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Abstract

We present a randomized polynomial time algorithm to determine if a multivariate
polynomial is zero using O(log mnd) random bits where n is the number of variables, m is
the number of monomials, and § is the total degree of the unknown polynomial. All other
known randomized identity tests (see for example [7, 12, 1]) use Q(n) random bits even
when the polynomial is sparse and has low total degree. In such cases our algorithm has
an exponential savings in randomness. In addition, we obtain the first polynomial time
algorithm for interpolating sparse polynomials over finite fields of large characteristic.
Our approach uses an error correcting code combined with the randomness optimal
isolation lemma of [8] and yields a generalized isolation lemma which works with respect
to a set of linear forms over a base set.
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1 Introduction

Many well known problems in algorithms and complexity reduce to the polynomial identity
testing problem: given a multivariate polynomial p(z1,...,z,) over a field F', determine
if the polynomial is identically zero. Algorithms for testing primality [1] or if a graph has
a perfect matching [14], for example, involve testing if a particular polynomial is equal to
zero. In addition, fundamental structural results in complexity theory such as IP=PSPACE
[17] or the PCP theorem [4, 2] make heavy use of identity testing.

The complexity of the problem is highly representation dependent. If the input polyno-
mial is specified by a list of monomials then the problem is trivial. On the other hand, there
are many representations of polynomials such as arithmetic circuits or straight line programs
which can succintly encode polynomials with exponentially many monomials. Still, almost
all representations used in computer science have the property that the input polynomial
can be quickly evaluated at certain points.

Schwartz [16] and Zippel [20] observed that by evaluating a polynomial at randomly
chosen points from a sufficiently large domain, we can determine if the polynomial is nonzero
with high probability. The correctness of their algorithm follows from the simple observation
that any polynomial of total degree d cannot have many roots (relative to the field size)
over a field whose size is much larger than d.

Along these lines, new tests have been discovered by Chen and Kao [7] and Lewin and
Vadhan [12] which choose random evaluation points in a more sophisticated manner (either
as irrational points in the former or square roots of irreducible polynomials in the latter).
Further work by Agrawal and Biswas [1] departs from this evaluation paradigm and gives
a new identity test via chinese remaindering polynomials. Their algorithm relies on the
fact that any nonzero polynomial cannot be divisible by many low-degree relatively prime
polynomials.

All of the above approaches were motivated by a longstanding problem from deran-
domization: how can we deterministically decide if a polynomial of total degree d and
representation size s is identically zero in time polynomial in d and s? A solution to this
problem would imply, among other things, an NC algorithm for matching and, if the so-
lution runs in time polynomial in s and log(d), a polynomial time algorithm for primality
[1]. The above algorithms make important contributions towards solving this problem as
they show how to take advantage of a polynomial’s structure and reduce the amount of
randomness required by earlier Schwartz-Zippel schemes. Still, all of the above algorithms
require 2(n) random bits irrespective of the total degree of the input polynomial. For a
polynomial in n variables with total degree §, the best known lower bound on the number
of random bits required to test if it is zero is (6 logn) (when the polynomial is specified
as a black box). More generally, for a polyomial with m monomials, one can prove a lower
bound of Q(log m) on the number of random bits needed to perform an identity test. If the
input polynomial is known to be sparse or have low total degree (which is frequently the
case), the above algorithms use exponentially more randomness than known lower bounds
indicate is necessary.

In this paper we show how to take advantage of the sparseness of our input polyno-
mial. We develop a randomized polynomial time algorithm which uses only O(log(mnd))
random bits where n is the number of variables, m is the number of monomials, and § is



the total degree. Thus, in any case where a polynomial has total degree less than n our
algorithm achieves a significant savings in randomness. In any case where the total degree
is polynomial in n, our algorithm uses O(logmn) random bits which is a significant savings
over previous algorithms when m is subexponential and is essentially optimal (within an
additive O(logn) term) when the polynomial is input as a black box. Our algorithms run
in time polynomial in n, log(d), log(m) and log(e '), where € is an error parameter.

Our approach also yields the first polynomial time algorithm for interpolating sparse
polynomials over finite fields of large characteristic, improving on a long line of research
that includes the works of Ben-Or and Tiwari [5], Grigoriev, Karpinski, and Singer [10], and
Karpinski and Shparlinski [11]. Further, we obtain a randomized polynomial time algorithm
for retrieving a single coefficient of a monomial of an unknown polynomial regardless of its
sparsity.

