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Abstract. We perform a smoothed analysis of a termination phase for linear programming
algorithms. By combining this analysis with the smoothed analysis of Renegar’s condition num-
ber by Dunagan, Spielman and Teng (http://arxiv.org/abs/cs.DS/0302011) we show that
the smoothed complexity of interior-point algorithms for linear programming is O(m3 log(m/σ)).
In contrast, the best known bound on the worst-case complexity of linear programming is
O(m3L), where L could be as large as m. We include an introduction to smoothed analysis
and a tutorial on proof techniques that have been useful in smoothed analyses.
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1. Introduction

This paper has two objectives: to provide an introduction to smoothed analysis
and to present a new result—the smoothed analysis of a termination phase for
linear programming algorithms. The termination phase is a simple heuristic for
rounding a good solution of a linear program to an optimal solution of the pro-
gram. Assuming the data (A, b, c) of a linear program is subject to perturbation,
we analyze how good the solution must be for the rounding to succeed.

We begin with an intuitive introduction to smoothed analysis (Section 1.1) fol-
lowed by a more formal introduction (Section 1.2). After introducing necessary
notation in Section 2, we survey the complexity of interior-point algorithms (Sec-
tion 3), emphasizing the role of condition numbers (Section 4). We then explain
the termination algorithm (Section 5), present its smoothed analysis at a high
level (Section 6), and then delve into the geometric (Section 7) and probabilistic
(Section 8) aspects of its analysis. In Section 8, we include a tutorial on the
fundamental techniques used in this work and in the smoothed analysis of the
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simplex method [ST01]. Finally, in Section 9, we explain how the analysis of
termination is related to the analysis of the simplex method. We conclude with
some open questions.

1.1. Intuitive Introduction to Smoothed Analysis

Folklore holds that most algorithms have much better performance in practice
than can be proved theoretically. This is partially due to the lack of a theoretical
definition of “practice”, partially due to the approximations made in most the-
oretical analyses, and partially due to the dearth of performance measures con-
sidered in theoretical analyses. In [ST01], we suggested that smoothed analysis
might provide a theoretically analyzable measure of an algorithm’s performance
that would be more predictive of its behavior in practice. 1.

Algorithms are typically analyzed through either worst-case or average-case com-
plexity. Worst-case analyses may disagree with practical experience because they
are dominated by the most pathological input instances. For many algorithms,
these pathological inputs are rarely, if ever, encountered in practice, and are
only known from lower-bound proofs. In an attempt to create a less pessimistic
analysis, researchers introduced average-case analysis, in which one defines a
probability distribution on input instances and then measures the expected per-
formance of an algorithm on inputs drawn from that distribution. A low average-
case complexity provides some evidence that an algorithm may run quickly in
practice. However, this evidence is not conclusive as the inputs encountered by
the algorithm in practice may not look like random inputs.

This discrepancy between theoretical and experimental analysis manifests itself
in the analysis of linear programming algorithms. The simplex method for linear
programming is known to perform very well in practice, but to have exponen-
tial worst-case complexity [KM72,Mur80,GS79,Gol83,AC78,Jer73,AZ99]. On
the other hand, it is known to have polynomial average-case complexity under
a number of notions of average-case [Bor80,Bor77,Sma83,Hai83,AKS87,AM85,
Tod86]. Interior-point methods are known to have polynomial worst-case com-
plexity [Kar84]. However, their performance in practice is much better than their
worst-case analyses would suggest [IL94,LMS90,EA96]. It has been shown that
the average-case complexity of interior-point methods is significantly lower than
their worst-case complexity [Ye94,AJPY93,AJPY99]: the term L is replaced by
O(log n).

Smoothed analysis provides an alternative to worst-case and average-case anal-
yses, and also attempts to circumvent the need for a theoretical definition of
“practical inputs”. The smoothed complexity of an algorithm is defined to be
the maximum over its inputs of the expected running time of the algorithm

1 We remark that a similar framework for discrete problems was introduced by Blum and
Spencer [BS95]
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under slight perturbations of that input. The smoothed complexity is then mea-
sured as a function of the input size and the magnitude of the perturbation.
While many notions of perturbation are reasonable, most results have been ob-
tained for Gaussian perturbations. The assumption that inputs are subject to
perturbation is reasonable in many circumstances: in many real-world numeri-
cal and geometric applications, data are derived from experimental and physical
measurements and are therefore subject to errors [Wil65, paragraph 2, pp. 62].
Perturbations can also be used to heuristically model the arbitrary decisions
that effect to formation of inputs that are presented to algorithms.

Two important aspects of smoothed analysis are:

• Smoothed analysis interpolates between worst-case and average-case analysis:
By letting the magnitude of the random perturbation to the data (e.g., the
variance of the Gaussian noise) become large, one obtains the traditional
average-case complexity measure. By letting the magnitude of the random
perturbation go to zero, one obtains the traditional worst-case complexity
measure. In between, one obtains a model corresponding to noise in low-
order digits of the input.

• The smoothed complexity of an algorithm provides an upper bound on the
expected complexity of the algorithm in every neighborhood of inputs. That
is, if the smoothed complexity of an algorithm is low, then it will run quickly
on inputs drawn from any small neighborhood of inputs.
Thus, if the inputs presented to an algorithm in practice are subject to per-
turbation, the smoothed complexity of the algorithm should upper bound
the practical performance of the algorithm.

In [ST01], we introduced smoothed complexity by proving that a particular vari-
ant of the shadow-vertex simplex method has polynomial smoothed complexity.

1.2. Formal Introduction to Smoothed Analysis

The inputs to most numerical and geometric problems may be viewed as points
in a vector space. For example, an m by n real matrix can be viewed as a vector
in IRmn. Similarly, a set of n points in d dimensions can be viewed as a vector
in IRdn.

The most natural notion of perturbations of vectors in a real vector space is that
of Gaussian perturbations. Recall that a Gaussian random variable with mean
0 and variance σ2 has density

e−x2/2σ2

√
2πσ

,

and that a Gaussian random vector of variance σ2 centered at the origin in IRn,
denoted N (0, σ2), is a vector in which each entry is a Gaussian random variable
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of variance σ2 and mean 0, and has density

e−‖x‖
2/2σ2(√

2πσ
)d .

Definition 1 (Gaussian perturbation). Let x̂ ∈ IRn. The Gaussian pertur-
bation of x̂ of variance σ2 is the random vector x = x̂+g , where g is a Gaussian
random vector of variance σ2, centered at the origin of IRn.

The Gaussian perturbation of x̂ may also be described as a Gaussian random
vector of variance σ2 centered at x̂ , in which case we observe that x has density(√

2πσ
)−d

e−‖x−x̂‖2/2σ2
. In Section 8 we will denote such a density by µx .

Using the notion of Gaussian perturbation, we define the smoothed value of a
function:

Definition 2 (Smoothed value). Let f be a non-negative function on IRn.
The smoothed value of f with respect to Gaussian perturbations of variance σ2

is given by
max

x̂
Eg←N (0,σ2) [f(x̂ + ‖x̂‖ g)]

Note that in this definition we multiply the perturbation g by ‖x̂‖ so that σ
represents the magnitude of the perturbation relative to the data.

Definition 3 (Smoothed complexity). Let A be an algorithm whose inputs
can be expressed as vectors in IRn and let TA(x ) be the running time of algorithm
A on input x . Then the smoothed complexity of algorithm A is

CA(n, σ) = max
x̂∈IRn

Eg←N (0,σ2) [TA(x̂ + ‖x̂‖ g)] .

In [ST01], Spielman and Teng consider the complexity of a particular two-phase
shadow-vertex simplex method on linear programs of the form

maximize cTx

subject to Ax ≤ b, (1)

where A is an m-by-n matrix, b is an m-vector, and c is an n-vector. They
prove:

Theorem 1.1 (Spielman-Teng). There is a two-phase shadow-vertex simplex
method with time complexity T (A, b, c) such that for every m-vector b and n-
vector c, the smoothed complexity of the algorithm,

max
Â∈IRm×n

EG

[
T
(
Â +

∥∥∥Â∥∥∥G, b, c
)]

is polynomial in m, n, and 1/σ, independent of b and c, where G is a Gaussian
random m by n matrix of variance σ2 centered at the origin.
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One need not limit smoothed analysis to measuring the expected complexity
of algorithms in various neighborhoods. It is quite reasonable to prove other
facts about the distribution of running times when the expectation does not
exist, or when much stronger bounds can be proved. For example, Blum and
Dunagan [BD02] prove

Theorem 1.2 (Blum-Dunagan). Let aaa1, . . . ,aaan be Gaussian random vectors
in IRd of variance σ2 < 1/(2d) centered at points each of norm at most 1. There
exists a constant c such that the probability that the perceptron algorithm for
linear programming takes more than cd3n2 log2(n/δ)

δ2σ2 iterations is at most δ.

