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Abstract

We demonstrate that the geometric separator algo-
rithm of Miller, Teng, Thurston, and Vavasis finds a
3/4-separator of size 1.844/n for every n node planar
graph. Our bound is derived from an analysis of disk
packings on the sphere.

1. Introduction

Lipton and Tarjan [18] showed that every n node pla-
nar graph has a set of at most V/8n of vertices whose
removal divides the rest of the graph into two discon-
nected pieces of size no more than (2/3)n. We call
such a set a 2/3-separator of size /8n. Their bound
on the size of a 2/3-separator was improved to v/6n
by Djidjev [7], v/5n by Gazit [14], and v/4.5n by Alon,
Seymour, and Thomas [1].

Miller, Teng, Thurston, and Vavasis [22] devel-
oped a geometric approach which uses conformal map-
pings and centerpoints to find small separators for a
class of graphs that includes planar graphs. Their
technique has been improved and simplified in a se-
ries of papers [23, 21, 24, 10, 4]. A simple analysis
(reviewed in Section 2) shows that their geometric sep-
arator algorithm finds a 3/4-separator of size 24/n for
every n node planar graph. We improve this analy-
sis to show that their algorithm can be used to find a
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3/4-separator of size 1.84/n for every n node planar
graph. Our bound is derived from an analysis of disk
packings on the sphere.

In Section 2, we will review the geometric con-
struction of Miller et al and give an analysis of the
24/n bound. In Section 3, we identify the slack in the
analysis of the proof of Section 2, and provide a tight
analysis of the how the geometric algorithm performs
on average. In particular, we prove that it obtains a
3/4-separator of size at most 1.905y/n. This is not as
good as the bound that we will eventually prove be-
cause, in many situations, the algorithm may find a
separator with a better than 3/4 split. In Section 3.3,
we show that the geometric algorithm can be forced
to have a chance of providing a separator that exactly
3/4-splits, in which case it always produces a separa-
tor of size at most 1.844/n. In contrast, Djidjev [7]
constructed graphs that do not have 1/2-separators of
size less than 1.65+/n, 1/3-separators of size less than
1.55+/n, or 1/4-separators of size less than 1.42,/n.

Since the geometric separators split with ratio
3/4 and those of [18, 14, 7, 1] split with ratio 2/3,
it is not clear how one should compare the two. We
try to compare them by using them in an important
application—the nested dissection algorithm for Gaus-
sian elimination of planar linear systems. In Section
4, we show that the geometric separators yield a faster
nested dissection Gaussian elimination algorithm for
planar linear systems than that obtained from the im-
provements of Lipton and Tarjan’s theorem. In Sec-
tion 5, we present some extensions of our planar sep-
arator theorem. In Section 6, we will discuss some
potential directions for further improvement.

2. Sphere-preserving Maps and
Geometric Separators

In this section, we review the geometric algorithm for
finding graph separators. To provide context for the
analysis of Section 3, we present a proof that this al-
gorithm finds separators of size at most 2v/n.



2.1. Definitions

Let P = {p;,...,p,} be a set of n points in R%. A
centerpoint of P is a point ¢ € R? such that every
hyperplane passing through ¢ divides P into two sets
whose sizes have ratio at most d : 1. Every finite point
set in R? has a centerpoint, and one can be found us-
ing linear programming [9, Section 4]. An efficient and
practical constant time centerpoint approximation al-
gorithm can be found in [6].

Let S? be the sphere defined by the boundary of
the unit d-dimension ball. A sphere-preserving map
from S? to S? is a continuous function such that the
image of every sphere (of lower dimension) contained
in S? is a sphere in S? and every sphere in S¢ has a
pre-image that is a sphere. Familiar sphere-preserving
maps include rotations and the map that sends each
point to its antipode.

We can extend the class of sphere-preserving
maps over S to a class of “sphere-preserving” maps
from R?~! to S¢ by first applying stereographic pro-
jection to map R?~! onto S? and then applying
sphere-preserving maps on S¢ [22].

We will use the following theorem concerning
sphere-preserving maps of Miller et al [22].

Theorem 1. Let P = {p,,...,p,,} be a set of points
in R%. There is a sphere-preserving map II that maps
P to a set of points Q = II(P) on the unit sphere in
R such that the center of the sphere is a centerpoint
of Q. Such a sphere-preserving map can be found in
linear time.