1.1 Owur Approach

Our approach differs from other identity testing algorithms in that we give a randomized
reduction from nonzero multivariate polynomials to nonzero univariate polynomials which
uses very little randomness and incurs only a small blow up in the degree of the univariate
polynomial. We can view monomials of a multivariate polynomial as linear forms over the
input variables z1,... ,z,. For example, .’L'?CE%LL‘{; corresponds to the linear form 3y; + 2y +
y3. Then for a vector ¥ = (r1,... ,7,) where each r; € {0,... ,p} for some prime p, the
substitution z; = y"¢ will produce a univariate polynomial whose terms are obtained by
evaluating each monomial’s linear form at the point . Viewed this way, we want a set of
evaluation points which maps distinct monomials to distinct powers of y. Instead we will
construct a small sample space of sets of evaluation points such that a randomly chosen set
of points has the desired property with high probability. Our sample space is constructed via
an error correcting code with good distance properties. To reduce the size of our evaluation
points we will appeal to a proposition from the work on randomness optimal isolation due
to [8]. In fact, we can use our error correcting code approach to extend the results in [8]
and give a new isolation scheme which works with respect to set systems of linear forms
over a base set.

Using this reduction, identity testing for n variable polynomials reduces to identity
testing for low degree univariate polynomials which can be solved quickly and with little
randomness. In addition, we can use our reduction to simplify the multivariate interpolation
problem. Again, we reduce the multivariate interpolation problem to the univariate inter-
polation problem. Since our techniques are essentially independent of the characteristic of
the underlying field, we obtain the first deterministic polynomial time algorithms for sparse
interpolation over finite fields with large characteristic, thereby improving and simplyifing
the results of Ben-Or and Tiwari [5], Karpinski and Shparlinski [11], and others.

1.2 Comparison with other results

The tests of Chen/Kao [7] and Lewin/Vadhan [12] use >, [log(d; +1)] random bits to test
if a polynomial is zero where d; is the degree of the ith variable in p. The Agrawal/Biswas
test uses [>.1 ;log(d; + 1)] random bits. One nice property of these tests is that the
number of random bits is independent of the error parameter (they use more time to obtain



high accuracy). Still, given any bound on the total degree or number of monomials of a
polynomial, we must assume d; is at least 1 for all 7. Thus each of the above tests use (n)
random bits.

We give a lengthy explanation of the relationship between our work and other work on
deterministic sparse multivariate polynomial interpolaton in Section 6.

1.3 Organization

In Section 3 we show how to reduce a multivariate polynomial to a univariate polynomial
which will have an unsatisfactory blow up in degree. In Section 4, we show how to reduce
the blow up signficantly. From this we obtain our main result. In Section 5, we show how
to implement the identity test using small bit lengths. In Section 6 we show how to obtain
new interpolation algorithms.

2 Preliminaries

2.1 Notation

For any polynomial p, n will denote the number of variables in p. We use d to denote the
total degree of p. Note that the maximum degree over all individual variables z; in p is
bounded by §. We let m denote the number of monomials of an unknown polynomial p.
Recall that if a polynomial p in n variables has total degree 6 then it has at most O(n?)

monomials. For two vectors d and @ we let <d_]c'i> denote the inner product of d and @. For

an n element vector ci; we let z¢ denote the monomial in variables z1,... ,z, where z; is
raised to the power d;.

We will work with polynomials in the black box setting: our algorithms get only in-
put/output behavior for any unknown polynomial we wish to test. If we say an algorithm
or reduction works in polynomial time then it runs in time polynomial in n,log(d), log(m),
and log(e™!), an error parameter.

2.2 Lower Bounds

One can show that any randomized scheme for identity testing in the black box model which
succeeds with probability 1/2 must use at least (1 —o(1)) log m random bits where m is the
number of monomials of the unknown polynomial. We defer a proof and discussion of this
to the Appendix (See Section A).

2.3 Generating a Prime Efficiently
We will need to generate primes of bit length m in polynomial time using only O(m) random
bits. This can be accomplished, and we defer the proof to the Appendix (See Section B).

2.4 Black Box Polynomials over Finite Fields

Given black box access to a polynomial over a finite field, one can debate whether or not it
is safe to assume that one can ask for values of the polynomial at elements of an extension



of that field. We believe this is a reasonable assumption. See Section C for a discussion.