2. Notation and Norms

Throughout the paper, we use bold letters such as b and x to denote vectors,
capital letters such as A and G to denote matrices, and lower case letters to
denote scalars. In any context in which the vector b is present, bj denotes the
jth component of b. For a set, N , we let bN denote the vector obtained by
restricting b to the coordinates in N . When indexing and constructing matrices,
we use the conventions of Matlab. Thus, A:,B denotes the matrix formed by
taking the columns indexed by B, and AN,B denotes the sub-matrix of rows
indexed by N and columns indexed by B. For sets, B and N , we let B̄ and N̄
denote their complements. We also let N,B denote the set of pairs (i, j) 6∈ (N,B);
for example, we let AN,B denote the set of entries of A not in AN,B . For a matrix
A and a column vector b, we let [A, b] denote the matrix obtained by appending
column b to A.

For an event, E , we let [E ] denote the random variable that is 1 when E is true
and is 0 otherwise.

We use of the following vector norms:

• ‖x‖ =
√∑

i x2
i ,

• ‖x‖1 =
∑

i |xi|, and
• ‖x‖∞ = maxi |xi|,

and note that ‖x‖∞ ≤ ‖x‖ ≤ ‖x‖1.

We also use the following matrix norms:

• ‖A‖ = maxx 6=0 ‖Ax‖ / ‖x‖,
• ‖A‖∞ = maxx 6=0 ‖Ax‖∞ / ‖x‖∞, and
• ‖A‖F =

√
trace(AT A), the square root of the sum of the squares of entries

in A.

We note that
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• ‖A‖∞ = maxi ‖Ai,:‖1,
• ‖A‖∞ ≤

√
n ‖A‖,

• ‖A‖ ≤ ‖A‖F , and
• for sets B and N , ‖AB,N‖ ≤ ‖A‖.

3. Complexity of Linear Programming Algorithms

A linear program is typically specified by a matrix A together with two vectors
b and c, where where A is an m-by-n matrix, c is an n-dimensional row vector,
and b is an m-dimensional column vector. There are several canonical forms of
linear programs. For the analyses in this paper, we will consider linear programs
of the form

max cx such that Ax ≤ b, x ≥ 0,

with dual
minyb such that yA ≥ c, y ≥ 0.

We will assume throughout that m ≥ n.

If they exist, we denote the solutions to the primal and dual by x ∗ and y∗, and
note that x ∗ is an n-dimensional column vector and y∗ is an m-dimensional row
vector.

A linear programming algorithm should: (1) determine whether or not the linear
program is feasible or bounded; and, (2) if the program is feasible and bounded,
output a solution. One can either insist that the solution be a precisely optimal
solution to the linear program, or merely a feasible point at which the objective
function is approximately optimized.

The best bounds on the worst-case complexity of interior-point methods, and
for linear programming in general, were first obtained by Gonzaga [Gon88] and
Vaidya [Vai90], who showed how to solve linear programs in O(m3L) arithmetic
operations2, where m ≥ n and L is a parameter measuring the precision needed
to perform the arithmetic operations exactly, and which here also appears in
the number of arithmetic operations performed. The definition of L varies in the
literature: Khachiyan [Kha79], Karmarkar [Kar84], and Vaidya [Vai90] define L
for integer matrices A to be some constant times

log(largest absolute value of the determinant of any square sub-matrix of A)
+ log(‖c‖∞) + log(‖b‖∞) + log(m + n).

Under this definition, L is not efficiently computable, and unless A comes from
a very special class of matrices, it is difficult to find L below Ω(n). Others use
cruder bounds such as the total number of bits in a row of the matrix or the
total number of bits in the entire matrix [Wri96].

2 Vaidya’s algorithm is somewhat faster as its complexity is O((m + n)n2 + (m + n)1.5n)L
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To understand the time complexity of interior-point algorithms, we note that
they are typically divided into three phases:

[Initialization]: In this phase, the algorithm determines whether or not the
program is feasible and bounded; and, if it is feasible and bounded, returns
a feasible point.
[Iteration]: In this phase, the algorithm iteratively finds feasible points on
which the objective function becomes increasingly better.
[Termination]: In this phase, the algorithm jumps from a feasible point that
is close to optimal to the exact optimal solution of the linear program.

Of course, if one merely desires an approximate solution to the linear program,
then one can skip the termination phase. However, the dependency on L appears
in both the initialization and termination phase. So, the worst-case complexity
of linear programming algorithms is not decreased by merely asking for an ap-
proximate solution.

The kernel of an interior-point algorithm is the iteration phase, during which
feasible points of increasing quality are computed. A typical measure of qual-
ity in a primal algorithm is the optimality gap between the objective function
at the current point and the optimal, while in a primal-dual algorithm it is
the duality gap between the current primal and dual feasible points. In either
case, one can prove that after k iterations the gap decreases by the multiplica-

tive factor
(
1− c√

m

)k

, for some constant c [Ren88,Vai90,Ye97]. If performed

carefully, each of these iterations has complexity O(m5/2) [Gon88]. Therefore,
the total number of arithmetic operations required to reduce the gap from R
to ε is O(m3 log(R/ε)). The worst-case complexity bounds come from the facts
that a typical interior-point algorithm discovers a feasible point with initial gap
bounded by R = 2O(L) in the initialization phase, and requires a point with gap
less than ε = 2−O(L) to start the termination phase.

In practice, the speed of interior-point methods is much better than that proved
in their worst-case analyses [IL94,LMS90,EA96]. This difference in speed seems
to have two sources: first, the upper bound of L is overly pessimistic; and, second,
the improvement made at each iteration is typically much better than

(
1− c√

m

)
.

However, we note that Todd [Tod94] and Todd and Ye [TY96] have exhibited
linear programs in which Ω(n1/3) iterations are required to improve the gap by
a constant factor.

The average case analyses of interior-point methods on random inputs proceed
by upper bounding R for the initial point constructed by an algorithm and by
lower bounding the ε at which the termination phase can succeed. For example,
Ye [Ye94] presents an algorithm that takes O(m1/2 log(Σ/ξ)) iterations, where
Σ

def= max (‖x ∗‖ , ‖y∗‖ , ‖b −Ax ∗‖ , ‖c − y∗A‖), and ξ is a condition number
measuring the smallest non-zero slack at the solutions.
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Our smoothed analysis of interior-point methods follows a similar approach.
We apply the bounds on the smoothed value of Renegar’s condition number
from [DST02] to bound R for the initial point provided by Renegar’s algo-
rithm [Ren95b] (or Σ for Ye’s algorithm [Ye94] via Lemma 6.7). We then define
a termination condition number, δ, that measures how close to optimal a feasible
point x needs to be before the termination phase will round it to the optimal
solution. In Section 6, we define quantities αP , βP , αD, βP , and, following Ye,
define ξ to be min (αP , βP , αD, βP ). We then prove that our condition number,
δ, is bounded by a function of ξ and the quantity γ, also defined in Section 6.
Relations between our δ and Ye’s ξ include:

• ξ provides a bound on how small the duality gap of a primal-dual pair must
be before Ye’s finite termination algorithm [Ye92] may be applied, while

• δ provides a bound on how close to optimal a primal feasible point must be
to optimal before the termiation algorithm of Section 5 may be applied, and

• we only define δ for programs with unique primal and dual optimal solutions,
as all programs considered in this paper have this property with probability
1. However, we expect the definition could be extended to degenerate linear
programs.

By combining the smoothed analyses of Renegar’s condition number and δ, we
show that the smoothed complexities of Renegar’s Algorithm [Ren95b] and Ye’s
Algorithm [Ye94] are O(m3 log(m/σ)). Essentially, this analysis replaces the de-
pendency on L in the initialization and termination phases with a dependency
on log(m/σ). We conjecture that one can improve this smoothed complexity es-
timate by proving that the smoothed number of iterations taken by an interior-
point method is less than O(

√
m log(m/σ)).

Renegar [Ren95b,Ren95a,Ren94] defined a condition number C(A, b, c) of a lin-
ear program, and developed an algorithm for the initialization of an interior-point
method that runs in time O(m3 log(C(A, b, c))) and returns a feasible point with
initial optimality gap R ≤ O(mC(A, b, c)). Applying a primal iteration phase to
this feasible point, one obtains an algorithm that after O(

√
m log(ε−1mC(A, b, c)))

rounds and O(m3 log(ε−1mC(A, b, c))) arithmetic operations produces points
with optimality gap at most ε. Renegar’s condition number will be discussed
further in Section 4.

Dunagan, Spielman and Teng [DST02] perform a smoothed analysis of Renegar’s
condition number and prove:

Theorem 3.1 (Dunagan-Spielman-Teng). Let Â be an m-by-n matrix for
m ≥ n, b̂ an m-vector, and ĉ an n-vector for which

∥∥∥Â, b̂, ĉ
∥∥∥

F
≤ 1. Let A, b

and c be the Gaussian perturbations of Â, b̂ and ĉ of variance σ ≤ 1/
√

mn.
Then,

EA,b,c [log(C(A, b, c))] ≤ O(log(m/σ)).
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This theorem has two roles in this paper: it is used in the proof that it is un-
likely that δ is small, and it is used to bound the quality of the initial point
returned by Renegar’s algorithm [Ren95b]. Combining this theorem with the
analysis of Renegar’s algorithm [Ren95b], we find that the smoothed complexity
of finding an ε-optimal solution to a linear program with Renegar’s algorithm
is O(m3 log(m/σε)). Similarly, one can apply Lemma 6.7 and Proposition 6.1 to
this bound to bound Σ and show that Ye’s algorithm has a similar complexity.
However, we suspect that a more direct analysis of Σ might be possible.

