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AbstratWe introdue a simple erasure reovery algorithm for odes derived from asades of sparsebipartite graphs and analyze the algorithm by analyzing a orresponding disrete time randomproess. As a result we obtain a simple riterion involving the frations of nodes of di�erentdegrees on both sides of the graph whih is neessary and suÆient for the deoding proess to�nish suessfully with high probability. By arefully designing these graphs we an onstrutfor any given rate R and any given real number � a family of linear odes of rate R whih anbe enoded in time proportional to ln(1=�) times their blok length. Furthermore, a odewordan be reovered with high probability from a portion of its entries of length (1+ �)Rn or more.The reovery algorithm also runs in time proportional to n ln(1=�). Our algorithms have beenimplemented and work well in pratie; various implementation issues are disussed.Key words: low-density parity-hek odes, erasure hannel, large deviation analysis.

1 IntrodutionA linear error-orreting ode of blok length n and dimension k over a �nite �eld F q|an [n; k℄q-ode for short|is a k-dimensional linear subspae of the standard vetor spae Fnq . The elementsof the ode are alled odewords. To the ode C there orresponds an enoding map En whih isan isomorphism of the vetor spaes Fkq and C. A sender, who wishes to transmit a vetor of kelements in Fq to a reeiver, uses the mapping En to enode that vetor into a odeword. The ratek=n of the ode is a measure for the amount of real information in eah odeword. The minimumdistane of the ode is the minimum Hamming distane between two distint odewords. A linearode of blok length n, dimension k, and minimum distane d over Fq is alled an [n; k; d℄q-ode.Linear odes an be used to reliably transmit information from a sender to a reeiver: the sender�rst enodes the desired word into a odeword and transmits the odeword over the transmissionhannel. Depending on the nature of the errors imposed on the odeword through the hannel, the�Digital Fountain, In., San Franiso, USA. Researh done while at the International Computer Siene InstituteBerkeley. Researh supported in part by National Siene Foundation operating grant NCR-9416101, and UnitedStates-Israel Binational Siene Foundation grant No. 92-00226.yDepartment of Computer Siene, Harvard University. A substantial portion of this researh done while at theComputer Siene Department, UC Berkeley, under the National Siene Foundation grant No. CCR-9505448.zBell Labs, Murray Hill, USA. Researh done while at the International Computer Siene Institute Berkeley.Researh supported by a Habilitationsstipendium of the Deutshe Forshungsgemeinshaft, Grant Sh 57/1{1.xDepartment of Mathematis, M.I.T. This work was done while visiting U.C. Berkeley and supported by an NSFmathematial sienes Postdotoral Fellowship. 1



reeiver then applies appropriate algorithms to deode the reeived word. In this paper, we assumethat the reeiver knows the position of eah reeived symbol within the stream of all odewordsymbols. We adopt as our model of errors the erasure hannel, introdued by Elias [4℄, in whiheah odeword symbol is lost with a �xed onstant probability p in transit independent of all theother symbols. Elias [4℄ showed that the apaity of the erasure hannel is 1�p and that a randomlinear ode an be used to transmit over the erasure hannel at any rate R < 1� p.It is easy to see that a ode of minimum distane d is apable of reovering d � 1 or fewererasures. Furthermore, a loser look reveals that this task an be done in time O(n3). The odeis optimal with respet to reovering erasures if it an reover from any set of k oordinates of theodeword, i.e., if d� 1 = n� k. Suh odes are alled MDS-odes. A standard lass of MDS-odesis given by Reed-Solomon odes [16℄. The onnetion of these odes with polynomial arithmetiallows for enoding and deoding in time O(n log2 n log