3 Reduction to one variable

The first step of our zero-test will be to take a degree § multivariate polynomial, such as
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and map it into a low-degree non-zero univariate polynomial. A naive approach to this
reduction would be to set z; = y*, for all i. This polynomial would have degree at most dn,
but it could be zero (consider z1z9 — x3). On the other hand, one could guarantee that the
polynomial will be non-zero by setting z; = y°2'; but, this yields unacceptably high degree.

We will construct a collection of vectors @), ...a@® such that, for most k, the substitu-

. (k) . .
tion x; = y% produces a non-zero polynomial. To guarantee that a 1 — € fraction of the
@®s yield non-zero polynomials, we will need ¢ = [mn/e] vectors with elements between 1
and 2mn/e. Thus, the univariate polynomial we produce will have degree at most 2mnd/e.

In Section 4 we will reduce the degree to (nd)°()

. . =(k) 7
Under the substitution x; = y% 749 maps to y

tion is to arrange that each vector of the form

(<g(j)|a<1)> , <th)|6(2)> . <J(j)|gi(t)>)

is roughly a codeword in a Reed-Solomon code. To this end, we define

(491a®) * The idea behind our reduc-

d’gk) = k! mod p,

where p is a prime slightly greater than t.

Lemma 1 Let dV),....d"™ be distinct vectors with entries in {0,1,2,...,6}, and let p be
a prime greater than t and §. Then, for all j,

Prici<t [Vj' # J, <d_(j)|5(k)> # <07U')\5(k)>] >1—mnft.

Proof First note that § < p implies that the vectors cﬂl), . ,cﬂm) are all distinct modulo
p. To each vector d¥), we associate a polynomial p; over GF(p) given by

n
pi(z) = Z Jgj)zifl mod p.
i=1
By the construction of the vectors @*), we find

<J(j)\&'(k)> mod p = p;(k).

As these polynomials have degree n — 1, and two distinct degree n — 1 polynomials can
agree in at most n places, we find that for every j and any j', there are at most n values

4



of k for which p;(k) = pj (k). As there are at most m — 1 choices for j/, we conclude that
for every j, there are at most (m — 1)n values of k for which there exists a j' for which
pj(k) = pj (k).

To conclude the proof, we note that if

<ci(j)|c‘i(k)> mod p # <ci(j')|c‘i(k)> mod p,
then
<J(j)|a'(/€)> 4 <J(J")|a'(k)>_

Lemma 2 Let
P(%) = Zcﬂ:’d J),
j=1

be a non-zero polynomial of degree at most 6. Then, for k chosen at random between 1 and
t, the probability that the univariate polynomial

FORFO k)

Pl(y) = P(y™ " ,y% ,...y™")

is zero is at most 1 —mn/t. Moreover, the degree of P'(y) is always at most pd, where p is

the prime greater than t and & used to define the vectors @a®).

Proof Assume without loss of generality that ¢; # 0. By Lemma 1, for at least ¢ — mn

choices of k, the jth monomial is the only monomial that gets degree <J(j)|d'(k)> in y. That

is, with probability 1 —mn/t over the choice of k between 1 and ¢, the coefficient of y<‘i(j)|a(k)>

in P'(y) is ¢;, so P'(y) is non-zero.
Finally, the total degree of P is at most § and each entry of @ is at most p — 1; so,
the total degree of P’'(y) is at most dp B

4 Reducing the degree

From Lemma 2 we know there exists a randomized reduction from non-zero multivariate
polynomials to non-zero univariate polynomials which succeeds with probability 1 — €, uses
log(mn/e) random bits and outputs a polynomial of degree at most 2mnd/e. In this section
we will show how to modify our reduction so that the output polynomial has considerably
smaller degree while paying a small price in randomness. The idea behind our degree
reduction is to view a multivariate polynomial as a set of linear forms, one for each monomial,
over a base set of variables {z1,... ,z,}. In Section 3 we showed how to evaluate these linear
forms so that with high probability one form evaluates to a unique value. In this section
we show how to evaluate the forms so that with high probability every value obtained is



unique and then apply a modified proposition from [8] to reduce the size of our evaluation
points (which will return us to having only one unique value).