In Section 5, we define a simple termination algorithm that takes O(m3) arith-
metic operations. We define δ(A, b, c) to be the greatest number such that
cx ∗ − cx ≤ δ(A, b, c) implies that the termination algorithm is successful.
Thus, after O(

√
m log(mC(A, b, c)δ(A, b, c)−1)) interior-point iterations, and

O(m3 log(mC(A, b, c)δ(A, b, c)−1)) arithmetic operations, one can apply the
termination phase to find the exact solution to the linear program. Like Kar-
markar [Kar84], we handle the technical difficulty that the algorithm does not
know C(A, b, c) or δ(A, b, c) by periodically attempting to terminate, but only
once every

√
n iterations so as not to increase the complexity of the algorithm.

In Theorem 5.2, proved over Sections 6, 7 and 8, we show that the smoothed value
of max

(
1, log

(
δ(A, b, c)−1

))
is O(log(m/σ)). We note that as the termination

phase only requires a good primal solution, this analysis can be applied to a
wide variety of linear programming algorithms, including Vaidya’s [Vai90], the
ellipsoid algorithm, and the recent algorithm of Bertsimas and Vempala [BV02].
For interior-point algorithms, we prove:

Theorem 3.2 (Smoothed Complexity of IPM). Let Â be an m-by-n matrix
with m ≥ n , b̂ be an m-vector, and ĉ be an n-vector for which

∥∥∥Â, b̂, ĉ
∥∥∥

F
≤

1. Let A, b and c be the Gaussian perturbations of Â, b̂ and ĉ of variance
σ < 1/

√
mn. Let T (A, b, c) denote the complexity of Renegar’s interior-point

algorithm with the periodic application of the termination procedure described in
Section 5. Then,

EA,b,c [T (A, b, c)] ≤ O(m3 log(m/σ)).

A similar statement may be proved for Ye’s algorithm [Ye94].

While this is the statement of the complexity that is most natural for our proof
techniques, we note that it is not exactly the form specified in Definition 3. The
difference comes from the upper bounds on σ and

∥∥∥Â, b̂, ĉ
∥∥∥

F
in the statement

of the theorem. As the behavior of the interior-point methods are unchanged by
multiplicative changes to Â, b̂ and ĉ, only the upper bound on σ is significant: if∥∥∥Â, b̂, ĉ

∥∥∥
F
≥ 1, then one can scale down Â, b̂, ĉ, and σ to make

∥∥∥Â, b̂, ĉ
∥∥∥

F
= 1.

One could adjust Theorem 3.2 in two ways to handle σ > 1/
√

mn: one could
either extend the proofs, or one could use Theorem 3.2 as a black-box and derive
the more general statement from it. Such a proof could proceed by observing
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that a Gaussian of variance σ2 is the sum of a Gaussian of variance τ2 and a
Gaussian of variance σ2− τ2. Thus, one can apply Theorem 3.2 with a Gaussian
of variance τ2 to the result of perturbing the original data by a Gaussian of
variance σ2 − τ2, for an appropriate choice of τ . The reader can find a precise
implementation of this technique in [ST01, Section 5.1].

4. Renegar’s Condition Number for Linear Programming

In an effort to develop a parameter in which to measure the complexity of linear
programming that was more natural than L, Renegar [Ren95b,Ren95a,Ren94],
introduced the condition number, C(A, b, c), of a linear program and developed
an interior-point method that runs in time O(m3 log(C(A, b, c)ε−1)). In contrast
with the parameter L, C(A, b, c) is naturally defined for rational or real matrices
A. Moreover, C(A, b, c) is often much smaller than L.

Formally, we define the distance of a linear program specified by (A, b, c) to
primal ill-posedness to be

κP (A, b) =


sup

{
κ :
∥∥A−A′, b − b ′

∥∥
F
≤ κ implies A′x ≤ b ′,x ≥ 0 is feasible

}
if Ax ≤ b,x ≥ 0 is feasible, and

sup
{
κ :
∥∥A−A′, b − b ′

∥∥
F
≤ κ implies A′x ≤ b ′,x ≥ 0 is infeasible

}
if Ax ≤ b,x ≥ 0 is infeasible.

The distance to dual ill-posedness, κD(A, c), is defined similarly. We then define
C(A, b, c) to be the maximum of the primal condition number CP (A, b) and
the dual condition number CD(A, c), where CP (A, b) and CD(A, c) are the
normalized distances to primal and dual ill-posedness:

CP (A, b) = ‖A, b‖F /κP (A, b) and CD(A, c) = ‖A, c‖F /κD(A, c).

We remark that, with this normalization, CP and CD are always at least 1.

We also note that the linear programs for which Todd [Tod94] and Todd and
Ye [TY96] prove a Ω(n1/3) iteration lower bound have exponentially poor con-
dition. It is not known if one can prove such an iteration lower bound for a
well-conditioned linear program.

5. Termination

One can often terminate algorithms that approach the optimal solution of a
linear program by using a good solution to guess the optimal solution. The
process by which this is done is often called termination or rounding. Termination
is possible because at the optimal solution a number of the inequalities are tight,
and the knowledge of the identity of these inequalities is enough to reconstruct
the optimal solution. Thus, most termination algorithms work by guessing that
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the inequalities having the least slack at a very good solution are those which
have no slack at the optimal solution.

We being by recalling the facts that we will use to prove that termination is pos-
sible, ignoring complications that may occur with probability zero for perturbed
A, b and c. We begin with

Proposition 5.1. For Gaussian distributed A, b and c, with probability 1, the
program specified by (A, b, c) is either infeasible, unbounded, or has unique pri-
mal and dual optimal solutions, x ∗ and y∗. Moreover, x ∗ makes tight exactly n
of the inequalities {xi ≥ 0} ∪ {Aj,:x ≤ bj} and y∗ makes tight exactly m of the
inequalities {yj ≥ 0} ∪ {yA:,i ≥ ci}.

Proof. If the primal program is feasible and bounded but does not have a unique
optimal solution, then the space of optimal solutions must lie in a subspace
defined by fewer than n of the inequalities {xi = 0} ∪ {Aj,:x = bj}. As all the
points in this space must be optimal, c must be orthogonal to the subspace.
However, as this restricts c to a set of measure zero and the number of such
possible subspaces is finite given A and b, this is an event with probability zero.
By symmetry, the same holds for the optimal solution of the dual program. To
prove the second part, we note that if n + 1 of the inequalities are tight at x ∗,
then these inequalities form a system of n+1 equations in n variables that has a
solution. As any such degeneracy has probability zero, and there are only finitely
many such possible degeneracies, the probability of this happening is zero.

We now recall the Duality Theorem of Linear Programming:

Theorem 5.1 (LP duality). For a linear program specified by (A, b, c),

(Weak Duality) for every primal feasible x and dual feasible y , yb ≥ cx ,
and
(Strong Duality) if the linear program is bounded and feasible, then for primal
optimal x ∗ and a dual optimal y∗ we have y∗b = y∗Ax ∗ = cx ∗.

For a feasible and bounded linear program (A, b, c) with unique optimal primal
and dual solutions x ∗ and y∗, we define

B = {i : x ∗i > 0}
N = {j : y∗j > 0},

and we say that the program is of type (B,N). If the primal and dual opti-
mal solutions are unique, then the strict complementarity theorem (see [Ye97,
Theorem 1.14]) implies that N and B also index the tight constraints:

N = {j : Aj,:x
∗ = bj}, and

B = {i : y∗A:,i = ci}.
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We will consider the following termination scheme: suppose x is an approximate
solution to the primal program, and let B(x ) and N(x ) be the set of indices
such that

{x i : i 6∈ B(x )} ∪ {bj −Aj,:x : j ∈ N(x )}
be the smallest n values in {x i} ∪ {bj −Aj,:x}. We then guess that the optimal
solution is the solution to the following linear system: x i = 0 for i 6∈ B(x ) and
bj − Aj,:x = 0 for j ∈ N(x ). We will show that if x is sufficiently close to
optimal, then this guess is correct. We now define δ(A, b, c) to measure how
close to optimal x needs to be.

Definition 4 (δ(A, b, c)). For a feasible and bounded linear program specified
by A, b and c, we define

δ(A, b, c)
to be the supremum of the δ for which

(cx ∗ − cx ) < δ implies B(x ) = B and N(x ) = N. (2)

For unbounded or infeasible programs, we set δ to ∞.

The main technical contribution of this paper is:

Theorem 5.2. Let Â be an m-by-n matrix , with m ≥ n, b̂ be an m-vector, and
ĉ be an n-vector for which

∥∥∥Â∥∥∥ ,
∥∥∥b̂∥∥∥ , ‖ĉ‖ ≤ 1. Let A, b and c be a Gaussian

random matrix and two Gaussian random vectors of variance σ2 centered at Â,
b̂ and ĉ, respectively. Then, for σ2 ≤ 1,

E
[
max

(
1, log

(
1

δ(A, b, c)

))]
≤ O(log(mσ−1)).