We will use the following definition of graph sep-
arators:

Definition 2. A subset C' of vertices of an n-vertex
graph G is a d-separator of size f(n) if |C| < f(n)
and the vertices of G — C' can be partitioned into two
sets A and B of size no more than én so that there
are no edges from A to B. Here, f is a function and
0<86<1/2.

A graph G = (V,E) is planar if we can “draw”
it in the plane in such a way that each vertex is rep-
resented by a distinct point, each edge is represented
by a continuous path between the points representing
its vertices, and none of the paths representing edges
intersect, except at their endpoints.

2.2. Disk Packings for Planar Graphs

The geometric separator algorithm uses the following
geometric characterization of planar graphs (Koebe
[17], Andreev [2, 3] and Thurston [26]): Let a disk
packing be a set of disks D, ..., D, that have disjoint
interiors. The intersection graph of the disk packing
D, ..., D,, is the graph whose vertex set is { D1, ..., Dy, }

and whose edge-set contains exactly all pairs of disks
that have a common point. (See Figure 1). We will
refer this type of graph as a disk packing graph.

Figure 1: The intersection graph of a disk packing

It can be easily seen that every disk packing graph
is a planar graph: the disk packing itself provides the
straight-line planar embedding. The center of each
disk represents a vertex and there is a line segment
joining two centers if and only if their disks have a
common point.

Theorem 3 (Koebe-Andreev-Thurston). Every
planar graph G is isomorphic to a disk packing graph.

The Koebe-Andreev-Thurston theorem strength-
ens a theorem of Féry [11] and Tutte [27, 28] that
every planar graph can be embedded in the plane in
such a way that each edge is mapped to a straight line
segment (See [25, 12]).

2.3. Circle Separators for Planar Graphs

In this section, we provide a proof that the geometric
algorithm provides a 3/4-separator of size at most 24/n
for every planar graph. A similar proof can be found
in Agarwal and Pach [4]. In the next section, we will
examine the slack in this analysis and give a tighter
analysis. We will use the following fact about convex
functions.

Proposition 4. Let o > 1 and let xy,xzs,...,T, be
n non-negative reals such that Y ; , z¥ = 1. Then,
the function Y | x; is mazimized when z§ = z$ =
... =x% =1/n [16]. Therefore, the mazimum value of
Sn . ms, subject to Yn x¥ =1, isnl /e
Theorem 5. Every n node planar graph has a 3/4-
separator of size 2./n.

Proof: Let I' = {Dy,...,D,} be the disk packing
given by Theorem 3. Let P = {p,,...,p,,} be the cen-
ters of {Dy, ..., D, }, respectively. Let II be the confor-
mal map known to exist by Theorem 1 that maps P to
Q = II(P) on the unit sphere S> in R? so that the cen-
ter of Sy is a centerpoint of (). II maps T to a collection
of caps & = {C4,...,Cp} = {II(Dy), ..., II(D,,) }, where
a cap on S, is the intersection of a halfspace with Ss.
Let r; be the radius of the circle that bounds C;. In



the following discussion, we refer to r; as the radius
of C;. Because the center of Ss is a center point of @,
each cap is smaller than a hemisphere.

To calculate the average number of caps of ® that
arandom great circle intersects, we will use the duality
between great circles and points on a unit sphere [10,
24]. Each great circle G can be identified with the pair
of points pg and gg on Sy that lie on the axis of G. We
call G the dual of pg and ¢g. For each pair of great
circles G and G' of Sy, G contains pg: (and hence gg/
as well) if and only if G’ contains pg (and hence gg).

Define a great belt to be a set of points of Sy that
lie between a pair of parallel planes symmetric about
the center of Sy. The width of a great belt is then the
distance between its two planes. Notice that a great
circle is a great belt with width 0. As observed in
[10, 24], the dual of each cap (the union of all great
circles dual to points in the cap) is a great belt. Here
we assume that each cap is smaller than a hemisphere.
Moreover, if the radius of a cap is r, then the width
of its great belt is 27.

Let By, ..., B, be the great belts that are the duals
of the caps C4, ..., Cy, respectively. The point-great-
circle duality extends to caps and their dual great
belts, as observed in [10, 24]: For each cap C; and
great circle G, G intersects C; if and only if the dual
points of G, pg and qg, are in B;. Therefore, the aver-
age number of caps that a random great circle inter-
sects, Avg(®), is equal to the total area of the great
belts By, ..., B, divided by the surface area of Ss,

Avg(®) = Z Area(B;)/4n = Z Ty (1)

The last equality follows from the fact! that
Area(B,-) = 471'7“,'.

