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Abstract. In smoothed analysis, one measures the complexity of al-
gorithms assuming that their inputs are subject to small amounts of
random noise. In an earlier work (Spielman and Teng, 2001), we intro-
duced this analysis to explain the good practical behavior of the simplex
algorithm. In this paper, we provide further motivation for the smoothed
analysis of algorithms, and develop models of noise suitable for analyz-
ing the behavior of discrete algorithms. We then consider the smoothed
complexities of testing some simple graph properties in these models.

1 Introduction

We believe that the goals of research in the design and analysis of algorithms
must be to develop theories of algorithms that explain how algorithms behave
and that enable the construction of better and more useful algorithms. A fun-
damental step in the development of a theory that meets these goals is to un-
derstand why algorithms that work well in practice actually do work well. From
a mathematical standpoint, the term “in practice” presents difficulty, as it is
rarely well-defined. However, it is a difficulty we must overcome; a successful
theory of algorithms must exploit models of the inputs encountered in prac-
tice. We propose using smoothed analysis to model a characteristic of inputs
common in many problem domains: inputs are formed in processes subject to
chance, randomness, and arbitrary decisions. Moreover, we believe that analyses
that exploit this characteristic can provide significant insight into the behavior of
algorithms. As such analyses will be difficult, and will therefore be instinctively
avoided by many researchers, we first argue the necessity of resting analyses on
models of inputs to algorithms.

Researchers typically avoid the need to model the inputs to algorithms by
performing worst-case analyses. By providing an analysis that does not depend
upon the inputs, worst-case analysis provides an incredibly strong guarantee, and
it is probably one of the greatest achievement of the theoretical computer sci-
ence community. However, worst-case analysis provides only one statistic about
an algorithm’s behavior. In many situations, and especially those in which al-
gorithms are used, it is more important to understand the typical behavior of
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an algorithm. Moreover, the typical behavior of an algorithm is often quite dif-
ferent from its worst-case behavior. If the mention of the ill-defined “typical”
causes a mathematical mind run to the comfort of the cleanly defined worst-case
analysis, it is understandable. It is not even clear that one should try to use
mathematics to understand a notion such as “typical behavior”, and it is clear
that experiments must also play a role. However, the results of experiments are
best understood in the context of an abstract theory. Experiments can confirm or
contradict a theory; but, mathematically describable theories provide the most
desirable encapsulations of knowledge about algorithms. It remains to be seen
whether these theories will be mathematically rigorous, reason by analogy with
mathematically rigorous statements, or combine theorems with heuristic math-
ematical arguments as is common in the field of Physical Applied Mathematics.

In smoothed analysis, we exploit the low-order random events influencing
the formation of the inputs to algorithms. These influences have many sources
including measurement error, constraints imposed by economics or management,
and the chain of chance leading to the consideration of any particular situation.
Consider, for example, the design of a bridge that may be input to an algo-
rithm. Design constraints are imposed by the surface under the bridge, and the
locations of the roadways available to connect the bridge at either edge. A gov-
ernmental committee will provide a probability distribution over architects, and
a given architect will choose different designs in different periods of her career.
These designs will then be altered as local politicians push contracts to favored
constituents, etc.

By examining different levels of the design process, one can obtain complexity
measures varying from average case to worst case. If one just views the entire pro-
cess as providing one distribution on bridges, then one obtains an average-case
complexity measure. If one merely considers the finished bridge, and maximizes
over the possible bridges, then one obtains a worst-case complexity measure. By
considering the probability distribution after certain choices have been made,
and taking a maximum over those choices, one obtains a model between the
average-case and worst-case complexity measures.

Of course, we cannot hope to define a mathematical model that precisely
captures any of these influences or that captures the levels of refinement of the
actual process. But, we can try to define models that capture their spirit and
then reason by analogy. Our first attempt [ST01] was to model these influences
by subjecting inputs to perturbations. In this model we defined the smoothed
complexity of an algorithm to be the maximum over its inputs of its expected
running time over random perturbations of those inputs. This running time
should be measured in terms of the input length and the magnitude of the
perturbations. By varying the magnitudes of the perturbations, we smoothly
generate complexity measures between the worst-case and average-case.