Our proof of Theorem 5.2 is broken into three sections. In Section 6 we define
the geometric quantities that we will use to bound δ(A, b, c), and state the a
relation between δ(A, b, c) and these quantities (Lemma 6.5). This relation is
proved in Section 7. In Section 8, we prove bounds on the probabilities that
these geometric quantities are small. The rest of the material in Section 6 is a
routine calculation using the results of Sections 7, 8 and Theorem 3.1. The reader
will probably be most interested in Section 8, which we begin with an intuitive
explanation of how the probability estimates are obtained, carefully explain the
tools used to make these arguments rigorous, and then finally apply these tools
to obtain the probability bounds.

We remark that Theorem 5.2 depends very little on the properties of Gaussian
random variables. Aside for the bound on E [log ‖A‖] of Proposition 6.1, which is
easily generalized to other distributions, the only facts about Gaussian random
variables used are that proved in Lemma 8.1, and those used in the proof of
Theorem 3.1. Thus, one could prove statements similar to Theorem 5.2 for a
number of families of perturbations. For example, it would be easy to adjust the
proof techniques to handle perturbations by matrices and vectors of independent
uniform random variables.
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6. Smoothed Analysis of log(1/δ)

Our analysis of the probability that δ(A, b, c) is small will be divided into two
parts: a geometric condition for δ(A, b, c) to be small, and a bound on the
probability that this geometric condition is satisfied.

To described the geometric condition, we define the following five quantities
for bounded and feasible linear programs with unique optimal primal and dual
solutions x ∗ and y∗.

αP (A, b, c) def= mini∈B x∗i ,
αD(A, b, c) def= minj∈N y∗j ,

βP (A, b, c) def= minj∈N̄ bj −Aj,:x
∗,

βD(A, b, c) def= minj∈B̄ y∗A:,i − ci,

γ(A, b, c) def= mink∈B dist (AN,k,Span (AN,B−k)).

The geometric condition is that one of these five quantities is small.

When A, b and c are clear from context, we will just write αP , αD, βD, βP , γ
or δ. Note that

αD(A, b, c) = αP (−AT ,−cT ,−bT ) and βD(A, b, c) = βP (−AT ,−cT ,−bT ).

In Section 7, we prove

Lemma 6.1. For a linear program specified by (A, b, c) with unique optimal
primal and dual solutions x ∗ and y∗, let

ξ(A, b, c) def= min (αP (A, b, c), αD(A, b, c), βP (A, b, c), βD(A, b, c)) .

Then,

δ(A, b, c) ≥ ξ(A, b, c)2γ(A, b, c)
2 max(1,

√
n ‖A‖) (1 + ‖A‖)

.

We remark that Ye [Ye94] shows how to terminate given a pair with duality gap
less than O(ξ2/n). Thus, some simplification of our analysis can be obtained by
restricting one’s attention to primal-dual algorithms, as it becomes unnecessary
to bound the probability that γ is small.

We define F(A, b, c) to be the event that the linear program specified by A, b, c
is feasible and bounded. In Section 8, we prove

Lemma 6.2 (Probability of small α). Under the conditions of Theorem 5.2,

Pr

[
αP (A, b, c) ≤ ε

(‖A‖+ 2)2 (‖x ∗‖+ 1)
and F(A, b, c)

]
≤ 8εn(m + 1)

σ2
.
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Lemma 6.3 (Probability of small β). Under the conditions of Theorem 5.2,

Pr
[
βP (A, b, c) ≤ ε

max (1, ‖A‖ ‖x ∗‖)
and F(A, b, c))

]
≤ 4εm

σ2
.

Lemma 6.4 (Probability of small γ). Under the conditions of Theorem 5.2,

Pr
AN,B

γ(A, b, c) ≤ ε(
1 + ‖x ∗‖2 + ‖y∗‖2

)
(‖A‖+ 3)

and F(A, b, c)

 ≤ 3eεn

σ2
.

Using these three lemmas, we can reduce our analysis of the probability that
δ(A, b, c) is small to an analysis of the probability that ‖x ∗‖, ‖y∗‖ or ‖A‖ is
large.

Lemma 6.5. Under the conditions of Theorem 5.2,

Pr
A,b,c

[
δ(A, b, c) (‖A‖+ 3)7 (1 + ‖x ∗‖+ ‖y∗‖)4 ≤ ε

]
≤ 22ε1/3n1/6(n + 1)(m + 1)

σ2
.

(3)

Proof. As δ(A, b, c) is infinite for infeasible or unbounded programs,

Pr
A,b,c

[
δ(A, b, c) (‖A‖+ 3)7 (1 + ‖x ∗‖+ ‖y∗‖)4 ≤ ε

]
= Pr

A,b,c

[
δ(A, b, c) (‖A‖+ 3)7 (1 + ‖x ∗‖+ ‖y∗‖)4 ≤ ε and F(A, b, c)

]
.

As αD(A, b, c) = αP (−At,−ct,−bt), and
ε

(‖A‖+ 2)2 (‖x ∗‖+ 1)
≤ ε

max (1, ‖A‖ ‖x ∗‖)
,

Lemmas 6.2 and 6.3 imply

Pr
A,b,c

[
min (αP , αD, βP , βD) ≤ ε

(‖A‖+ 2)2 (max (‖x ∗‖ , ‖y∗‖) + 1)
and F(A, b, c)

]

≤ 8εn(m + 1) + 8εm(n + 1) + 4εm + 4εn

σ2

≤ 8ε ((n + 1/2)(m + 1) + (m + 1/2)(n + 1))
σ2

. (4)

Let ξ = min (αP , αD, βP , βD). If

ξ2γ ≤ ε3

(‖A‖+ 3)5 (1 + ‖x ∗‖+ ‖y∗‖)4

≤

(
ε

(‖A‖+ 2)2 (max (‖x ∗‖ , ‖y∗‖) + 1)

)2
 ε(

1 + ‖x ∗‖2 + ‖y∗‖2
)

(‖A‖+ 3)
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then either

ξ ≤ ε

(‖A‖+ 2)2 (max (‖x ∗‖ , ‖y∗‖) + 1)

or

γ ≤ ε(
1 + ‖x ∗‖2 + ‖y∗‖2

)
(‖A‖+ 3)

.

So, Lemma 6.4 and inequality (4) imply

Pr
A,b,c

[
ξ2γ ≤ ε3

(‖A‖+ 3)5 (1 + ‖x ∗‖+ ‖y∗‖)4
and F(A, b, c)

]

≤ 3eεn

σ2
+

8ε ((n + 1/2)(m + 1) + (m + 1/2)(n + 1))
σ2

≤ 17ε(n + 1)(m + 1)
σ2

, as 3en ≤ 5(n + m).

As Lemma 6.1 tells us that

δ(A, b, c) ≥ ξ2γ

2 max(1,
√

n ‖A‖) (1 + ‖A‖)
,

we obtain

Pr
A,b,c

[
δ ≤ ε3

(‖A‖+3)5(1+‖x∗‖+‖y∗‖)4

(
1

2 max(1,
√

n‖A‖)(1+‖A‖)

)
and F(A, b, c)

]
≤ Pr

A,b,c

[
ξ2γ ≤ ε3

(‖A‖+ 3)5 (1 + ‖x ∗‖+ ‖y∗‖)4
and F(A, b, c)

]

≤ 17ε(n + 1)(m + 1)
σ2

.

From this inequality, we derive

Pr
A,b,c

[
δ (‖A‖+ 3)7 (1 + ‖x ∗‖+ ‖y∗‖)4 ≤ ε3

2
√

n
and F(A, b, c)

]
≤ Pr

A,b,c

[
δ (‖A‖+ 3)5 (1 + ‖x ∗‖+ ‖y∗‖)4 max(1, ‖A‖) (1 + ‖A‖) ≤ ε3

2
√

n

and F(A, b, c)

]

≤ 17ε(n + 1)(m + 1)
σ2

.

The lemma now follows by changing ε3/(2
√

n) to ε and observing 17 · 21/3 ≤ 22.

To convert this bound on the probability that δ is small to a bound on the
expectation of log(1/δ), we will use the following technical lemma:
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Lemma 6.6. Let x be a non-negative random variable for which there exist con-
stants α and k satisfying log(α)/k ≥ 1 such that

Pr [x ≤ ε] ≤ αεk.

Then,

E [max (1, log(1/x))] ≤ 1 + log α

k
.

Proof. We compute

E [max (1, log(1/x))] =
∫ ∞

t=0

Pr [max (1, log(1/x)) ≥ t] dt

=
∫ 1

t=0

dt +
∫ ∞

t=1

Pr [log(1/x) ≥ t] dt

≤
∫ log α

k

t=0

dt +
∫ ∞

log α
k

Pr [log(1/x) ≥ t] dt , as (log α)/k ≥ 1,

≤
∫ log α

k

t=0

dt +
∫ ∞

log α
k

αe−tk dt

=
log α

k
+

1
k

.