Because T is a disk packing, we know that
> Area(C;) < 4w, where 47 is equal to the sur-
face area of a unit sphere in R®. Combining this fact
with Area(C;) > mr?, we find
n

k2

n
ar? < Z Area(C;) < 4,
1 i=1

implying
n
dri<4 )

Applying Proposition 4 to Equations 2 and 1 we learn
that
Avg(®) < 2v/n.
O

We would like to thank Dafna Talmor of CMU for pointing
this fact out to us.

3. Better Separator Bounds

The proof of Theorem 5 seems to indicate that uni-
form disk packings on the unit sphere in R® are the
worst case for the geometric algorithm. If uniform disk
packings are indeed the worst case, then we should get
a better separator bound, because uniform disks can-
not completely cover the sphere and hence the total
area of the caps would be less than 47. However, the
proof of Theorem 5 did not quite prove that uniform
disk packings are the worst case because non-uniform
disks can cover the sphere better. On the other hand,
a uniform disk packing has the best ratio of cap area
to great belt area. In fact, the Djidjev [7] examined
the graphs obtained from regular disk packings and
showed that they do not have 1/3-separators of size
less than 1.554/n. One can use similar techinques
to show that they do not have 1/2-separators of size
less than 1.65,/n or 1/4-separators of size less than
1.424/n.

In this section, we show that a uniform packing
of disks maximizes the expected number of caps inter-
sected by a random great circle. We can incorporate
this fact into the proof of Theorem 5 to get a better
bound on the size of the separator provided by the
geometric algorithm.

We will eventually prove:

Theorem 6. Every n node planar graph has a 3/4-
separator of size 1.84+/n.

3.1. Polytopes of Disk Packings

Let {C4,...,C,} be a packing of caps on the sphere.
To each cap C;, we associate the plane P; such that
the perimeter of C; is the intersection of P; with the
sphere. We will occasionally abuse C; by using it to
refer to the circle defined by the intersection of the cap
with the plane. To each plane P;, we associate the
half-space H; containing the origin whose boundary
is P;.2 To the packing of caps, we will associate the
polytope P(C4,...,C,) defined by the intersections of
the Hi’s.3

Later in our proof, we will want the surface of
this polytope to be close to the surface of the sphere.
Since this is not necessarily the case for all packings
of caps on the sphere, we will show that one can add
a few extra disks to any packing of caps on the sphere
so that the resulting polytope is close to the sphere,
provided that the original caps were not too big.

By the radius of a cap, we mean the radius of the

2If we assume that the cap has radius less than one, then
this half-space is uniquely defined.

3This polytope could be unbounded, but we will make sure
that this does not happen.



circle formed by the intersection of the cap with its
associated plane. So that we can describe caps from
the perspective of the sphere on which they lie, we will
say that a cap occupies a radians if a is the angle at
the tip of the cone emanating from the center of the
sphere and passing through the circle associated with
the cap. Thus, a cap that occupies a radians on the
sphere has radius sin(a/2). We will say that a line
segment occupies « radians if the triangle determined
by the line segment and the center of the sphere has
angle a at the center of the sphere.

Lemma 7. Let € > 0 and let {C1,...,Cr} be a
packing of caps on the sphere in which each cap
occupies at most 2¢ radians.  Then, there exist
e = 0(1/62) caps Eq,...,E, that occupy 2¢ radi-
ans so that every point on the surface of the poly-
tope P(C1,...,Cpn, E1, ..., E,) is at distance at most
sin(5€) from the sphere.

Proof: We choose the caps FEi,...,E. by brute
force: if there is a gap in the packing into which we
can insert a cap of 2e radians, then insert the cap and
add it to our list. Because each such cap has area
6 (¢?), we can insert at most O(1/€?) of them.

We now wish to show that, after these caps have
been inserted, no point on any polygon can be at dis-
tance more than sin(5¢) from the surface of the sphere.
Consider a point on one of the polygons that bound
the polytope (see Figure 2). We can draw a line [ in
the plane of the polygon from the point to the sphere.
We draw this line so that it is perpendicular to the
circle that bounds the cap associated with the plane.

