2958v1.

[KMST09] Alexandra Kolla, Yury Makarychev, Amin Saberi, and Shanghua Teng.
Subgraph sparsification and nearly optimal ultrasparsifiers. CoRR,
abs/0912.1623, 2009.

[KVV04] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good,
bad and spectral. J. ACM, 51(3):497–515, 2004.

[LPS88] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988.

[LR99] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems
and their use in designing approximation algorithms. Journal of the ACM,
46(6):787–832, November 1999.

[LRT79] Richard J. Lipton, Donald J. Rose, and Robert Endre Tarjan. Generalized
nested dissection. SIAM Journal on Numerical Analysis, 16(2):346–358, April
1979.

[LS88] Gregory F. Lawler and Alan D. Sokal. Bounds on the l
2 spectrum for Markov

chains and Markov processes: A generalization of Cheeger’s inequality. Trans-
actions of the American Mathematical Society, 309(2):557–580, 1988.

[LS93] Lovasz and Simonovits. Random walks in a convex body and an improved
volume algorithm. RSA: Random Structures & Algorithms, 4:359–412, 1993.

[Mar82] G. A. Margulis. Graphs without short cycles. Combinatorica, 2:71–78, 1982.

[Mar88] G. A. Margulis. Explicit group theoretical constructions of combinatorial
schemes and their application to the design of expanders and concentrators.
Problems of Information Transmission, 24(1):39–46, July 1988.

22 Daniel A. Spielman

[MP03] Ben Morris and Yuval Peres. Evolving sets and mixing. In STOC ’03: Pro-
ceedings of the thirty-fifth annual ACM symposium on Theory of computing,
pages 279–286, New York, NY, USA, 2003. ACM.

[MV77] J. A. Meijerink and H. A. van der Vorst. An iterative solution method
for linear systems of which the coefficient matrix is a symmetric m-matrix.
Mathematics of Computation, 31(137):148–162, 1977.

[Rei98] John Reif. Efficient approximate solution of sparse linear systems. Computers
and Mathematics with Applications, 36(9):37–58, 1998.

[RV07] Mark Rudelson and Roman Vershynin. Sampling from large matrices: An
approach through geometric functional analysis. J. ACM, 54(4):21, 2007.

[SJ89] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform gener-
ation and rapidly mixing Markov chains. Information and Computation,
82(1):93–133, July 1989.

[SS10a] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective
resistances. SIAM Journal on Computing, 2010. To appear.

[SS10b] Daniel A. Spielman and Nikhil Srivastava. Title: An elemen-
tary proof of the restricted invertibility theorem. Available at
http://arxiv.org/abs/0911.1114, 2010.

[ST08a] Daniel A. Spielman and Shang-Hua Teng. A local clustering al-
gorithm for massive graphs and its application to nearly-linear time
graph partitioning. CoRR, abs/0809.3232, 2008. Available at
http://arxiv.org/abs/0809.3232.

[ST08b] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsifi-
cation of graphs. CoRR, abs/0808.4134, 2008. Available at
http://arxiv.org/abs/0808.4134.

[ST09] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time al-
gorithms for preconditioning and solving symmetric, diagonally dom-
inant linear systems. CoRR, abs/cs/0607105, 2009. Available at
http://www.arxiv.org/abs/cs.NA/0607105.

[Str86] Gilbert Strang. Introduction to Applied Mathematics. Wellesley-Cambridge
Press, 1986.

[SW09] Daniel A. Spielman and Jaeoh Woo. A note on preconditioning by
low-stretch spanning trees. CoRR, abs/0903.2816, 2009. Available at
http://arxiv.org/abs/0903.2816.

[Tre05] Lucan Trevisan. Approximation algorithms for unique games. Proceedings
of the 46th Annual IEEE Symposium on Foundations of Computer Science,
pages 197–205, Oct. 2005.

[TW67] W.F. Tinney and J.W. Walker. Direct solutions of sparse network equa-
tions by optimally ordered triangular factorization. Proceedings of the IEEE,
55(11):1801 – 1809, nov. 1967.

[Vai90] Pravin M. Vaidya. Solving linear equations with symmetric diagonally domi-
nant matrices by constructing good preconditioners. Unpublished manuscript
UIUC 1990. A talk based on the manuscript was presented at the IMA Work-
shop on Graph Theory and Sparse Matrix Computation, October 1991, Min-
neapolis., 1990.

Algorithms, Graph Theory, and Linear Equations in Laplacians 23

[Var85] N. Th. Varopoulos. Isoperimetric inequalities and Markov chains. Journal of
Functional Analysis, 63(2):215 – 239, 1985.

[Wea04] Nik Weaver. The Kadison-Singer problem in discrepancy theory. Discrete
Mathematics, 278(1-3):227 – 239, 2004.

[ZGL03] Xiaojin Zhu, Zoubin Ghahramani, and John D. Lafferty. Semi-supervised
learning using gaussian fields and harmonic functions. In Proc. 20th Int.
Conf. on Mach. Learn., 2003.

Department of Computer Science
Yale University
New Haven, CT 06520-8285
E-mail: daniel.spielman@yale.edu