From this, we obtain

Corollary 6.1. Under the conditions of Theorem 5.2,

E
[
max

(
1, log

(
1

δ(A, b, c)

))]
≤ 3(log(22σ−2(m + 1)13/6) + 1) + 7 log(‖A‖+ 3) + 4 log(1 + ‖x ∗‖+ ‖y∗‖)

Proof. Applying Lemma 6.6 to (3), and recalling m ≥ n, we obtain

E
[
max

(
1, log

(
1

δ(A, b, c)

))]
−7E [log(‖A‖+ 3)]−4E [log(1 + ‖x ∗‖+ ‖y∗‖)]

≤ E

[
max

(
1, log

(
1

δ(A, b, c) (‖A‖+ 3)7 (1 + ‖x ∗‖+ ‖y∗‖)4

))]
≤ 3

(
log(22(m + 1)13/6/σ2) + 1

)
.

To bound E [log(1 + ‖x ∗‖+ ‖y∗‖)], we note that Renegar [Ren95a, Propositions
2.2 and 2.3] has proved

Lemma 6.7 (Norms of optimal solutions).

max (‖x ∗‖ , ‖y∗‖) ≤ C(A, b, c)2.
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So, we may apply Theorem 3.1 to bound the norms of x ∗ and y∗. To bound the
norm of A, we apply:

Proposition 6.1. Let A be a Gaussian perturbation of variance σ2 ≤ 1 of an
m-by-n matrix Â of norm at most 1. Then,

E [log(‖A‖+ 3)] ≤ log(
(√

n +
√

m
)
σ + 4)

Proof. Write A = Â + σG where G is a Gaussian random matrix of variance
1 centered at the origin and

∥∥∥Â∥∥∥ ≤ 1. Seginer [Seg00] proves that E [‖G‖] ≤
√

n +
√

m, which implies E [‖σG‖] ≤ σ(
√

n +
√

m) and

E [‖A‖+ 3] ≤ E
[∥∥∥Â∥∥∥+ ‖σG‖+ 3

]
≤
(√

n +
√

m
)
σ + 4.

As the logarithm is a convex function,

E [log(‖A‖+ 3)] ≤ log (E [‖A‖+ 3]) ≤ log
((√

n +
√

m
)
σ + 4

)
.

Combining these estimates on the probability that ‖A‖, ‖x ∗‖ or ‖y∗‖ is large
with Corollary 6.1, we prove the main theorem:

Proof (of Theorem 5.2). To bound the terms obtained in Corollary 6.1, we first
apply Proposition 6.1 to obtain

E [log(‖A‖+ 3)] ≤ log(
√

n +
√

m + 4).

We then apply Lemma 6.7 to show

(1 + ‖x ∗‖+ ‖y∗‖) ≤ 3C(A, b, c)2,

and Theorem 3.1 to obtain

E [log(1 + ‖x ∗‖+ ‖y∗‖)] ≤ E
[
log
(
3C(A, b, c)2

)]
≤ log(3) + 2E [log C(A, b, c)]
≤ O(log(mn/σ)).

7. Geometric Analysis of δ

To prove Lemma 6.1, we use the following lemma which says that if the value of
cx is close to optimal, then x must be close to x ∗.

Lemma 7.1. For a linear program specified by (A, b, c) with unique optimal
primal and dual solutions x ∗ and y∗, let

ξ(A, b, c) = min (αP (A, b, c), αD(A, b, c), βP (A, b, c), βD(A, b, c)) .

Then,

‖x ∗ − x‖∞ ≤ c(x ∗ − x )
(

1 + ‖A‖
ξ(A, b, c) min(γ(A, b, c), 1)

)
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Proof (of Lemma 6.1). Assuming

c(x ∗ − x ) <
ξ(A, b, c)2γ(A, b, c)

2 max(1,
√

n ‖A‖) (1 + ‖A‖)
,

we need to show B(x ) = B and N(x ) = N . From Lemma 7.1, we have

‖x ∗ − x‖∞ <
ξ2γ

2 max(1,
√

n ‖A‖) (1 + ‖A‖)

(
1 + ‖A‖

ξ min(γ, 1)

)
≤ ξ

2 max(1,
√

n ‖A‖)
≤ ξ

2
. (5)

We then have

(a) for i ∈ B, xi > x∗i − ξ/2 > αP (A, b, c)− ξ/2 > ξ/2 ,
(b) for i 6∈ B, xi < ξ/2,

As |Aj,:(x ∗ − x )| ≤ ‖A‖∞ ‖x ∗ − x‖∞ ≤
√

n ‖A‖ ‖x ∗ − x‖∞ ≤ ξ/2, by inequal-
ity (5), we also have

(c) for j ∈ N , bj −Aj,:x < ξ/2,
(d) for j 6∈ N , bj −Aj,:x = bj −Aj,:x

∗−Aj,:(x −x ∗) > βP (A, b, c)− ξ/2 > ξ/2.

So, the smallest n values in {x i} ∪ {bj −Aj,:x} are those indexed by B̄ and N .

The proof of Lemma 7.1 relies on the following technical lemmas.

Lemma 7.2. For x a feasible point of a bounded linear program specified by
(A, b, c), with unique optimal primal and dual solutions x ∗ and y∗,

c(x ∗ − x ) ≥ αD(A, b, c) ‖AN,:(x ∗ − x )‖ .

Proof. As y∗A ≥ c, we have

c(x ∗ − x ) ≥ cx ∗ − y∗Ax

= y∗Ax ∗ − y∗Ax (by strong duality)
= y∗A(x ∗ − x )
= y∗NAN,:(x ∗ − x ),

as y∗ is zero outside of N . As AN,:(x ∗ − x ) is non-negative, we may conclude
that

y∗NAN,:(x ∗ − x ) ≥ αD(A, b, c) ‖AN,:(x ∗ − x )‖1 ≥ αD(A, b, c) ‖AN,:(x ∗ − x )‖ .
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Lemma 7.3. For x a feasible point of a bounded linear program specified by
(A, b, c), with unique optimal primal and dual solutions x ∗ and y∗,

‖AN,B(x ∗B − xB)‖ ≥ γ(A, b, c) ‖x ∗B − xB‖∞ .

Proof. For any k ∈ B, let q be the unit row vector for which qAN,B−k = 0.
Then,

qAN,Bx = q (AN,kxk + AN,B−kxB−k) = xkqAN,k = xkdist (AN,k,Span (AN,B−k)) .

So,

‖AN,B(x ∗B − xB)‖ ≥ |qAN,B(x ∗B − xB)|
= |x∗k − xk|dist (AN,k,Span (AN,B−k))
≥ |x∗k − xk| γ(A, b, c).

Lemma 7.4. For x a feasible point of a bounded linear program specified by
(A, b, c), with unique optimal primal and dual solutions x ∗ and y∗,

c(x ∗ − x )
βD(A, b, c)

≥ ‖x B̄‖ .

Proof. As y∗A:,B = cB , (y∗A− c)x = (y∗A:,B̄ − cB̄)x B̄ .

As every entry in y∗A:,B̄ − cB̄ is at least βD(A, b, c) and x ≥ 0, we have

(y∗A− c)x = (y∗A:,B̄ − cB̄)x B̄ ≥ βD(A, b, c) ‖x B̄‖1 ≥ βD(A, b, c) ‖x B̄‖ . (6)

As y∗ ≥ 0,

c (x ∗ − x ) = y∗b − cx ≥ y∗Ax − cx ≥ βD(A, b, c) ‖x B̄‖ ,

where the last inequality follows from (6).

Proof (of Lemma 7.1). Applying the triangle inequality, we observe

‖AN,:(x ∗ − x )‖ ≥ ‖AN,B(x ∗B − xB)‖ −
∥∥AN,B̄(x ∗B̄ − x B̄)

∥∥ .

We can bound the first of these terms by applying Lemma 7.3, and the second
by observing x ∗

B̄
= 0 and

∥∥AN,B̄x B̄

∥∥ ≤ ∥∥AN,B̄

∥∥ ‖x B̄‖, thereby proving

‖AN,:(x ∗ − x )‖ ≥ γ(A, b, c) ‖x ∗B − xB‖∞ −
∥∥AN,B̄

∥∥ ‖x B̄‖ .

Now applying Lemma 7.2, we obtain

c(x ∗ − x ) ≥ αD(A, b, c)
(
γ(A, b, c) ‖x ∗B − xB‖∞ −

∥∥AN,B̄

∥∥ ‖x B̄‖
)
,

which implies

αD(A, b, c)
∥∥AN,B̄

∥∥ ‖x B̄‖+ c(x ∗ − x ) ≥ αD(A, b, c)γ(A, b, c) ‖x ∗B − xB‖∞ .
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As Lemma 7.4 implies c(x ∗ − x )/βD(A, b, c) ≥ ‖x B̄‖ and ‖A‖ ≥
∥∥AN,B̄

∥∥, we
obtain(

1 +
αD(A, b, c)
βD(A, b, c)

‖A‖
)

c(x ∗ − x ) ≥ αD(A, b, c)γ(A, b, c) ‖x ∗B − xB‖∞ ,

which implies

c(x ∗ − x ) (1 + ‖A‖)
min (αD(A, b, c), βD(A, b, c))

≥ γ(A, b, c) ‖x ∗B − xB‖∞ .