Let B be the number of radians that the line [
occupies, and let g be the point where the line through
p and the center of the sphere intersects the surface of
the sphere (see Figure 2). The spherical cap occupying
20 radians centered at ¢ cannot contain the center
of any cap in the packing. If this cap contained the
center point of any cap in the packing, then the plane
associated with that cap would separate p from the
center of the sphere, which would be a contradiction.
Thus, 8 < 4e, or else it would be possible to insert
another cap of radius € into the packing.

Because 8 < 4€ and the cap contained in the poly-
gon occupies at most 2¢ radians, we know that the
length of [ is at most sin(5e). O

3.2. A Packing Theorem

Theorem 8. Let {Cy,...,C,} be a packing of caps
on the sphere of radii r1,...,r, respectively. Then,

Zn < \/%(1 + o (1)Vn.

()
S p

Figure 2: a point on a polygon

BN -

Figure 3: Triangulating each polygon.

Accordingly, the geometric separator algorithm always
finds a separator of size at most 1.905/n.

The bound of Theorem 8 is tight and can be achieved
by uniform disk packings.

Proof:  We begin by removing all the big caps from
the packing. Choose an € > 0, and let {Cy41,...,Cr}
be the caps in the packing of radius greater than e.
There are at most 0(1 / 62) such caps, and these con-
tribute at most O(1/€?) to the sum of the radii. We
now consider the packing {Cy,...,Cn}

Strangely enough, we will now throw a col-
lection of caps of radius € back in to the pack-
ing. Let Ey,...,E, be a maximal collection of caps
of radius € such that {Ci,...,Cn, Er,...,E.} is a
packing. Clearly, e = O(1/€?). For convenience
of notation, let p = m + e, let {C],...,C}} =
{C1,...,Cn, En,...,E.}, and let r} be the radius of
cap Cj. Consider the polytope P(Cy,...,C}). By
Lemma 7, this polytope lies within the sphere of ra-
dius 1+sin(5¢). Thus, the surface area of the polytope
is at most 47 (1 + sin(5¢)).

Recall that the surface of the polytope is com-
posed of polygons, each of which contains a circle cor-
responding to the perimeter of one of the caps. Trian-
gulate each such polygon by adding edges connecting
the center of the circle it contains to each vertex of the
polygon (see Figure 3). We will now prove the theorem
by counting the contribution of each triangle.

For circle C}, let the triangles surrounding it be
ti1,---,tin; and let oy ; be the angle formed by t; ;
at the center of the circle. By Lemma 9,

Area(t; ;) > r7 tan(a;;/2).



We now consider the maximum of

P
dri= g Z > ri
i=1 i=1 j=1
subject to
P o
Z Z 77 tan(ay ;/2) < 47 (1 + sin(5¢)) and
i=1 j=1

n;
Za"’j = 27, for all i.
i=1

Weaken the constraints to obtain a maximum that
is at least as large by letting triangle ¢; ; have area
r7;tana;; and taking the maximum of

V4 g

—yy
27.‘. : . J J

i=1 j=1

subject to

ZZ?‘“ tan(;/2) < 4n(1+sin(5¢))  and

i=1 j=1
P ng
ZZ&M S 27Tp.
i=1 j=1

By Lemma 10, this maximum is obtained when all
the r; ;’s are equal to some value r and all the a; ;s
are equal to some value a. Let ¢ be the number of
triangles in our collection. Because the edge-graph
of the polytope is planar, ¢ < 6p. Thus, we have
a=2mp/q > 7/3 and

q(r® tan7/6) < 47 (1 + sin 5¢), so

47 (1 + sin 5¢)
gtanm/6

Because g < 6p, we find that

47 (1 + sin 5¢) 2w
— 7 < —1 in 5
Zn - v 6ptanm/6 V V3 sinSevp

As we let € go to zero, we find that

n
Z ri <
i=1

< 1.905/n.

>t o) < %Ho(nw

O

We now prove the remaining lemmas that we used
in the proof of Theorem 1.

Lemma 9. Let C be a circle of radius v and let T be
a triangle with vertices a, b, and ¢ such that a is the
center of C and edge bc is contained in the exterior of
C. Let a be the angle of the triangle at a (see Fig-
ure 4(a)). Then, the area of T is at least r? tan(a/2).
Proof: If we move the edge bc, without changing its
slope, until it touches C, then we obtain a similar tri-
angle with area at most the area of T (see Figure 4(b)).
Thus, we can assume that edge bc touches C.