However, a model in which inputs are perturbed at random may be unnatural
for some problems, and it might be necessary to place some constraints upon the
perturbations by insisting that they respect some divisions of the input space.
For example, it might be necessary that the bridge be able to support a 20-ton



truck (or SUV), and we should not allow perturbations of the bridge that violate
this constraint to enter our probability space. In general, perturbations should
probably be restricted to preserve the most significant aspects of an input for
a given situation. For example, a natural perturbation of a graph is obtained
by adding edges between unconnected vertices and removing edges with some
probability. However, a graph subject to such perturbations is highly unlikely to
have a large clique, and so it may be meaningless to measure the performance
of algorithms for clique under this model. We propose to avoid this problem
by studying property-preserving perturbations, which we define by restricting
a natural perturbation model to preserve certain properties of the input. For
example, one could imagine perturbing a graph subject to preserving the size of
its largest clique.

We remark that a notion such as property-preserving perturbations is nec-
essary even in average-case analysis. For example, if one desires an average-case
analysis of algorithms for max-clique, one should state the running times of
the algorithms as functions of the size of the max-clique. Otherwise, the prob-
ability mass is concentrated on the graphs without large cliques, and for which
the problem is much less interesting. One should not be distracted by the fact
that it may be computationally difficult to sample from the resulting conditional
distributions under which we must measure the complexity of our algorithms.

Of course, one should not just preserve only the property being calculated
by the algorithm: it is natural to require that the perturbations preserve all the
most relevant properties of the input. For example, when studying algorithms
for minimum bisection, one might consider genus- and bisection-size-preserving
graph perturbations. We note that the complexity measure of an algorithm under
perturbations that preserve more properties properties is strictly closer to worst-
case complexity that a measure under perturbations that preserve a subset of
the properties.

1.1 A Mathematical Introduction

In our analysis of the simplex method [ST01], we exploited the most natural
model of perturbation for real-number inputs—that of Gaussian random per-
turbations. This model has also been applied in the smoothed analysis of the
Perceptron Algorithm by Blum and Dunagan [BD02], of Interior Point Meth-
ods by Spielman and Teng [ST03] and Dunagan, Spielman and Teng [DST02].
For a survey of some of these works, we refer the reader to [ST02]. It has been
suggested by many that these analyses could be made to have a tighter analogy
with practice if the perturbations preserved more properties of their input. For
example, it would be reasonable to restrict perturbations to preserve feasibility,
infeasibility, or even the condition number of the programs. It is also natural to
restrict the perturbations so that zero entries remain zero.

In this paper, we will mainly concern ourselves with discrete problems, in
which the natural models of perturbations are not nearly as clear. For graphs,
the most natural model of perturbation is probably that obtained by XORing



the adjacency matrix with the adjacency matrix of a random sparse graph. This
model is captured by the following definition:

Definition 1. Let Ḡ be a graph and σ > 0. We define the σ-perturbation of
Ḡ to be the graph obtained by converting every edge of Ḡ into a non-edge with
probability σ and every non-edge into an edge with probability σ. We denote this
distribution on graphs by P(Ḡ, σ).

Unfortunately, there are many purposes for which such perturbations can
radically change an input, rendering the model meaningless. For example, it
would be pointless to study algorithms testing whether a graph is bipartite or has
a ρn-clique under this model because it is highly unlikely that the σ-perturbation
of any graph will have either of these properties.

Property preserving perturbations provide a modification of this model in
which this study becomes meaningful. Given a property P , and a notion of
perturbation, we define a P -preserving perturbation of an object X̄ to be a
perturbation X of X̄ sampled subject to the condition P (X̄) = P (X). For
example, if Ḡ is a graph and G is a P -preserving σ-perturbation of Ḡ, then G
has density

PrG←P(Ḡ,σ)

[
G and (P (Ḡ) = P (G))

]
PrG←P(Ḡ,σ)

[
P (Ḡ) = P (G)

] .