As ‖x ∗ − x‖∞ = max
(
‖x ∗B − xB‖∞ ,

∥∥x ∗
B̄
− x B̄

∥∥
∞

)
, the lemma now follows

from this last inequality and Lemma 7.4, which implies

c(x ∗ − x )
βD(A, b, c)

≥ ‖x B̄‖ ≥ ‖x B̄‖∞ =
∥∥x ∗B̄ − x B̄

∥∥
∞ .

8. Bounds on α, β, and γ

For this section, we let µA, µb and µc denote the densities according to which
A, b and c are distributed under the conditions of Theorem 5.2. For an index
j or set of indices N , we let µbj and µbN

denote the induced distributions on
bj and bN , and we extend this notational convention to sub-matrices of A and
sub-vectors of c.

The idea behind our proofs of Lemma 6.2, 6.3 and 6.4 is that for any configuration
of A, b and c in which α, β, or γ is small, there are many nearby configurations in
which the term is not too small. As Gaussian densities do not fall off too quickly,
this nearby configuration will have approximately the same probability as the
original. To make this idea rigorous, we establish mappings pairing configurations
in which these terms are small with configurations in which these terms are
not. We then use these mappings to show that the Gaussian probability of the
configurations in which the terms are not small is much larger than those in
which they are.

To show that it is unlikely that βP is small, we hold A, y∗, c, and x ∗ constant,
and map those bj ’s that are close to Aj,:x

∗ to be a little further away. To show
that it is unlikely that αP is small, we hold A, y∗ and c constant, and map
small non-zero entries of x ∗ to larger values while simultaneously mapping the
entries of b so as to preserve the tight constraints and maintain slack in the
others. To show that it is unlikely that γ is small, we hold x ∗, y∗, and the slack
components of b and c constant. We then vary AN,B slightly, changing bN and
cB accordingly. As each slight motion described only induces a slight motion in
the other components, we can prove that each configuration obtained has similar
probability.

To turn these intuitive arguments into proofs, we need four tools:
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1. a bound on the smoothness of the Gaussian density,
2. a bound on the probability that a random variable is small given that its

density is smooth near zero,
3. a lemma making rigorous the change of variables implicitly used in the intu-

itive arguments, and
4. a proof that the probability of an event can be bounded by the maximum of

its probability over the sets in a partition of its probability space.

Each of these tools is relatively simple, and the last should be obvious for finite
partitions. The bound on the smoothed complexity of the simplex method [ST01]
uses each of these tools along with some others. It is our hope that the reader
would have an easier time understanding the proofs in [ST01] after having read
this section.

We now develop these four tools, and at the end of the section apply them to
the proofs of the bounds on α, β and γ.

We make use of the following elementary bound on the smoothness of Gaussians:

Lemma 8.1 (Smoothness of Gaussians). Let µ(x ) be a Gaussian distribu-
tion in IRn of variance σ2 centered at a point of norm at most 1. If dist (x ,y) <
ε ≤ 1, then

µ(y)
µ(x )

≥ e−
ε(‖x‖+2)

σ2 .

Proof. Let x̂ be the center of the distribution. We compute

µ(y)
µ(x )

= e
−1
2σ2 (‖y−x̂‖2−‖x−x̂‖2)

≥ e
−1
2σ2 ((‖y−x‖+‖x−x̂‖)2−‖x−x̂‖2) by the triangle inequality

= e
−1
2σ2 (2‖y−x‖‖x−x̂‖+‖y−x‖2)

≥ e
−1
2σ2 (2ε‖x−x̂‖+ε2)

≥ e
−1
2σ2 (2ε(‖x‖+1)+ε2) as ‖x̂‖ ≤ 1

≥ e
−1
2σ2 (2ε(‖x‖+1)+ε) as ε ≤ 1

≥ e−
ε(‖x‖+2)

σ2 .

We remark that this lemma is the only fact about Gaussian random variables
used in this section. Thus, one could obtain results of a similar character for
any distribution that satisfies properties similar to those derived for Gaussian
random vectors above, provided that the vectors are comprised of independently
distributed entries.

The argument by which we obtain probability bounds from comparing configu-
rations is encapsulated in the following lemma, which is used in each of the three
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proofs. This lemma essentially says that if the distribution of a random variable
is relatively flat near a point, then the variable is unlikely to lie too close to that
point.

Lemma 8.2 (Smooth distributions unlikely small). Let x be a real random
variable distributed according to a density ρ for which there exist constants α and
c such that

0 ≤ x ≤ x′ ≤ α implies
ρ(x′)
ρ(x)

≥ c.

Then, for ε < α,
Pr
[
x ∈ [0, ε]

∣∣x ∈ [0, α]
]
≤ ε

cα
.

In particular,
Pr [x ∈ [0, ε]] ≤ ε

cα
.

Proof. From the definition of conditional probability, we have

Pr
[
x ∈ [0, ε]

∣∣x ∈ [0, α]
]

=

∫ ε

0
ρ(x) dx∫ α

0
ρ(x) dx

.

Applying the change of variables y = (ε/α)x, we compute∫ α

0

ρ(x) dx = (α/ε)
∫ ε

0

ρ((α/ε)y) dy ≥ (α/ε)
∫ ε

0

cρ(y) dy .

From which the lemma follows.

For example, we can use the previous lemma to derive a bound on the probability
that a Gaussian random variable is greater than t + ε given that it is greater
than t:

Lemma 8.3 (Comparison of Gaussian tails). Let x be a Gaussian random
variable of variance σ2 ≤ 1 and mean of absolute value at most 1. For ε ≥ 0,
τ ≥ 1 and t ≤ τ ,

Pr
[
x ≤ t + ε

∣∣x ≥ t
]
≤ ετ

σ2
e

ε(τ+3)
σ2 and Pr

[
x ≥ t + ε

∣∣x ≥ t
]
≥ 1− ετ

σ2
e

ε(τ+3)
σ2 .

Proof. It suffices to prove the first bound. Let µ be the density function of x.
Let α = σ2/τ , and note α ≤ 1. For ε ≥ α the lemma is vacuous. For ε < α, we
will show that

t ≤ x < x′ ≤ t + α implies
µ(x′)
µ(x)

≥ e−
ε(τ+3)

σ2 , (7)

and then apply Lemma 8.2 to finish the proof. For t < −1, (7) is trivial as µ
is monotone increasing on [t, t + α]. For t ≥ −1, we have ‖x‖ ≤ τ + 1; so, (7)
follows from Lemma 8.1.
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Finally, we note that our intuitive explanation of the proofs of Lemmas 6.2, 6.3
and 6.4 implicitly used a change of variables: instead of reasoning in terms of
the variables A, b and c, we found it more convenient to think of x ∗ and y∗

as quantities to fix or vary. We now introduce the machinery that enables us
to reason in terms of these variables. We begin by observing that for any sets
B and N , not necessarily the combinatorial type of (A, b, c), we can introduce
variables x ∗B and y∗N , not necessarily the optimal primal and dual solutions, and
define

bN = AN,Bx ∗B and cB = y∗NAN,B .

We can then compute probabilities in these new variables by observing that the
joint density of A, x ∗B , y∗N , bN̄ , and cB̄ is

µA(A)µbN
(AN,Bx ∗B)µcB

(y∗NAN,B)µbN̄
(bN̄ )µcB̄

(cB̄)det (AN,B)2 .

To see why this is true, recall that probabilities are best understood as integrals,
and that the probability of an event E(A, b, c) is∫

A,b,c

[E(A, b, c)]µA(A)µb(b)µc(c) dA db dc (8)

To express this integral in the new variables, we first compute the Jacobian of
the change of variables, which is∣∣∣∣det

(
∂(A, bN̄ , cB̄ , bN , cB)
∂(A, bN̄ , cB̄ ,x ∗B ,y∗N )

)∣∣∣∣ = det (AN,B)2 ;

so,

dA db dc =
∣∣∣∣det

(
∂(A, bN̄ , cB̄ , bN , cB)
∂(A, bN̄ , cB̄ ,x ∗B ,y∗N )

)∣∣∣∣ dA dbN̄ dcB̄ dx ∗B dy∗N

= det (AN,B)2 dA dbN̄ dcB̄ dx ∗B dy∗N ,

and

(8) =
∫

A,bN̄ ,cB̄ ,x∗B ,y∗N

[E(A, b, c)]

· µA(A)µbN
(AN,Bx ∗B)µcB

(y∗NAN,B)µbN̄
(bN̄ )µcB̄

(cB̄)det (AN,B)2

· dA dbN̄ dcB̄ dx ∗B dy∗N .

While we can define this change of variables for any sets B and N , we will of
course only apply this change of variables to programs of type (B,N). If we let
TypeB,N (A, b, c) denote the set of (A, b, c) of type (B,N), then we can express
the probability of [E(A, b, c) and F(A, b, c)] as∫

A,b,c:F(A,b,c)

[E(A, b, c)]µA(A)µb(b)µc(c) dA db dc

=
∑
B,N

∫
A,b,c:TypeB,N (A,b,c)

[E(A, b, c)]µA(A)µb(b)µc(c) dA db dc ,
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and then apply the change of variables corresponding to (B,N) to evaluate the
integral over TypeB,N (A, b, c) on the right. In fact, in each of our proofs, we
will actually bound

max
B,N

Pr
[
E(A, b, c)|TypeB,N (A, b, c)

]
.