The first step of this process will be to apply the following straightforward modification
of Lemma, 1:

Lemma 3 Let dV),...,d"™ be distinct vectors with entries in {0,1,2,...,4}, and let p be
a prime greater than t and 6. Then

Pricp<; [<d_(j)|&'(k)> are dist. for1<j<m ] >1-— m2n/t.

We will use a slight improvement of an isolation lemma from [8], which is based on a
lemma from [14]. Our proof closely follows those of [8, 14].

Lemma 4 Let C be any collection of distinct linear forms in variables z1, ..., zp with coef-
ficients in the range {0,...,K}. If z1,..., z; are independently chosen uniformly at random
in {0,...,KL/e}, then, with probability greater than 1 —e, there is a unique form of minimal
value at 21, ..., 2.

Proof Following previous proofs of such statements, we call an index ¢ singular under the
assignment if there exist two forms in C' that have different coefficients of z; and that both
achieve the minimum value. As all the forms are distinct, if more than one form achieves
the minimal value then some index will be singular. To prove the lemma, we will show that
for any given index, the probability that it is singular is at most ¢/¢. Thus, the probability
that there exists a singular index is at most e.

In our proof that some index ¢ is unlikely to be singular, we will only make use of
the variable z;. Accordingly, let all the other variables be set arbitrarily. Once we fix
these variables, each form becomes a linear polynomial in z; in which the constant term
is determined by the setting of the other variables. We group these polynomials by their
coefficient of z;. As the coefficients are in the range {0,...,K}, we get at most K + 1
classes. In each class, it is clear that only the polynomial with the smallest constant term
can achieve the minimal value. We let this polynomial be the representative of its class.

Index ¢ is made singular by a setting of z; if and only if the representatives of two different
classes have the same value at z; and this value is the minimum among the representatives.
We now show that there are at most K possible settings of z; that can cause this to happen.
Thus, if 2; is chosen at random in {1,..., K£/e}, the probability that 7 is singular is at most
e/l.

To see why there are at most K possible settings of z; that can cause two of the K + 1
representative polynomials to both achieve the minimal value, consider the open polygon
defined as the set of points in the plane below the K + 1 lines which are the graphs of the
representative polynomials (recall that these polynomials are linear). Each vertex of this
polygon is a point at which two of the representative polynomials achieve the same minimal
value (see Figure 1). There are at most K such points because an open polygon defined by
K + 1 ines can have at most K vertices. ll

The difference between our Lemma 4 and that proved in [8, 14] is that their proofs
considered all points at which two of the lines intersected; so, they chose values for the



Figure 1: The polygon under the lines z + 3, 2z + 1, and 3z.

variables in the range {O, ... ,KQZ/e}.
With this in hand we obtain the following:

Theorem 5 There exists a randomized polynomial time algorithm which maps a nonzero
multivariate polynomial p in n variables of total degree at most § with m monomials to a
nonzero univariate polynomial of degree O(n%5%). The algorithm succeeds with probability
2/3 and uses O(logmn) random bits.

Proof Assume that we have randomly selected an g(¥) satisfying the conclusion of Lemma
3 (with, say € = 1/6). As in [8], write the ith element of @*) as a ¢ bit number where
g = min{n, log(6m?n)}. Divide these bits into £ blocks each having /¢ bits. Let b; ; be the
number in {0,... ,2%/!} represented by the bits in block j. For a vector de {d_(l), . ,J(m)}
let wz(ci) = Zf;é d;b; ryr (where the y,’s are new variables).

- -

Lemma 6 [8] The linear forms w(d) =Y. | w;i(d) are distinct for all d.

Proof Each linear form w(cf) evaluated at y = 2kd/! for () <k <Zf-1equals <cﬂ&'(k)>
which is a distinct value for every d € {J(l), . ,J(m)}. [ |

Now we define a vector z. Let the ith component of vector z’ equal Zﬁ;é b; jy; where y;
is chosen uniformly at random from {1,... , (6£6n29/!)}. Then by Lemma 4 with probability
5/6 there exists j such that <J(J)|z"'> < <J(j')|é'> for all ' # j. In other words, there exists a

linear form w(d) which, with respect to the evaluation points yi, ... ,ys, takes on a unique
minimum value.