Draw a line from the center of C' to the point at
which edge be touches C. This line divides T into two
triangles, with angles that we will call 8 and 7 (see
Figure 4(c)). We can now compute the area of T' to
be

r2(tan 3 + tan )

5 .
Because 3 and y are less than 7/2 and tan(z) is convex
for z € [0,7/2], we can show that 7" will have minimal

area if 3 = v, in which case it has area r?tan(a/2).
O

Area(T) =

) (b) ©

Figure 4:

Lemma 10. Let f(x) = 22 and g(y) = tan(y). Then,
for variables y; € [0,7/2] and z; > 0, the mazimum

of
Yo
subject to -
S f@dgw) < e,  and 3)
doui < e (4)

for c1,c2 > 0, is achieved when all the x;’s are equal
and all the y;’s are equal.

We will use the follwing lemma in the proof of
Lemma 10.
Lemma 11. Leta > 0 and let f(x) and g(y) be func-
tions such that

(a) f(z) is a strictly increasing convex function from
the non-negative reals to the non-negative reals,

(d) g(y) is a strictly increasing convex function from
the interval [0, a] to the non-negative reals.



Then, for variables a > y1 > y2 > --- > y, > 0, and

x; > 0, the maximum of

Z TiYi (%)

subject to
> f=@)aly) <o,
s achieved when 0 < z1 < xo <--- < xp.
Proof: Let zy,...,z, and y1,...,yn be the values

that maximize (*) subject to the constraint. Assume,
by way of contradiction, that x; > z; for ¢ < j. We
will show that it is possible to adjust z; and z; so
that (%) is unchanged but the constraint has slack.
We could then slightly increase all the x;’s without
violating the constraint. As this would increase (x),
we would have a contradiction.

Let
T; = T; — €Yy, and T =z + eyi.

If we replace z; with z; and z; with z}, () is unaf-
fected; but, we will see that slack is introduced in the
constraint. As we take the limit as e goes to zero, we
compute

F(@i)g(yi) + F(yi)g(ys) — F(xi)g(yi) — f(y5)g(y;)
— e(y; f'(zi)g (i) — yif'(z)9(y;))-
Because z; > z;, we know that f'(z;) > f'(z;) by
property (a). Thus, slack will be introduced if

vi9(y;) < yjg(yi) & 9(v:) > M,

Yi Yj
which we know because property (b) implies that
9(y)/y is strictly increasing and y; > y;. O

Proof: [of Lemma10]Letzy,...,z,and y1,...,Yn
be the values that maximize (x) subject to the con-
straints. By Lemma 11, we can assume that z; <
z2 <---<zpandy; >ys > --- >y Let i < j and
consider what happens if we replace y; with y; and y;
with y; where

Yi = yi — €xj, and ¥y =y; + ex;,

for € > 0. The sum (x) is unaffected, and constraint 4
will not be violated because z; > x;. As € approaches
zero from above, constraint 3 will develop slack if

e(zig' (yi) f(z:i) — zig'(y;) f(z;)) > 0.

This will happen unless

zi9' (i) f(ws) < xig'(y;)f(x5)
J(zi)x; < g'(y;)
flz))ze = g'(ys)
zi cos?(y;)
.Z'_j < cos?(y;)

Similarly, if we consider the substitution

!

T = z; + 0y;, and  zj = z; — by,

for 6 > 0 and small, then sum (%) will remain un-
changed and constraint 3 will develop slack if

yif'(x5)9(y;) —yi f'(x:)g(ys) > 0.

Since we assume that we cannot obtain such slack, we
find that

fx)g(wi) > yif'(x5)9(y))
f') o yig(y))
f'z)  — yi9(y:)
zi o yitan(y;)
T; T yj tan(y,)

By combining this inequality with the one we devel-
oped before, we find that slack can be introduced in
constraint 3 unless

cos” (i) yi tan(y;)

cos? (y;) y; tan(y;)

Yj > Yi
sin(y;) cos(y;) sin(y;) cos(y;)

However, this can only occur if y; = y;, because the
function D) Cos(y) sm@y) is strictly increasing for
0 <y < /2. Thus, all of the y;’s must be equal. By
again combining the same two inequalities,

_ cos®(yi) Ti yitan(y;) 1
cos(y;) — x; — yjtan(y) ’
we find that all the x;’s must be equal as well. O

3.3. If the Center is a /-Centerpoint

The separator size bound of Theorem 5 is not tight
for 3/4-separators because, in the uniform disk pack-
ings that produce the largest separators, every plane
through the the center of the sphere splits the caps
into two sets of almost the same size. In other words,
the center of the sphere is a much stronger center point
than one needs to obtain a 3/4-separator.