We can then say that an algorithm A has smoothed error probability δ under
P -preserving σ-perturbations if

max
Ḡ

PrG←P(Ḡ,σ)

[
A(G) is incorrect|P (G) = P (Ḡ)

]
≤ δ.

Property preserving perturbations are a special case of function preserving
perturbations in which the function is binary valued.

Definition 2. Let f be a function defined on the space of graphs, let Ḡ be a
graph and σ > 0. We define the f-preserving σ-perturbation of Ḡ to be the
random graph G with density:

PrG←P(Ḡ,σ)

[
G and (f(Ḡ) = f(G))

]
PrG←P(Ḡ,σ)

[
f(Ḡ) = f(G)

] .

This function could represent many qualities of a graph. In addition to prop-
erties, f could measure numerical quantities such as diameter or conductance. In
such cases, it might be more reasonable to merely require the perturbed graph
to approximately preserve f .

In the remainder of this paper, we will derive some elementary results on the
complexity of graph properties under perturbations that preserve these proper-
ties. In particular, we will measure the smoothed error probability of sub-linear
time algorithms for these problems. In this sense, we consider a problem closely
related to that studied in the field of property testing. In property testing, one
measures the worst-case complexity of Monte Carlo algorithms solving a promise



problem of the form: determine whether or not an input has a property given
that the input either has the property or is far from those inputs that have the
property. For many property testing problems, we find that under perturbations
that preserve the same property, the input typically satisfies such a guarantee.
Conversely, if one cannot construct a notion of property-preserving perturba-
tions under which inputs typically satisfy such a guarantee, then we feel one
should probably not assume such a guarantee is satisfied in practice.

In the following sections, we obtain some simple results on the complex-
ity of testing if graphs have small cliques, bisections, or are bipartite under
property-preserving perturbations. We hope stronger results will be obtained by
considering perturbations that preserve even more properties of their inputs.

1.2 Comparison with the Semi-Random model

Another approach to interpolating between worst-case and average-case com-
plexity appears in a line of work initiated by Blum and Spencer [BS95]. Blum
and Spencer considered the problem of k-coloring k-colorable graphs generated
by choosing a random k-colorable graph and allowing an adversary to add edges
between color classes. Feige and Kilian [FK98a] extended their results and con-
sidered analogous models for finding large cliques and optimal bisections. For the
clique problem, a large clique is planted in a random graph, and an adversary
is allowed to remove edges outside the clique. Their model for bisection mod-
ifies Boppana’s model of a random graph with a planted bisection [Bop87] by
allowing an adversary to add edges not crossing the bisection and remove edges
crossing the bisection. It is easy to show that these models are stronger than the
analogous models in which an adversary constructs a graph with a large clique or
small bisection and these graphs are then perturbed in a way that preserves the
embedded clique or bisection. In Section 3, we show that the graphs produced
by ρ-Clique preserving σ-perturbations are close to the graphs produced by this
later model, and that we can use the algorithm for Feige and Kilian to produce
a fast testing algorithm for these properties.

In contrast, the planted bisection model considered by Feige and Kilian
seems to produce rather different graphs than the ρ-Bisection preserving σ-
perturbations, and we cannot find a way to use their algorithm to test for small
bisections in this model, let alone speed up a tester. The difference is that a
ρ-Bisection preserving σ-perturbation may produce a graph with many small bi-
sections of almost exactly the same size, while the model considered by Feige and
Kilian produces graphs in which the smallest bisection is significantly smaller
than all competitors.

Other work in similar models includes the analysis by Feige and Krauthgamer
[FK98b] for bandwidth minimization algorithms and Coja-Oghlan [CO02] for
finding sparse induced subgraphs.