logn). (See, [3, Chapter 11.7℄ and [16,p. 369℄). However, for small values of n, quadrati time algorithms are faster than the theoretially,asymptotially fast algorithms for the Reed-Solomon based odes, and for larger values of n theO(log2 n log logn) multipliative overhead in the running time of the fast algorithms (along witha moderate sized onstant hidden by the big-Oh notation) is large. Obviously, one annot hopefor better information reovery than that given by Reed-Solomon odes, but faster enoding anddeoding times are desirable. In this paper, we design fast linear-time algorithms for transmittingjust below hannel apaity. For all � > 0 we produe rate R = 1 � p(1 + �) odes along withdeoding algorithms that reover from the random loss of a p fration of the transmitted symbolsin time proportional to n ln(1=�) with high probability, where n is the blok length. They an alsobe enoded in time proportional to n ln(1=�). The fastest previously known enoding and deodingalgorithms [1℄ with suh a performane guarantee have run times proportional to n ln(1=�)=�.The overall struture of our odes are related to the low density parity-hek odes introdued byGallager [6℄, whih have been the subjet of a great deal of reent work (see for example [10, 11, 15℄).We also use some ideas related to the odes introdued in [25℄ for error-orretion. Beause weexamine the erasure setting, however, our work inludes several innovations, inluding a simplelinear time deoding algorithm and the use of irregularity. We explain the general onstrutionalong with the enoding and deoding algorithms fully in Setion 2.Our enoding and deoding algorithms are almost symmetrial. Both are very simple, omput-ing exatly one exlusive-or operation for eah edge in a randomly hosen bipartite graph. As inmany similar appliations, the graph is hosen to be sparse, whih immediately implies that theenoding and deoding algorithms are fast. Unlike many similar appliations, the graph is not reg-ular; instead it is quite irregular with a arefully hosen degree sequene. We desribe the deodingalgorithm as a proess on the graph in Setion 2.2. Our main tool is a model that haraterizesalmost exatly the performane of the deoding algorithm as a funtion of the degree sequene ofthe graph. In Setion 3, we use this tool to model the progress of the deoding algorithm by aset of di�erential equations. The solution to these equations an then be expressed as polynomi-als in one variable with oeÆients determined by the degree sequene. The positivity of one ofthese polynomials on the interval (0; 1℄ with respet to a parameter Æ guarantees that, with highprobability, the deoding algorithm an reover almost all the message symbols from a loss of upto a Æ fration of the odeword symbols (see Proposition 2). The omplete suess of the deodingalgorithm an then be demonstrated by ombinatorial arguments.Our analytial tools allow us to almost exatly haraterize the performane of the deodingalgorithm for any given degree sequene. Furthermore, they also help us to design good irregulardegree sequenes. In Setion 4 we desribe, given a parameter � > 0, a degree sequene for whihthe deoding is suessful with high probability for an erasure fration Æ that is within � of 1�R.Although these graphs are irregular, with some nodes of degree 1=�, the average node degree is
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only ln(1=�). This is one of the entral results of the paper, i.e., a ode with enoding and deodingtimes proportional to n ln(1=�) that an reover from an erasure fration that is within � of optimal.In Setion 5 we disuss issues onerning pratial implementations of our algorithms. Thissetion inludes methods for �nding good degree sequenes based on linear programming, andtimings of the implementations. In the last setion we summarize the main results of this paper,and disuss reent developments following the publiation of a preliminary version [13℄.