Now consider

P'(h) = P(h*,h?,. .. h"")

The degree of each monomial in P’(h) is equal to <J(7)|Z> for each monomial corre-

sponding to d. Thus, we obtain a univariate polynomial P’ in h where precisely one
monomial in our original polynomial has mapped to the smallest degree monomial in P’.
Since our first transformation into distinct linear forms works with probability 5/6, both
transformations succeed with probability 2/3. Setting £ = ¢/log(66n) tells us that our
linear forms take on values bounded by O(n%6*). This implies that our polynomial P’ has
degree at most O(n®§*). The number of random bits required is O(q) = O(logmn). We
defer the proof of these bounds to the appendix (see Section D.1). B

The above theorem can be strengthened to work with probability 1 — e. This will increase
the degree of P’ by a factor of e ! and require O(log(e!)) additional random bits.

Remark: This approach can be used to generalize the randomness optimal isolation
lemma proved in [8] which shows that for a set system F over a base set S there exists a
random weighting of the elements of S such that with high probability there is a unique
minimal weight set F € F. Their scheme uses only O(log(|F|) + log(|S|)) random bits
and uses integer weights in the range {0,...,|S|9M}. Their construction works by first
assigning weights to the base set and then invoking a theorem from number theory to
conclude that with high probability every element of the set system F has a unique weight.
We can replace this step by using the error correcting code approach from Section 3 which
has the nice property that it maps sets of linear forms over subsets of variables from the
base set to distinct values. Combining this idea with Lemma 4 we obtain the following
generalized isolation lemma:

Theorem 7 Let S be a set of variables and let F be a set of linear forms over subsets
of variables from S with coefficients bounded by §. Then there is a randomized scheme
assigning integer weights to the elements of S such that with probability greater than 1 — e
there is a unique minimum weight form in F. The scheme uses O(log(|S|0) + log(|F|/¢€))
random bits and assigns weights to the variables in the range {0,... ,(e~S[6)°M}.

Proof Let F = {cﬂl), ... ,J(j)} and apply Lemma 3 to obtain a set of evaluation points
such that every linear form evaluates to a distinct value. Then apply Lemma 4 to reduce
the size of the evaluation points. The linear forms will no longer evaluate to distinct values,
but there will exist an evaluated linear form of unique minimum value. Our bounds on
randomness and the size of the integer weights follow as in the proof of Theorem 5. B

5 Performing the test

At this point, we have obtained a collection of vectors Z(1),....z("), where each vector
corresponds to an evaluation point and for every multilinear polynomial with at most m



. . . . . . k)
monomials and degree d, the linear polynomial obtained by the substitutions z; = y*

is probably non-zero for a randomly chosen Z(¥). If M is greater than any element of a
vector Z(¥), then this univariate polynomial has degree at most M¢. Thus, if we choose y
at random among a set of Md/e elements, the chance that the polynomial is zero at this
point is at most e.

Of course, we don’t feed the black-box a value for y—we feed it values for z1,...,z,.
If we are not working over a finite field, this can result in feeding the black box integers of
unnecessarily long bit-length. If we choose y at random from the set {1,...,Md/e}, then

by applying z; = yzﬁk) we obtain an upper bound on the z; values of (M§/€)M?. While the
bit-length of this number is not prohibitively large, it could be much smaller. A natural
idea for decreasing the bit-length would be to set

Ak)
T; =y~ mod po,

where po is a prime greater than (Md/e). The bit-length of these z;s is then log pe, which
need be no larger than log(Md/e) + 1. It is clear that this idea works over GF(p2), but it
might not be immediately clear that it works over the integers. To show that it does, let

m
P@) =Y &,
=1

be a multivariate polynomial in which, without loss of generality, each c; # 0, and let Zk)
be a vector for which there exists a j such that 74 maps to a unique monomial in ¢ under
the mapping defined by #¥). Consider the matrix M in which the entry in the jth row and

[th column is the evaluation of the jth monomial at [ modulo po:
L AR Z0)
H %% mod po.
i=1

Since no non-zero degree MJ polynomial can have more than Md roots, we can conclude
that, for every non-zero m-vector v over GF(p3), the product vM will have at most Mo
zero entries. As a sub-matrix of M is singular over GF(p2) if it is singular over the Reals,
if we multiply M by a non-zero vector v over the Reals, the product v M will have at most
M zero entries. Finally, if v is the vector of coefficients (c¢;);, then the ith entry of vM is
the result of evaluating P(Z) at the point given by

B

z;=1 mod po.