1.3 Property Testing

Rubinfeld and Sudan [RS96] defined property testing to be a relaxation of the
standard decision problem: rather than designing an algorithm to distinguish
between inputs that have and do not have a property, one designs an algorithm
to distinguish between those that have and those that are far from having a
property. Under this relaxation, many properties can be tested by sub-linear
time algorithms that examine random portions of their input. In this paper, we
will examine the testers designed by Goldreich, Goldwasser and Ron [GGR98].

Goldreich, Goldwasser and Ron [GGR98] introduced the testing of graph
properties. Their results included the development of testers that distinguished
between graphs that are bipartite, have size ρn cliques, and size ρn bisections
from those graphs that have distance ε to those with these properties, where
distance is measured by the Hamming distance of adjacency matrices.

Formally speaking, an algorithm A is said to be a property tester for the
property P if

1. for all x with property P , Pr [A(x, ε) = 1] ≥ 2/3; and
2. for all x of distance at least ε from every instance that has property P ,

Pr [A(x, ε) = 1] ≤ 1/3,

under some appropriate measure of distance on inputs (although some testers
have one-sided error). A typical property testing algorithm will use a randomized
process to choose a small number of facets of x to examine, and then make
its decision. For example, a property tester for a graph property may query
whether or not certain edges exist in the graph. The quality of a property testing
algorithm is measured by its query complexity (the number of queries to the
input) and its time complexity.

Since the seminal works of Rubinfeld and Sudan [RS96] and Goldreich, Gold-
wasser, and Ron [GGR98], property testing has become a very active area
of research in which many different types of properties have been examined
[GR97,GR98,KR00,Alo01,ADPR00,AKFS99,BR00,GGLR98,Ron01,EKK+98]
[PR99,DGL+99,CSZ00,BM98,BM99,CS02,GT01]. In this work, we will restrict
our attention to graph properties and geometric properties of point sets.

Following Goldreich, Goldwasser, and Ron [GGR98], we measure the distance
between graphs by the Hamming distance between their adjacency matrices.
That is, the distance between two graphs G1 = (V,E1) and G2 = (V,E2) on
n vertices is defined as the fraction of edges on which G1 and G2 differ: |E1 ∪
E2−E1 ∩E2|/

(
n
2

)
. The properties considered in [GGR98] include Bipartite, the

property of being bipartite; ρ-Clique, the property of having a clique of size at
least ρn; and ρ-Bisection, the property of having a bisection crossed by fewer
than ρn2 edges. For these properties, they prove:

Theorem 1 (Goldreich-Goldwasser-Ron). The properties ρ-Clique and ρ-
Bisection have property testing algorithms with query complexity polynomial in
1/ε and time complexity 2Õ(1/ε3), and the property Bipartite has a property test-
ing algorithm with query and time complexities polynomial in 1/ε.



We remark that Goldreich and Trevisan [GT01] have shown that every graph
property that can be tested by making a number of queries that is independent
of the size of the graph, can also be tested by uniformly selecting a subset of
vertices and accepting if and only if the induced subgraph has some fixed graph
property (which is not necessarily the same as the one being tested).

We now state a lemma that relates the smoothed error probability of a testing
algorithm with the probability that the property-preserving perturbation of an
input is far from one having the property.

Lemma 1. Let P be a property and A a testing algorithm for P with query
complexity q(1/ε) and time complexity T (1/ε) such that

Pr [A(X) 6= P (X)] < 1/3,

for all inputs X that either have property P or have distance at least ε from
those having property P . Then, if P(X̄, σ) is a family of distributions such that
for all X̄ lacking property P ,

PrX←P(X̄,σ)

[
X is ε-close to P |P (X) = P (X̄)

]
≤ λ(ε, σ, n),

then for all inputs X̄,

PrX←P(X̄,σ)

[
A(X) 6= P (X)|P (X) = P (X̄)

]
< 1/3 + λ(ε, σ, n).

2 Smoothed Error Bound for Graph Property Testers

In this section, we prove that the ρ-Clique, ρ-Bisection and Bipartite property
testers of [GGR98] may be viewed as sub-linear-time decision algorithms with
low smoothed error probability under the corresponding property-preserving per-
turbations.