2 Graph CodesIn this setion we introdue a new lass of odes. Speial sublasses of these odes turn out tobe almost MDS in the following sense: an [n; k℄q-ode in this sublass is apable of reovering themessage from a random set of k(1 + �) oordinate plaes with high probability, where � is a smallreal number. A more preise statement is provided later in Setion 3. The advantages of theseodes are that they have linear time enoding and deoding algorithms, and that the alphabet sizeq an be arbitrary. For simpliity, in the following we assume that the symbols are bits, i.e., thatq = 2.We explain the overall onstrution of the odes, as well as introdue simple and eÆientenoding and reovery algorithms.2.1 Erasure Codes via Bipartite GraphsWe de�ne a ode C(B) with k message bits and �k redundant bits, where 0 < � < 1, by assoiatingthese bits with a bipartite graph B.1 Following standard terminology, we refer to the �k redundantbits as hek bits. The graph B has k left nodes and �k right nodes, orresponding to the messagebits and the hek bits, respetively. Hene, in the following, we refer to the left nodes of a bipartitegraph as its message bits and to the right nodes as its hek bits.The enoding of C(B) is determined by setting eah hek bit to be the � (XOR) of its neigh-boring message bits in B (see Figure 1(a)). Thus, the enoding time is proportional to the numberof edges in B, and our odes are systemati.2Our main ontribution is the design and analysis of the bipartite graph B so that the repetitionof the following simplisti deoding operation reovers all the missing message bits.Algorithm 1 (Erasure deoding). Given the value of a hek bit and all but one of the messagebits on whih it depends, set the missing message bit to be the XOR of the hek bit and its knownmessage bits.See Figure 1(b) for an example of this algorithm, and Figure 2 for an example of full reovery.We introdue methods for the design of sparse random graphs where repetition of this operationreovers all the message bits with high probability if a random subset of (1� �)�k of the messagebits have been lost from C(B).To produe odes that an orret erasures of hek bits as well as message bits, we asadeodes of the form C(B): we �rst use C(B) to produe �k hek bits for the original k message bits,we then use a similar ode to produe �2k hek bits for the �k hek bits of C(B), and so on1We will use the word bit in a rather loose form, mostly to denote oordinate positions.2Herein lies one of the di�erenes of our odes ompared to Gallager's low-density parity-hek odes: in the latter,the oordinate plaes of the odeword itself are identi�ed with the left nodes, and the right nodes de�ne onstraintson these words. I.e., Gallager allows only those words suh that for any right node, the XOR of its adjaent leftnodes is zero.
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Figure 1: (a) A graph de�nes a mapping from message bits to hek bits. (b) Bits x1, x2, and 1are used to solve for x3.(see Figure 3). At the last level, we may use a more onventional erasure orreting ode (e.g., aReed-Solomon ode, if the alphabet size is large enough).Formally, we onstrut a family of odes C(B0); : : : ; C(Bm) from a family of graphs B0; : : : ; Bm,where Bi has �ik left nodes and �i+1k right nodes. We selet m so that �m+1k is roughly pk andwe end the asade with an erasure orreting ode C of rate 1 � � with �m+1k message bits forwhih we know how to reover from the random loss of � fration of its bits with high probability.We then de�ne the ode C(B0; B1; : : : ; Bm; C) to be a ode with k message bits andm+1Xi=1 �ik + �m+2k=(1� �) = k�=(1� �)
hek bits formed by using C(B0) to produe �k hek bits for the k message bits, using C(Bi) toform �i+1k hek bits for the �ik bits produed by C(Bi�1), and �nally using C to produe anadditional k�m+2=(1��) hek bits for the �m+1k bits output by C(Bm). As C(B0; B1; : : : ; Bm; C)has k message bits and k�=(1� �) hek bits, it is a ode of rate 1� �.Remark 1. Assuming that the ode C an be enoded and deoded in quadrati time (an assumptionwhih is ertainly true for RS-odes), the ode C(B0; : : : ; Bm; C) an be enoded and deoded in timeproportional to the number of edges in all the C(Bi).3We begin by using the deoding algorithm for C to deode erasures that our within itsorresponding message bits. If C orrets all the erasures, then the algorithm now knows all thehek bits produed by C(Bm), whih it an then use to orret erasures in the inputs to C(Bm). Asthe inputs to eah C(Bi) were the hek bits of C(Bi�1), we an work our way bak up the reursionuntil we use the hek bits produed by C(B0) to orret erasures in the original k message bits.If we show that C an orret a random �(1 � �) fration of erasures with high probability, andthat eah C(Bi) an orret a random �(1 � �) fration of erasures of its message bits with highprobability, then we have shown that C(B0; B1; : : : ; Bm; C) is a rate 1� � ode that an orret arandom �(1 � �0) fration of erasures with high probability, for some �0. Details an be found inthe proof of Theorem 2.3If the alphabet size is too small for the orresponding Reed-Solomon ode to exist, we an ontinue the asadeuntil the graph has roughly 3pk nodes and use a random linear ode with onventional erasure deoding.4