To see that this upper bounds the probability of [E(A, b, c) and F(A, b, c)], we
prove

Claim.

Pr [E(A, b, c) and F(A, b, c)] ≤ max
B,N

Pr
[
E(A, b, c)|TypeB,N (A, b, c)

]
.

Proof.

Pr [E(A, b, c) and F(A, b, c)]

=
∑
B,N

Pr
[
E(A, b, c) and TypeB,N (A, b, c)

]
=
∑
B,N

Pr
[
TypeB,N (A, b, c)

]
Pr
[
E(A, b, c)|TypeB,N (A, b, c)

]
≤ max

B,N
Pr
[
E(A, b, c)|TypeB,N (A, b, c)

]
,

as
∑

B,N Pr
[
TypeB,N (A, b, c)

]
≤ 1.

We summarize this discussion in the following lemma:

Lemma 8.4 (Change of variables). Let E(A, b, c) be an event. Then,

Pr
A,b,c

[E(A, b, c) and F(A, b, c)]

≤ max
B,N

Pr
A,x∗,y∗,bN̄ ,cB̄

[
E(A, b, c)|AN̄,:x

∗ ≤ bN̄ and y∗A:,B̄ ≥ cB̄

]
,

where A, x ∗, y∗, bN̄ and cB̄ have joint density

µA(A)µbN
(AN,Bx ∗B)µcB

(y∗NAN,B)µbN̄
(bN̄ )µcB̄

(cB̄)det (AN,B)2 .

All of our proofs begin by fixing some subset of the variables, and then proving
a probability bound for any configuration of the fixed variables. This amounts
to proving a probability upper bound by dividing the probability space into a
number of regions, and proving that the bound holds in each of these regions.
Formally, we are using the fact:
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Proposition 8.1 (Upper bound by max of probabilities). Let X and Y be
random variables distributed according to an integrable density function µ(X, Y )
and let E(X, Y ) be an event. Then

Pr
X,Y

[E(X, Y )] ≤ max
y

Pr
X,Y

[E(X, Y )|Y = y] def= max
Y

Pr
X

[E(X, Y )|Y ] .

Proof. By Tonelli’s Theorem, we have

Pr
X,Y

[E(X, Y )] =
∫

X,Y

[E(X, Y )]µ(X, Y ) dX dY

=
∫

Y

(∫
X

[E(X, Y )]µ(X, Y ) dX

)
dY

=
∫

Y

(∫
X

µ(X, Y ) dX

)(∫
X

[E(X, Y )]µ(X, Y ) dX(∫
X

µ(X, Y ) dX
) )

dY

=
∫

Y

(∫
X

µ(X, Y ) dX

)(
Pr
X

[E(X, Y )|Y ]
)

dY

≤ max
Y

Pr
X

[E(X, Y )|Y ] ,

as ∫
Y

(∫
X

µ(X, Y ) dX

)
dY = 1.

Having established these tools, we now proceed with the proofs of Lemmas 6.2,
6.3 and 6.4.

Proof (of Lemma 6.3 (Probability of small β)). By Lemma 8.4, it suffices to
bound

max
B,N

Pr
A,x∗,y∗,bN̄ ,cB̄

[
βP (A, b, c) ≤ ε

max(1,‖A‖‖x∗‖)∣∣∣AN̄,:x
∗ ≤ bN̄ and y∗A:,B̄ ≥ cB̄

]
.

By Proposition 8.1, it suffices to prove that for all B, N , A, x ∗B , y∗N and cB̄

satisfying y∗A:,B̄ ≥ cB̄ ,

Pr
bN̄

[
∃j ∈ N̄ : bj −Aj,:x

∗ ≤ ε′
∣∣ ∀j : bj −Aj,:x

∗ ≥ 0
]

≤
∑
j∈N̄

Pr
bj

[
bj −Aj,:x

∗ ≤ ε′
∣∣ ∀j : bj −Aj,:x

∗ ≥ 0
]

=
∑
j∈N̄

Pr
bj

[
bj −Aj,:x

∗ ≤ ε′
∣∣ bj −Aj,:x

∗ ≥ 0
]

=
∑
j∈N̄

Pr
bj

[
bj ≤ Aj,:x

∗ + ε′
∣∣ bj ≥ Aj,:x

∗]
≤ mε′ |Aj,:x

∗|
σ2

e
ε′(|Aj,:x

∗|+3)
σ2 by Lemma 8.3.

≤ mε′ (‖A‖ ‖x ∗‖)
σ2

e
ε′(‖A‖‖x∗‖+3)

σ2 .
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Setting ε′ = ε/ max (1, ‖A‖ ‖x ∗‖), and observing that the lemma is vacuously
true for ε > σ2/4m, we deduce

Pr
bN̄

[
∃j ∈ N̄ : bj −Aj,:x

∗ ≤ ε
∣∣ ∀j : bj −Aj,:x

∗ ≥ 0
]
≤ mε

σ2
e

4ε
σ2 ≤ emε

σ2
≤ 4mε

σ2
,

for ε < σ2/4m.

Proof (of Lemma 6.4 (Probability of small γ)). By Lemma 8.4, it suffices to
bound

max
B,N

Pr
A,x∗B ,y∗N ,bN̄ ,cB̄

γ(A, b, c) ≤ ε

(1+‖x∗‖2+‖y∗‖2)(‖A‖+3)∣∣∣AN̄,:x
∗ ≤ bN̄ and y∗A:,B̄ ≥ cB̄

 .

By Proposition 8.1, it suffices to prove that for all B, N , AN,B , bN̄ , cB̄ , x ∗ and
y∗ satisfying AN̄,Bx ∗B ≤ bN̄ and y∗NAN,B̄ ≥ cB̄ ,

Pr
AN,B

[γ(A, b, c) ≤ ε] ≤
3eεn

(
1 + ‖x ∗‖2 + ‖y∗‖2

)
(‖AN,B‖+ 3)

σ2
, (9)

where we note that having fixed AN,B , bN̄ , cB̄ , x ∗ and y∗, the induced distri-
bution on AN,B is

µAN,B
(AN,B)µbN

(AN,Bx ∗B)µcB
(y∗NAN,B)det (AN,B)2 .

To prove (9), we show that for all k ∈ B and all AN,B−k,

Pr
AN,k

[dist (AN,k,Span (AN,B−k)) ≤ ε] ≤
3eε
(
1 + ‖x ∗‖2 + ‖y∗‖2

)
(‖AN,B‖+ 3)

σ2
,

(10)
and apply a union bound over k ∈ B. Having fixed AN,B−k, we may ex-
press AN,k as aaa + tq where aaa ∈ Span (AN,B−k), q is the unit vector or-
thogonal to Span (AN,B−k) and t ∈ IR. With this representation, we have
|t| = dist (AN,k,Span (AN,B−k)) and det (AN,B) = ct, where c is some con-
stant depending only on AN,B−k.

By the symmetry of q with −q , we can prove (10) by bounding the probability
that t is less than ε given that t is at least 0. Thus, we prove (10) by observing
‖AN,B‖ ≥ ‖AN,B−k,aaa‖ and showing

max
aaa∈Span(AN,B−k)

Pr
t

[
t ≤ ε

∣∣t ≥ 0
]
≤

3eε
(
1 + ‖x ∗‖2 + ‖y∗‖2

)
(‖AN,B−k,aaa‖+ 3)

σ2

(11)
where the induced distribution on t is proportional to

ρ(t) def= µAN,k
(aaa + tq)µbN

(AN,B−kx
∗
B−k + (aaa + tq)x∗k)µck

(y∗N (aaa + tq)) t2. (12)
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We now set

α =
σ2

3
(
1 + ‖x ∗‖2 + ‖y∗‖2

)
(‖AN,B−k,aaa‖+ 3)

and prove

0 ≤ t ≤ t′ ≤ α implies
ρ(t′)
ρ(t)

≥ 1/e, (13)

from which (11) follows by Lemma 8.2.

To prove (13), we observe

1. As dist (aaa + t′q ,aaa + tq) ≤ t′− t ≤ α ≤ 1, we may apply Lemma 8.1 to show

µAN,k
(aaa + t′q)

µAN,k
(aaa + tq)

≥ e
−α(‖aaa+tq‖+2)

σ2 ≥ e
−α(‖aaa‖+3)

σ2 ≥ e−1/3.

2. As ∥∥AN,B−kx
∗
B−k + aaax∗k + tqx∗k

∥∥ ≤ (‖AN,B−k,aaa‖+ α) ‖x ∗B‖ ,

and

dist
(
AN,B−kx

∗
B−k + aaax∗k + tqx∗k, AN,B−kx

∗
B−k + aaax∗k + t′qx∗k

)
= (t′ − t) x∗k ≤ αx∗k,

Lemma 8.1 implies

µbN
(AN,B−kx

∗
B−k + (aaa + t′q)x∗i )

µbN
(AN,B−kx ∗B−k + (aaa + tq)x∗i )

≥ e
−αx∗k((‖AN,B−k,aaa‖+α)‖x∗B‖+2)

σ2 ≥ e−1/3.