Lemma 2. Let Ḡ be a graph on n vertices, let ρ < 1/8, and let σ < 1/2. If G
is the ρ-Bisection preserving σ-perturbation of Ḡ, then

1. if Ḡ has a ρ-Bisection, then G has a ρ-Bisection with probability 1, and
2. if Ḡ does not have a ρ-Bisection, then for any ε < σ(1/4− 2ρ)

PrP(Ḡ,σ)

[
G is ε-close to a graph with a ρ-Bisection

| G does not have a ρ-Bisection

]
< 2−Ω(n2).

Proof. The first part follows from the definition of a ρ-Bisection preserving per-
turbation.

To prove the second part, we first observe that G is ε-close to a graph with a
ρ-Bisection if and only if G has a (ρ + ε)-Bisection. We express the probability
of this event in the property-preserving model as

PrP(Ḡ,σ)

[
G has a (ρ + ε)-Bisection

∣∣G does not have a ρ-Bisection
]

≤
PrP(Ḡ,σ) [G has a (ρ + ε)-Bisection]

PrP(Ḡ,σ) [G does not have a ρ-Bisection]
. (1)



We now proceed to bound these probabilities. If we flip every edge and non-
edge of G with probability σ, then for every partition of the vertices of Ḡ into
two equal-sized sets the expected number of edges crossing this partition in G
is at least

(1− σ)ρn2 + σ(1/4− ρ)n2.

Applying a Chernoff bound (see for example [MR97, Theorem 4.2]), we find the
probability that there are fewer than (ρ+ ε)n2 edges crossing this partition is at
most

e−n2 (σ(1/4−2ρ)−ε)2)
ρ+σ(1/4−2ρ) = 2−Ω(n2).

As there are fewer than 2n partitions, we may plug this inequality into (1) to
conclude the proof.

The proofs of the following two lemmas for Bipartite and Clique are similar.

Lemma 3. Let Ḡ be a graph of n vertices. If ε > 0 and ε/ρ2 < σ < 1/2, and if
G is the ρ-Clique preserving σ-perturbation of Ḡ, then

1. if Ḡ is has a ρ-Clique, then G has a ρ-Clique with probability 1, and
2. if Ḡ does not have a ρ-Clique, then for any ε < σ(1/4− 2ρ)

Pr
[

G is ε-close to a graph with a ρ-Clique
| G does not have a ρ-Clique

]
< 2−Ω(n2).

Lemma 4. Let Ḡ be a graph of n vertices and let 0 < ε < σ/4 < 1/8. If G is
the bipartite-preserving σ-perturbation of Ḡ, then

1. if Ḡ is bipartite, then G is bipartite with probability 1, and
2. if Ḡ is not bipartite, then

Pr [G is ε-close to bipartite|G is not bipartite] < 2−Ω(n2).

Remark 1. Bipartite and Clique differ from Bisection in this model as their nat-
ural testers have simple proofs of correctness in the smoothed model. In contrast,
we are unaware of a means of proving the correctness of the Bisection tester that
does not go through the machinery of [GGR98]. This seems to be related to the
fact that we can find exponentially faster testers for Clique in this model.

Using Lemma 1 to combine Theorem 1 with Lemmas 2, 3 and 4, we obtain:

Theorem 2. Let P be one of Bipartite, ρ-Clique, or ρ-Bisection. There exists
an algorithm A that takes as input a graph G, examines poly(1/σ) edges of G

and runs in time Õ(1/ε3) when P is Bipartite, and in 2Õ(1/ε2) time when P is
ρ-Clique or ρ-Bisection such that for every Ḡ, if G is the P -property preserving
σ-perturbation of Ḡ, then

Pr [A(G) 6= P (G)] < 1/3 + o(1).

In the next section, we improve the time complexity of ρ-Clique testing under
ρ-Clique preserving σ-perturbations.