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Figure 2: All stages of the reovery. (a) Original graph, (b) Graph indued by the set of lost nodeson the left, (){(f) Reovery proess
For the remainder of this setion and muh of the next setion, we only onern ourselves with�nding graphs B so that the deoding algorithm an orret �(1 � �) fration of erasures in themessage bits of C(B), given all of its hek bits.2.2 The Graph Proess and Degree SequenesWe now relate the deoding proess of C(B) to a proess on a subgraph of B, so that hereafterwe an use this simpler terminology when desribing the proess. This subgraph onsists of allnodes on the left that were erased but have not been deoded thus far, all the nodes on the right,and all the edges between these nodes. Reall that the deoding proess requires �nding a hekbit on the right suh that only one adjaent message bit is missing; this adjaent bit an then bereovered. In terms of the subgraph, this is equivalent to �nding a node of degree one on the right,and removing it, its neighbor, and all edges adjaent to its neighbor from the subgraph. We referto this entire sequene of events hereafter as one step of the deoding proess. We repeat this stepuntil there are no nodes of degree one available on the right. The entire proess is suessful if itdoes not halt until all nodes on the left are removed, or equivalently, until all edges are removed.It is simple to show that the result of this proess is independent of the order in whih nodes areremoved; subsequently, in the analysis, we may freely assume that the nodes of degree one arehosen uniformly at random at eah step.The graphs that we use are hosen at random from a set of sparse bipartite graphs with aarefully hosen degree sequene. In ontrast with many appliations of random graphs in omputersiene, our graphs are not regular.We refer to edges that are adjaent to a node of degree i on the left (right) as edges of degree
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Figure 3: The ode levels and diretions of enoding and deoding proess
i on the left (right). Eah of our degree sequenes is spei�ed by a pair of vetors (�1; : : : ; �m)and (�1; : : : ; �m), where �i is the initial fration of edges on the left of degree i and �j is the initialfration of edges on the right of degree j. Note that we speify graphs in terms of frations of edges,and not nodes, of eah degree, as this form turns out to be more onvenient. The sequenes � and� give rise to generating polynomials �(x) =Pi �ixi�1 and �(x) =Pi �ixi�1. The unusual hoieof xi�1 rather than xi has to do with the analysis of the deoding, as desribed below. Using thesefuntions, one an suintly desribe many important parameters of the graph. For instane, itis easy to see that the average left degree a` of the graph is 1Pi �i=i whih is 1R 10 �(x)dx : If E is thenumber of edges in the graph, then the number of left nodes of degree i is E�i=i, and hene thenumber of left nodes is EPi �i=i. Hene, the average degree is E divided by this quantity. By asimilar reasoning, the polynomial �(x) = R x0 �(t)dt=a` has the property that its i-th oeÆient isthe fration of left nodes of degree i. (Analogous assertions hold of ourse for �(x).)For a given pair �(x) and �(x) of degree sequenes, we will be interested in onstruting arandom bipartite graph with k nodes on the left and �k nodes on the right whih has this degreedistribution. We will impliitly assume that the numbers work out, i.e., that �k, E�i=i, and E�i=iare integers for all i, and we assume that � R 10 �(x)dx = R 10 �(x)dx. In this ase, it is easy to seethat suh graphs exist (say by indution). Later in Setion 5.3 we will arry out a proedure touniformly sample graphs (with multi-edges) from the set of graphs with given degree sequenes �and �.Note that, as the deoding proess evolves, in the orresponding subgraph B0 of B remainingafter eah step the mathing remaining on B0 still orresponds to a random permutation. Hene,onditioned on the degree sequene of the remaining subgraph after eah step, the subgraph thatremains is uniform over all subgraphs with this degree sequene. The evolution of the degreesequene is therefore a Markov proess, a fat we make use of below.In the next two setions, we develop tehniques for the analysis of the proess for general degreesequenes.