Combining this test with the reduction of the previous two sections we obtain:

Theorem 8 Let p be a polynomial over the Reals with n variables, m monomials, and total
degree §. Qur randomized algorithm will test if the polynomial is zero and succeed with
probability 1 — € using O(log(mn/e€) + log(nd/€)) random bits and will use time polynomial
in n, log(8), and log(e™t). Moreover, our algorithm queries the polynomial at points with
bit length O(log(nd/e)).



For finite fields we need to assume the field has enough elements or that we can construct
elements from a small extension field (see Section 2.4 for a discussion):

Theorem 9 Let p be a polynomial with n variables, m monomials, and total degree
over a field F. Further assume that F has at least (n§/€)® elements or that we can con-
struct elements from an extension field of F having at least (nd/e)® elements. Then our
randomized algorithm will test if the polynomial is zero and succeed with probability 1 — €
using O(log(mn/e) + log(nd/€)) random bits and will use time polynomial in n, log(d),
and log(e ). Moreover, our algorithm queries the polynomial at points with bit length

O(log(nd/e)).

6 New Determinstic Algorithms for Sparse Identity Testing
and Interpolation

There have been many papers written about deterministic interpolation and zero-testing of
sparse multivariate polynomials over finite fields and the Reals. We begin by surveying the
techniques used in these results and explain how they relate to our setting (some of these
results can be used to obtain randomized identity tests similar to ours for the special case
in which m is polynomial in n). We then explain how our techniques can be used to obtain
new results for the problems considered in those papers. They key difference between our
work and other results in this area is that our reduction from a multivariate polynomial to
a univariate polynomial works irrespective of the underlying field. Therefore our results do
not have a bad dependence on the field size or its characteristic.

6.1 Background

Work by Grigoriev and Karpinski [9] and Ben-Or and Tiwari [5] provides a technique for
zero testing and interpolating sparse multivariate polynomials over the Reals. They evaluate
the polynomial at points

(P, - P}

where k ranges between 1 and some constant times m, and p1,...p, are distinct primes.
Using these points, they construct a set of O(m/e€) points such that any polynomial with at
most m monomials can be zero on at most an e fraction of these points. We refer to such
a set as a test set with error parameter e. Our results immediately imply the existence of
€ test sets of size O((mnd/e)°(M)). While the test set of size O(m/e) mentioned above is
smaller than that which we construct, it has a significant disadvantage: the points in the
set have bit-length Q(mlogn). Thus, for super-polynomial m, a polynomial-time algorithm
does not have time to output a random test vector from this set, so it is not useful in our
setting. In contrast, the points in our test sets have bit-length O(log(nd/€)). Alon and
Mansour [3] produce test sets that have small bit-length, but the size of the test sets has a
bad dependency on the size of the coefficients of the polynomial we wish to test.

A sequence of papers has extended these results to finite fields [11, 6, 19, 10]. These
papers focus on polynomials defined over fixed finite fields with a corresponding fixed degree
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in each variable. To test whether these polynomials are zero, they work over these finite
fields or their extensions. The test sets used in these papers are derived from a primitive
element in this extension field. While one can efficiently find a polynomial size set that
contains a primitive element of a field of small characteristic or over a field of prime or
prime squared order assuming the extended Riemann hypothesis [18], in general it takes
time polynomial in the order of a field to find a primitive element in that field or a small
extension. At the moment, it is not known how to construct in polynomial time the test
sets that these papers would use to zero-test polynomials over fields of characteristic super-
polynomial in n. Assuming that we can construct the needed primitive element, we find
that the technique of Grigoriev Karpinski and Singer [10] can be used to construct a test
set for which any sparse polynomial will be non-zero at most points. The papers of Clausen
et al. [6] and Werther [19] focus on how the size of a minimal test set varies with the degree
of the extension field in which one works. Their results imply that if one can only evaluate
in a small field, then it is not possible to construct test sets from which random points
are good. The techniques of [10, 6, 19] all require time exponential in the ground field.
Karpinski and Shparlinski [11] produce test sets in time polynomial in the characteristic of
the ground field, which is an improvement for fields of small characteristic, but still takes
superpolynomial time for fields with large characteristic.