3 A Fast Clique Tester

In this section we will consider a tester for ρ-Clique that samples a random set
of k vertices and accepts if these vertices contain a ρk/2 clique. In Lemma 5
we prove that this tester rarely accepts a graph without a ρ-Clique under ρ-
Clique preserving σ-perturbations. The other lemmas of the section are devoted
to adapting the machinery of Feige and Killian [FK98a] to quickly finding the
ρk/2 clique when it is present in the graph.

Theorem 3 (Fast Clique Tester). Let ρ and σ < 1/2 be constants. There ex-
ists an algorithm A that takes as input a graph G, examines the induced subgraph
of G on a randomly chosen set of 8

ρσ log
(

4
ρσ

)
vertices of G and runs in time

polynomial in 1
ρσ such that for every graph Ḡ, if G is the ρ-Clique preserving

σ-perturbation of Ḡ, then

Pr [A(G) 6= ρ-Clique(G)] < 1/4 + o(1).

In contrast, Goldreich, Goldwasser and Ron [GGR98] prove that the existence
of a tester with such worst-case complexity would imply NP ⊆ BPP .

Proof. The algorithm A runs the algorithm of Lemma 8 below and accepts if it
finds a clique of size at least ρk/2. If Ḡ does not contain a ρ-Clique, then by
Lemma 5 below the probability this algorithm will accept is at most e−8+o(1) ≤
1/4 + o(1).

On the other hand, if Ḡ does contain a ρ-Clique, We can apply Lemma 8 to
show that

PrQ(Ḡ,σ) [A(G) rejects] =
∑
S

w(S)PrQ(Ḡ,S,σ) [A(G) rejects]

≤
∑
S

w(S)(1/4 + o(1)) ≤ 1/4 + o(1).

The theorem then follows from Lemma 9 below which implies

|PrP(Ḡ,σ) [A(G) accepts|ρ-Clique(G)]−PrQ(Ḡ,σ) [A(G) accepts] | < o(1).

The next lemma states that the tester is unlikely to accept if G does not
contain a ρ-Clique.

Lemma 5. Let Ḡ be a graph without a ρ-Clique and let G be the ρ-Clique pre-
serving σ-perturbation of G. Let U be a randomly chosen subset of k vertices of
G for k ≥ 8

ρσ log
(

4
ρσ

)
. Then,

Pr [the vertices of U contain a ρk/2 clique in G] < e−8 + o(1).



Proof. We begin by observing that

PrU,G←P(Ḡ,σ)

[
the vertices of U contain a ρk/2 clique in G

| G does not contain a ρn clique

]
≤

PrU,G←P(Ḡ,σ) [the vertices of U contain a ρk/2 clique in G]
1−PrG←P(Ḡ,σ) [G contains a ρn clique]

≤ PrU,G←P(Ḡ,σ) [the vertices of U contain a ρk/2 clique in G] + o(1),

by Lemma 6.
To bound the last probability, we note that the probability that any particular

set of ρk/2 nodes in G is a clique is at most (1 − σ)(
ρk/2

2 ) and that U contains(
k

ρk/2

)
sets of ρk/2 nodes, so

PrU,G←P(Ḡ,σ)

[
the vertices of U contain
a ρk/2 clique in G

]
≤

(
k

ρk/2

)
(1− σ)(

ρk/2
2 )

≤
(

2e

ρ

)ρk/2

e−σ(ρk/2
2 )

≤ e
ρk
2 (ln( 2e

ρ )−σ( ρk−2
4 ))

≤ e−ρk ≤ e−8.

as k ≥ 8
ρσ log

(
4

ρσ

)
and σ < 1.

Lemma 6. Let Ḡ be a graph without a ρn-Clique and let G be the σ-perturbation
of G. Then,

PrG←P(Ḡ,σ) [G contains a ρ-Clique] = 2−Ω(n2).

Proof. There are fewer than 2n sets of ρn nodes, and the probability that any
particular such set is a clique in G is at most (1− σ)(

ρn
2 ).