From the linear programming characterization of
centerpoints [9], one can see that every point set in d
dimensions has a centerpoint and a hyperplane pass-
ing through it that can be used to split the points with
ratio 1 : d. If we map such a centerpoint to the center
of the sphere, then we can show that a cut by a ran-
dom hyperplane through the center provides a smaller
separator than that guaranteed by Theorem 8.



Let H be the hyperplane through the center of
the sphere such that one half-space defined by the hy-
perplane contains the centers of at most n/4 of the
caps in ®. Using the assumption that no cap in ® has
radius greater than e, we can use arguments similar
to those in the proof of Theorem 8 to show that the
sum of the radii of the caps will be maximized when
all of the caps in each half-space have the same radius.
In this case, we expect that the geometric separator
algorithm will return a separator of size at most

Avg(®) < \/% (f—f + o(l)) N

which is less than 1.84+/n.

Similarly, for any k£ > 3, we can establish the
following bound.
Corollary 12. For any k > 3, every planar graph has
a k/(k + 1)-separator of size

2_77((1+\/E)

V3

2(1+ k) 0(1)> V.

4. Quality Measurement by
Nested Dissection

It is not immediately apparent how we should com-
pare our 3/4-separators of size 1.905/n with the 2/3-
separators of size v/4.5n obtained by Alon, Seymour,
and Thomas. In this section, we will compare these
separators by examining how their use affects one of
the most important applications of small separator
algorithms—the nested dissection algorithm for solv-
ing sparse linear systems [13, 19, 22].

The nested dissection algorithm solves a system
of linear equations by finding a small separator of
the graph of the system, eliminating the variables in
the two subgraphs created by the separator, and then
eliminating the variables corresponding to vertices in
the separator. For a class of graphs with a family of
d-separators of size f(n) (0 < § < 1/2), the worst case
time complexity of the nested dissection algorithm is
given by the recurrence

T(n) =T(n) +T((1 - 0)n) + (f(n))?, (5)

where T'(n) denotes the worst case time complexity
for solving an n variable linear system over the class
of graphs.

Using the planar separator theorem of Lipton and
Tarjan [18], Lipton, Rose, and Tarjan [19] showed that
every planar linear system of n variables can be solved
in O(n'®) time. We compare our separators with

those obtained by Alon, Seymour, and Thomas by
comparing the constants that appear in front of the
n'5 term.

Lemma 13. The worst case time complexity, To 5(n),
of nested dissection using §-separators of size ar/n is

3 5

adnl
1—015 —(1—0)15"

Proof: By Equation 5, we have

Tos(n) =Ty s5(6n) + Tos((1 — 8)n) + a®n'o.
Let the solution of T, 5(n) be a®cn!-5, we have
aPen'® = aBestnlS 4 abe(l — §)Pn' 4 aPnls,

and thus ¢ = 1/(1 = % — (1 - 6)!%). O

From Alon-Seymour-Thomas’s 2/3-separators of size
Vv4.5n we obtain

Tyis/3 = 36.2662n"°,

whereas, from our 3/4-separators of size 1.84, we ob-
tain
Ty 84,374 = 27.6276n"°.

In a recent conversion, Djidjev [8] indicated that
he can prove that every n node planar graph has a 2/3-
separator of size 24/n, from which one would obtain

Ty 2/3 = 30.3930n'.

5. Extensions

Gazit and Miller [15] proved the following interesting
edge-separator theorem for planar graphs.

Theorem 14 (Gazit—Miller). If G is a planar graph
of n nodes with degrees di,...,d,, then G has a 1/3-
edge separator of size 1.58+/> ;. dz.