6.2 Deterministic Sparse Zero Testing

For m and § polynomial in n, our test sets have size polynomial in n. Thus, one can use
our test sets to determinstically test whether a sparse multivariate polynomial is zero. The
only restriction that our test places upon the ground field is that it have at least (né)o(l)
elements, or that we be able to evaluate the polynomial over an extension field with at
least this many elements. By inspecting our results, one can see that the characteristic of
the ground field has no impact on the efficacy of our test. On the other hand, previous
techniques for deterministic zero testing run in time polynomial in the characteristic of
the ground field. Thus, over fields of superpolynomial characteristic, we reduce the time
required to zero-test multivariate polynomials with a polynomial number of monomials from
exponential to polynomial time:

Theorem 10 In time polynomial in n, m, 6, and log(|F|), we can output a test set of
vectors such that every non-zero degree § n-variate polynomial over F with at most m
monomials must be non-zero at one of the vectors in the set. If F is the Reals, then each
element of each vector in the set has bit-length at most O(log(nd)). If F is a finite field
with less than (nd)® elements, then the elements of the vectors lie in the smallest extension
of F with at least (nd)® elements; otherwise, the vectors contain just elements of F.

6.3 Deterministic Sparse Interpolation

Our techniques also provide a very simple solution to the interpolation problems considered
in [5, 11, 6, 19, 10]. Consider a vector aV produced by Lemma 3 under which the image of
each monomial in z1, ...z, maps to a distinct monomial in y. The univariate polynomial
we obtain has degree at most 2m?né. If we evaluate the polynomial at 2m?nd elements of
the base field, then we can interpolate the coefficients of the univariate polynomial using
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standard univariate interpolation. We thereby obtain the set of coefficients of the original
multivariate polynomial; but, we don’t know to which monomials these coefficients belong.
That is, we have learned the c;s but not the dPs.

To solve this problem, consider a new map in which we set z; = y% if 1 > 2 and
z1 = 2y, If we now evaluate this polynomial at the same 2m®nd points, each coefficient
will change according to the exponent of z; in its monomial. That is, we learn J(lj ) for each
j- By repeating this experiment for each variable, we learn which monomial corresponds to
which coefficient.

Over the Reals, one can do this experiment in one step instead of n by setting z; = p;y*,
where the p;s are distinct primes. From this we obtain:

Theorem 11 In time polynomial in n, m, 6, and log(|F|), we can output a test set of
vectors such that, given the values of a degree 6 n-variate polynomial over F with at most
m monomials at every vector in the set, we can solve for the coefficients of the polynomial in
polynomial time. If F is the Reals, then each element of each vector in the set has bit-length
at most O(log(nd)). If F is a finite field with less than (nd)% elements, then the elements
of the vectors lie in the smallest extension of F with at least (n6)® elements; otherwise, the
vectors contain just elements of F.

To contrast this technique with that of [5], we note that ours requires interpolation at
vectors of exponentially smaller bit-length. Again we note that our results work in time
logarithmic in the field size, whereas previous techniques require time polynomial in the
characteristic. Moreover, we feel that this interpolation algorithim is conceptually much
simpler. We will compare the complexities of these algorithms in the final version of the

paper.

6.4 Isolating a coefficient

Finally note that even in the case that the number of monomials is very large, our technique
provides a probabilistic algorithm that allows one to learn a polynomial number of the
monomial coefficients in polynomial time. The idea is to apply the interpolation algorithm
of the last section to the univariate polynomial produced by our main reduction in Section
4. This allows us to learn the monomial corresponding to the lowest degree univariate
monomial. We can then subtract off this monomial and recurse. We state this as follows:

Theorem 12 Given black-box access to a n-variate polynomial p over F of degree d with
at most m monomials, in randomized time polynomal in n, log(d), log(F), and log(m), we
can output a set of test vectors such that we can deduce at least a polynomial number of
coefficients of p from its values at the test vectors.

7 Open Problems: The Case of Arithmetic Circuits

Our algorithms take advantage of the sparsity of a multivarite polynomial to obtain ran-
domness efficient tests. Still, it is unclear how to use the particular input representation
of a polynomial (for example as the determinant of a matrix) to achieve better derandom-
izations. Here we briefly consider the case when the polynomial is input as an arithmetic

12



circuit. If the input is a depth-2 arithmetic circuit then the problem is trivial as it is a
list of monomials. We outline a randomness efficient algorithm for testing if an arithmetic
circuit of depth 3 with fan in 2 at the root is identically zero. As with the other results in
this paper, this algorithm only uses the polynomial only as a black box. Again, inspection
of the actual arithmetic circuit is enough to determine if it is identically zero.