Lemma 7. Let Ḡ be a graph that has a ρ-Clique. Then,

PrG←P(Ḡ,σ) [G has at least two ρ-Cliques|G has one ρ-Clique] ≤ 2−Ω(n).

Proof. By inclusion-exclusion,

Pr [G has one ρ-Clique]

≥
∑
|S1|=ρn

Pr [KS1 ⊆ G]−
∑

|S1|=|S2|=ρn

Pr [KS1 ⊆ G and KS2 ⊆ G] ,

and

Pr [G has at least two ρ-Cliques] ≥
∑

|S1|=|S2|=ρn

Pr [KS1 ⊆ G and KS2 ⊆ G] .



Therefore,

Pr [G has at least two ρ-Cliques|G has one ρ-Clique]

≤
∑
|S1|=|S2|=ρn Pr [KS1 ⊆ G and KS2 ⊆ G]∑

|S1|=ρn Pr [KS1 ⊆ G]−
∑
|S1|=|S2|=ρn Pr [KS1 ⊆ G and KS2 ⊆ G]

≤ max
|S1|=ρn

∑
|S2|=ρn Pr [KS1 ⊆ G and KS2 ⊆ G]

Pr [KS1 ⊆ G]−
∑
|S2|=ρn Pr [KS1 ⊆ G and KS2 ⊆ G]

We now prove the lemma by demonstrating that for all |S1| = ρn,∑
|S2|=ρn Pr [KS1 ⊆ G and KS2 ⊆ G]

Pr [KS1 ⊆ G]

=
ρn∑

k=1

∑
|U |=|V |=k

Pr
[
KS1 ⊆ G andKS1\U∪V ⊆ G

]
Pr [KS1 ⊆ G]

≤
ρn∑

k=1

(
ρn

k

)(
n− ρn

k

)
(1− σ)k(ρn−k)+(k

2)

= 2−Ω(n),

where the last inequality follows from the fact that k(ρn−k)+
(
k
2

)
is an increasing

function in k, and for k ≤ ρn/2, the terms in the sum decrease as k increases.
In addition, when k = ρn/2, (1 − σ)k(ρn−k)+(k

2) = 2−Ω(n2). Therefore, the first
term in the sum dominates, and hence the sum is no more than 2−Ω(n).

Feige and Kilian [FK98a] design a polynomial-time algorithm for finding
cliques in random graphs with planted cliques which may be modified in a limited
fashion by an adversary. A corollary of their work is that if one takes a graph
with a large clique and then perturbs the edges not involved in the clique, then
with high probability their algorithm will find the large clique. To facilitate the
rigorous statement of this corollary and the application of their result to the
smoothed model, we introduce the following notation:

Definition 3. For a graph Ḡ, a subset of its vertices S and σ between 0 and
1/2, we define Q(Ḡ, S, σ) to be the distribution on graphs obtained by sampling
from P(Ḡ, σ) and adding edges to create a clique among the nodes in S.

For a graph Ḡ and a σ between 0 and 1/2, we define Q(Ḡ, σ) to be the
distribution obtained by choosing a set S of vertices of size ρn with probability
w(S) and then sampling from Q(Ḡ, S, σ) where

w(S) =
µ(S)∑

T :|T |=|S| µ(T )
,

and
µ(S) =

∏
i,j

σ[(i,j) 6∈Ḡ](1− σ)[(i,j)∈Ḡ].



Theorem 4 (Feige-Kilian). For any positive constant ρ, there is a randomized
polynomial time algorithm that with probability 1− o(1) will find a clique of size
ρn in a graph G drawn from the distribution Q(Ḡ, S, σ) where S is a subset of
the vertices of Ḡ of size ρn and σ ≥ 2 ln n/ρn.