They prove this result by carefully analyzing the
simple-cycle separator construction of Miller [20]. We
now give a simple proof of a similar statement.
Lemma 15. FEvery planar graph G of n nodes has a
(1/4 — o(1))-edge separator of size

Proof: The simplest way to convert a vertex-
separator into an edge-separator is to remove all edges
incident to vertices in the separator and to divide these
vertices among the two subgraphs. The resulting edge
separator has size bounded by the total number of



edges incident to the vertex separator. We can reduce
this number by a factor of 2 by assigning the all ver-
tices in the vertex separator to one of the subgraphs.
From a §-separator of size o(n), we obtain a (§ —o(1))-
edge separator. Thus, a random great circle (as in the
proof of Theorem 6) induces an edge-separator of ex-
pected size

1 n
h(F) = § i:zldﬂ“i,

where r; is the radius of the ith cap after we map
a Koebe embedding of G onto the unit sphere as in
Theorem 1, and ¥ = (rq,...,r,). Again, 7 satisfies

g =) ri <4
=1

We can use Lagrange’s method to find the max-
imum of h(7) subject to g(F) < 4. We will over-
estimate the separator size if we allow g(7) = 4. De-
fine f(#,A) = h(F) — AM(g(7) — 4). h(F) is maximized
when (8f)/(0r;) = d;/2 — 2Ar; = 0 for all 4, implying
A= dl/(47“1) = dg/(47'2) = .. = dn/(4rn) Thus, r; =
d;/(4)\). Combining this with Y., r? = 4, we find
A= +/> i, d?/8, which implies r; = 2d;/\/> i, dZ.

Therefore,

We can extend this edge-separator result to in-
tersection graphs [21] in higher dimensions. Inter-
section graphs are defined by neighborhood systems
[21]. A neighborhood system is a set of closed balls
in Euclidean space. A k-ply neighborhood system is
one in which no point is contained in the interior of
more than k of the balls. Given a neighborhood sys-
tem, I' = {By,...,B,}, we define the intersection
graph of T to be the undirected graph with vertex set
V ={Bs,...,B,} and edge set

E= {(B,,BJ) : B; ﬂBj 75 @}
Lemma 16. Let G be the intersection graph of a k-ply

neighborhood system in R:. If G has n nodes of degrees
di,...,dn, then G has a 1/(k + 2)-edge separator of

size
n 1-1/d
0 <Z d;i/(d—l)> ’
i=1

where d; is the degree of the ith vertex in G.

Proof: As in the proof of Proposition 15, we can
bound the expected size of the edge separator by

n
max Z d,ﬂ'i,
i=1
subject to

irf = 0(1).

By Lagrange’s method, we can bound this by

n 1-1/d
o(sae) ™"
i=1

O

The argument of Section 2 can be easily extended
to higher dimensions to obtain the following improve-
ment of a lemma from Miller et al.

Lemma 17. Let ® = {Cy,...,C,,} be a set of
caps on the unit d-sphere in R¥'. Let k =
(Xi, Area(C;))/Aq. Let Avg(®) be the average num-
ber of caps that a random great sphere intersects. Then

2441 d, 1-1/d
Avg(®) < | ——L 4 o(1) | kY dpt-1/d,
ATy

where Vj is the volume of a unit d-dimensional ball
and Ag is the surface area of a unit d-sphere in R4+,
We have Vy = (27%/2)/(d'(d/2)), where T'(z) is the
gamma-function, and Ag_1 = dVjy.

The convex function argument also implies that
the worst case is achieved when all caps are of equal
size. Lemma 17 is stronger than the original presented
in Miller et al in that:

i. The original assumed that the caps ® = {C1, ...,Cyr}
were k-ply in the sense that there was no point on
the sphere strictly interior to more than k caps.
The improved lemma has been applied by Cao,
Gilbert, and Teng [5] in a new hyperplane-based
separator theorem.

ii. The constant factor in the original was much
larger and was not explicitly given.

The proof given in Section 2 is much simpler and
provides a better constant than the original proof of
Miller et al [22]. It also provides a better understand-
ing of on which graphs the geometric algorithm pro-
vides the largest separators.



6. Conclusions and Open Ques-
tions

It remains to prove tight upper and lower bounds on
the size of a d-separator of a planar graph for any
6> 0.

We conclude by observing that it should be pos-
sible to improve the argument in Section 3.3. It seems
to us that, unless the distribution of caps on the sphere
is highly uneven, a random hyperplane cut will pro-
vide a cut of ratio better than 1 : 3. In those cases
where the distribution is sufficiently uneven that we
do expect a ratio of 1 : 3, we expect that the size of
the separator will be smaller than we have indicated.
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