Let P be a depth 3 arithmetic circuit with fan in 2 at the root. Then P is the difference
of two polynomials p and ¢. Let p = [[7L, D3I, aj @i and ¢ = [[72, 371, Bjiw;. Consider
the substitution z; = c'y + 2* where y and z are new variables and c¢ is some element of
the field. Now p = [T, ((>2%, o)y + S, @;i2). For the moment let us assume
that Y7, ciaj,i is non-zero for every j. Notice that p is now a product of irreducible
polynomials as each term in the product is linear in y and similarly for q. Because we are
working over a unique factorization domain and the coefficients of the z terms are in one
to one correspondence with the coefficients «;; and 3;;, p is equal to ¢ if and only if p
equals ¢ after making the above substitution. But now p and ¢ are polynomials in only
two variables, and we can test if they are identically zero using only O(logn) random bits.
Furthermore, if we pick ¢ randomly in the range {1,... ,O(mn)} then with high probability
Y% c'aj; will be non-zero for all j. Hence our identity test uses only O(logmn) random
bits.

If the top gate has fan in 3 or higher, we are unaware of any efficient black-box deran-
domization for identity testing. In fact, we challenge the reader to derandomize the identity
testing of such arithmetic circuits even when given the circuit as input.
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A Lower Bounds

In [12], Lewin and Vadhan give a lower bound on the number of random bits needed
to perform an identity test in the black box model. They prove that any randomized
polynomial time algorithm for identity testing which succeeds with probability 1/2 must
use at least (1—o0(1)) 3°7 ; log(d; +1) random bits where d; is the degree of the ith variable.
The idea behind the lower bound is that any deterministic scheme must make at least
II7_, (d; + 1) queries to the black box. Otherwise, there exists a non-zero polynomial with
degree at most d; in each variable which is zero at each query point via interpolation. Thus,
any randomized scheme must use essentially log(II7_, (d; 4+ 1)) random bits. Their argument
can be used to show that any randomized scheme for identity testing which succeeds with
probability 1/2 must use at least (1 — o(1)) log m random bits where m is the number of
monomials of the unknown polynomial.

B Generating a Prime Efficiently

To generate an m bit prime using O(m) random bits, we first randomly generating m? pair-
wise independent numbers (each of bit length m) and then check if any number is prime
using a randomized primality test such as the Miller-Rabin test [13] [15]. Generating the
pairwise independent samples will require O(m) random bits. We can decrease the error
probability of the Miller-Rabin test to 27™ using O(m) random bits via a random walk on
an expander. Since a 1/m fraction of m bit strings are prime by the Prime Number Theo-
rem, we can apply the Chebyshev inequality and conclude that with high probability one
of our m? samples is prime. In addition, the probability that Miller-Rabin test misclassifies
one of our samples is at most m?2~™. Thus, with high probability we can generate a prime
of bit length m using O(m) random bits.

C Black Box Polynomials over Finite Fields

For all of the realizations of black box polynomials of which we are aware, this assumption
is reasonable if the algorithm calling the black box can construct the extension field. In our
results, we merely need to be able to query the polynomial at (nd)o(l) different elements of
a field containing the base field. If the base field does not have this many elements, then
one can easily construct an extension of that base field that does. On the other hand, if one
does not allow evaluation at extensions of the base field, then there are polynomials that
are unlikely to be zero at random points in any test set [6].
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D Deferred Proofs

D.1 Bounds on Randomness and Degree for Theorem 5

e Each b;; € {1,... ’2q/l}’

-

e Each linear form w;(d) = 302§ d;b; »y, has coefficients in the range {1,... ,§29/}.

= =

e Each linear form w(d) = Y i, w;(d) has coefficients in the range
{1,... ,n629/'}.

-

e Each linear form w(d) has £ variables. As dictated by Lemma 4, we choose a random
setting for each variable in the range {1,... ,6£0n2%/'}.

e Each linear form evaluates to a value in the range
£(6£6129/1) (6n29/1) < 6£262n22%0/1,

e The randomness required to choose ¢ evaluations points is £(log(640n) + g/f) <
201og(66m) + g (recall £ < n).

Setting £ = ¢/ log(66n) tells us that our linear forms take on values bounded by O(n®§%).
This implies that our polynomial P’ has degree at most O(n%3*). The number of random
bits required is O(q) = O(logmn).
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