From this theorem, we derive

Lemma 8. Let ρ > 0 and let G be drawn from the distribution Q(Ḡ, S, σ) where
S is a subset of the vertices of Ḡ of size ρn and 1/2 ≥ σ ≥ 2 ln n/ρn. Let U

be a random subset of k vertices of G where k = min
(
k0,

8
ρσ log

(
4

ρσ

))
, where

k0 is some absolute constant. Then, with probability 3/4− o(1) the algorithm of
Theorem 4 finds a clique of size at least ρk/2 in the graph induced by G on U .

Proof. We first note that the probability that U contains fewer than ρk/2 vertices
of S is at most

e−ρk/8 + o(1) ≤ e−3 + o(1)

as log
(

4
ρσ

)
≥ 3 and ρ, σ < 1.

Given that there are at least ρk/2 points of S in U , the probability that the
algorithm of Theorem 4 fails is at most 1/8, provided that σ > 2 log k/(ρk/2),
which follows from our setting of k ≥ 8

ρσ log
(

4
ρσ

)
, and that k is larger than some

absolute constant, k0. Thus, the failure probability is at most e−3 +1/8+o(1) ≤
1/4 + o(1).

To transfer the result of Lemma 8 to graphs produced by ρ-Clique preserving
σ-perturbations of graphs with ρ-Cliques, we show:

Lemma 9. Let Ḡ be a graph with a ρ-Clique and σ < 1/2. Then,∑
G

|PrP(Ḡ,σ) [G|G has a ρ-Clique]−PrQ(Ḡ,σ) [G] | < 2−Ω(n).

Proof. For any graph G, we apply inclusion-exclusion to compute

PrP(Ḡ,σ) [G]∑
S:|S|=ρn µ(S)

≤ PrP(Ḡ,σ) [G|G contains a ρn-Clique]

≤
PrP(Ḡ,σ) [G]∑

S:|S|=ρn µ(S)−
∑
|S1|=|S2|=ρn Pr [KS1 ⊆ G andKS2 ⊆ G]

≤
PrP(Ḡ,σ) [G]∑
S:|S|=ρn µ(S)

(
1 + 2−Ω(n)

)
,

by Lemma 7.



On the other hand,

PrQ(Ḡ,σ) [G] =
∑

S:KS⊆G,|S|=ρn

µ(S)∑
|T |=ρn µ(T )

Pr [G|KS ⊆ G]

=
∑

S:KS⊆G,|S|=ρn

PrP(Ḡ,σ) [G]∑
|T |=ρn µ(T )

= (# ρ-Cliques in G)
PrP(Ḡ,σ) [G]∑
|T |=ρn µ(T )

.

We now conclude the proof by observing that if G has no ρn cliques then both
probabilities are zero, if G has one ρn clique then the probabilities differ by at
most a multiplicative factor of (1 + 2−Ω(n)), and, by Lemma 7, the probability
under P(Ḡ, σ) that there are two ρn cliques is at most 2−Ω(n).

4 Discussion

4.1 Condition Numbers and Instance-Based Complexity

To obtain a finer analysis of algorithms for a problem than that provided by
worst-case complexity, one should find a way of distinguishing hard problem
instances from easy ones. A natural approach is to find a quantity that may
be associated with a problem instance and which is indicative of the difficulty
of solving that instance. For example, it is common in Numerical Analysis and
Operations Research to bound the running time of an algorithm in terms of a
condition number of its input. The condition number is typically defined to be
the the reciprocal of the distance of the input to one on which the problem is
ill-posed, or the sensitivity of the solution of a problem to slight perturbations
of the input.

Thus, one can view the effort to measure the complexity of testing whether
or not an input has a property in terms of its distance from having the property
if it does not as being very similar. In fact, the perturbation distance used by
Czumaj and Sohler [CS01] is precisely the the reciprocal of the condition number
of the problem. Moreover, the natural definition of the condition number for a
discrete function—the reciprocal of the minimum distance of an input to one on
which the function has a different value—is precisely the measure of complexity
used in the study of property testing: the larger the condition number the harder
the testing.

In fact, in many smoothed analyses [BD02,DST02,ST03], an essential step
has been the smoothed analysis of a condition number.
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