3. As |y∗N (aaa + tq)| ≤ ‖y∗N‖ (‖aaa‖+ t ‖q‖) ≤ ‖y∗N‖ (‖aaa‖+ α), and

dist (y∗N (aaa + tq),y∗N (aaa + t′q)) = (t′ − t) |y∗Nq | ≤ α ‖y∗N‖ ,

Lemma 8.1 implies

µck
(y∗N (aaa + t′q))

µck
(y∗N (aaa + tq))

≥ e
−α‖y∗‖(‖y∗‖(‖aaa‖+α)+2)

σ2 ≥ e−1/3.

Proof (of Lemma 6.2 (Probability of small α)). By Lemma 8.4, it suffices to
bound

max
B,N

Pr
A,x∗,y∗,bN̄ ,cB̄

αP (A, b, c) ≤ ε

(‖A‖+2)2(‖x∗B‖+1)∣∣∣AN̄,:x
∗ ≤ bN̄ and y∗A:,B̄ ≥ cB̄

 .

By Proposition 8.1, it suffices to prove that for all B, N , A, y∗N and cB̄ satisfying
y∗NAN,B̄ ≥ cB̄ ,

Pr
x∗B ,bN̄

[
α(A, b, c) ≤ ε

(‖A‖+ 2)2 (‖x ∗B‖+ 1)

∣∣∣AN̄,Bx ∗B ≤ bN̄

]
≤ 8εn(m + 1)

σ2
,

(14)
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where we note that, fixing B, N , A, y∗ and cB̄ and conditioning upon AN̄,Bx ∗B ≤
bN̄ , the induced density on x ∗B is proportional to

µbN
(AN,Bx ∗B)

∏
j 6∈N

Pr
bj

[bj > Aj,Bx ∗B ] .

To prove (14) , we will show

∀i∈B∀x∗B−i
Pr
x∗i

[
x∗i ≤ ε

∣∣AN̄,Bx ∗B ≤ bN̄

]
≤

8ε(m + 1) (‖A‖+ 2)2
(∥∥x ∗B−i

∥∥+ 1
)

σ2
,

(15)

which implies

max
i∈B

max
x∗B−i

Pr
x∗i

[
x∗i ≤

ε

(‖A‖+ 2)2
(∥∥x ∗B−i

∥∥+ 1
) ∣∣∣AN̄,Bx ∗B ≤ bN̄

]
≤ 8ε(m + 1)

σ2
.

We then observe ε

(‖A‖+2)2(‖x∗B−i‖+1) ≤
ε

(‖A‖+2)2(‖x∗B‖+1) and union bound over

i ∈ B. To prove (15), we first note that having fixed i ∈ B and x ∗B−i, the induced
density on x∗i is proportional to

ρ(x∗i )
def= µbN

(AN,B−ix
∗
B−i + AN,ix

∗
i )
∏
j 6∈N

Pr
bj

[
bj > Aj,B−ix

∗
B−i + Aj,ix

∗
i

]
We now set

α =
σ2

4(m + 1) (‖A‖+ 2)2
(∥∥x ∗B−i

∥∥+ 1
) ≤ 1,

and prove that

0 ≤ xi ≤ x′i ≤ α implies
ρ(x′i)
ρ(xi)

≥ 1/2, (16)

from which (15) follows by Lemma 8.2.

To prove (16), we note that for 0 ≤ xi ≤ x′i ≤ α,

dist
((

AN,B−ix
∗
B−i + AN,ixi

)
,
(
AN,B−ix

∗
B−i + AN,ix

′
i

))
= ‖AN,i‖ (x′i − xi) ≤ ‖A‖α ≤ 1,

and∥∥AN,B−ix
∗
B−i + AN,ixi

∥∥ ≤ ‖AN,B−i‖
∥∥x ∗B−i

∥∥+‖AN,i‖xi ≤ ‖A‖
(∥∥x ∗B−i

∥∥+ 1
)
.

So, by Lemma 8.1,

µbN
(AN,B−ix

∗
B−i + AN,ix

′
i)

µbN
(AN,B−ix ∗B−i + AN,ixi)

≥ e−
α‖A‖(‖A‖(‖x∗B−i‖+1)+2)

σ2 ≥ e−
1

4(m+1) ≥ 1− 1
4(m + 1)

,

by our choice of α.
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We can also apply Lemma 8.3 to show that for each j 6∈ N ,

Prbj

[
bj > Aj,B−ix

∗
B−i + Aj,ix

′
i

]
Prbj

[
bj > Aj,B−ix ∗B−i + Aj,ixi

]
≥ 1−

α ‖A‖
(
‖A‖

(∥∥x ∗B−i

∥∥+ 1
))

σ2
e

α‖A‖(‖A‖(‖x∗B−i‖+1)+3)
σ2

≥ 1−
2α ‖A‖

(
‖A‖

(∥∥x ∗B−i

∥∥+ 1
))

σ2
, as e

α‖A‖(‖A‖(‖x∗B−i‖+1)+3)
σ2 ≤ 2

≥ 1− 1
2(m + 1)

,

by our choice of α. Thus, we may conclude

ρ(x′i)
ρ(xi)

≥
(

1− 1
4(m + 1)

)(
1− 1

2(m + 1)

)m

≥ 1− m + 1
2(m + 1)

= 1/2.

9. Connection to Smoothed Analysis of Simplex Method

The analysis of the simplex method in [ST01] is broken into two parts: a com-
binatorial bound on the smoothed size of a two-dimensional shadow of a linear
program, and an analysis of a two-phase algorithm that uses this combinatorial
bound as a black-box. The analysis of termination in this paper is closely related
to the smoothed analysis of the shadow size. The intuition behind this analysis
is that if the angle at a corner of the polytope of feasible points is bounded away
from being flat, then the simplex method should make significant progress as
it traverses this corner. The measure of angle used in [ST01] is approximately
γ(A, b, c), at least for the corner optimizing the linear program. The size of the
shadow, which upper bounds the number of steps taken by the simplex method,
is then bounded by varying c over the plane onto which the shadow is projected.

The main technical lemma of the shadow-size analysis in [ST01], Lemma 4.0.11
(Angle bound), essentially says that for every b, c and Â, the probability that a
Gaussian perturbation A of Â has αD(A, b, c)γ(A, b, c) < ε is linear in ε, with
a coefficient polynomial in n, m and σ. The most significant difference between
this statement and the analysis in Lemma 6.2 and 6.4 is that in [ST01], b and c
are not perturbed. This restriction seems necessary to apply the combinatorial
bound in a black-box fashion in the analysis of the two-phase simplex algorithm.
Also note that the simplex method analysis is for linear programs without the
constraint x ≥ 0.

Otherwise, the arguments in this paper have a flavor very similar to those
of [ST01], which mainly use the four techniques outlined in Section 8 of this
paper; although, that paper uses more elaborate changes of variables. One prob-
abilistic technique used in [ST01] that is absent in this paper is the Combination
Lemma [ST01, Lemma 2.3.5] which allows one to obtain tight bounds on the



30 Daniel A. Spielman, Shang-Hua Teng

probability that a product of parameters is small from bounds on the proba-
bilities that the individual parameters are small. The conditions of this lemma
dictate the structure of the proofs in [ST01] as without it one could not obtain
a bound on the probability of angle less than ε that is linear in ε. Moreover,
without a bound that is linear in ε, one could not prove that the shadow has
expected polynomial size. In contrast, in Lemma 6.5 of this paper the depen-
dency is on ε1/3. It is possible that one could reduce this dependency using the
combination lemma, but it is not essential for the results in this paper.

It is our hope that this paper will serve as a gentile introduction to the techniques
used in the smoothed analysis of the simplex method.

10. Open Questions

By combining the smoothed analysis of Renegar’s condition number from [DST02]
and the smoothed analysis of termination from this work, we show that Renegar’s
and Ye’s linear programming algorithms have smoothed complexity O(m3 log(m/σ)).
That is, assuming the input linear program is subject to a Gaussian perturbation
of variance σ2, the expected running times of these algorithms is O(m3 log(m/σ)).
We remark that this expectation averages over the cases in which the program
is infeasible, unbounded, and bounded. It is not clear how each of these cases
contributes to the expectation. It would be interesting to try to prove a similar
result conditioning upon the program begin bounded and feasible. In this case,
it would be natural to assume that the base program specified by (Â, b̂, ĉ) is
bounded and feasible as well. Similarly, if one wanted to analyze the running
time conditioned upon the program being infeasible or unbounded, one should
assume that the base program is as well. Such a result would not require modi-
fying any of the proofs in this paper. However, the techniques of [DST02] would
have to be improved to apply under such conditioning. As our analysis of the ter-
mination phase makes use of the result of [DST02] (Theorem 3.1 of this paper),
this issue effects both the initialization and termination analyses.

We wish to conclude by observing that the termination phase described in this
paper, and many of our definitions, only make sense for programs with unique
optimal solutions. Under the model of perturbations used in this paper, the
program has unique solutions with probability one, so this is not an issue. We
ask whether one can define a model of perturbations of linear programs that
results in degenerate linear programs, perhaps analogous to Todd’s Degenerate
Model [Tod91], and extend our results to this model.
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