3 Large Deviation and Analysis of the DeodingWe analyze the deoding algorithm (Algorithm 1) by viewing it as a disrete random proess. Wemodel the evolution of the main parameters of this system by a system of di�erential equations.These parameters inlude the number of edges of di�erent right and left degrees, as well as the
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total number of edges and the average degrees of the bipartite graph on both sides. We need aresult whih makes sure that these parameters are sharply onentrated around the solutions ofthe system of equations, in the sense that the variation in the parameters are small ompared withthe total number of steps. For the sake of keeping the tehnial disussion at an aeptable level,we do not aim for the best possible results on the quality of the sharpness of the onentration.In the �st part of this setion, we state a general large deviation result whih we will prove inAppendix A. Similar results were obtained by Kurtz [8℄ who studied Markov jump proesses, andhave been used previously by many researhers, see [5, 7, 17, 18, 20, 26℄ and the referenes therein.We use a version due to Wormald [26℄ whih has the advantage of being diretly appliable to oursituation.Next we set up the appropriate system of di�erential equations, and solve them expliitly. Thisprovides us with a onrete ondition on the bipartite graph for suessful deoding. However, wean only make limited use of the large deviation result, as this only guarantees ontinuation of thereovery proess as long as the number of edges in the indued subgraphs is a onstant fration ofthe original number of edges. To prove that the proess ends suessfully, we need a ombinatorialargument whih proves that the random graph obtained at this stage of the deoding has reasonableexpansion properties, with high probability. This expansion property suÆes to show that one thenumber of edges remaining beomes suÆiently small, the deoding proess ompletes.3.1 Large DeviationFor analyzing our erasure deoding algorithm we need to keep trak of nodes of degree one onthe right side of the bipartite graph as the algorithm proeeds. As the erasures our randomlyon the left side, it is not surprising that the analysis requires tools from probability theory. Wemay regard the number of edges of di�erent degrees on the left and the right side of the graph asrandom variables that evolve over time. It is relatively easy to ompute the onditional expetationof these random variables. This is done in the next subsetion. What we need is a tool that assertsthat these random variables do not deviate too muh from their expeted value over the lifetimeof the proess. This is a typial example of a so-alled large deviation result whih we derive inthis subsetion. We assume that the reader is familiar with basi onepts suh as (super- andsub-)martingales [19℄. For this argument, we follow [26℄ rather losely.The evolution of the number of edges of di�erent degrees on the graphs onsidered is a typialexample of a disrete time random proess. Let 
 denote a probability spae and S a measurablespae. A disrete time random proess over 
 with state spae S is a sequene Q = (Q0; Q1; : : :)of random variables Qi: 
 ! S. To every ! 2 
 orresponds a realization (Q0(!); Q1(!); : : :) ofthe proess. The history of the proess up to time t is the sequene Ht = (Q0; Q1; : : : ; Qt). For areal-valued measurable funtion y de�ned on S+ := [i�1Si, the random variable y(Ht) is denotedby Yt.We say that a funtion f :Rj ! R satis�es a Lipshitz ondition on D � Rj if there exists aonstant L > 0 suh that jf(u)� f(v)j � L � jXi=1 jui � vij;for all u; v 2 D.For a sequene of real-valued random variables Xm taking only a ountable number of values,we say that Xm = O(f(m)) with probability 1, if supfx j Pr(Xm = x) 6= 0g = O(f(m)). Thefollowing theorem summarizes the large deviation result we need later. Its proof an be found inAppendix A.
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Theorem 1. Let (Q(m))m�1 be a sequene of disrete time random proesses Q(m) = (Q(m)0 ; Q(m)1 ; : : :)over a probability spae 
 with state spae Sm and H(m)t := (Q(m)0 ; : : : ; Q(m)t ) be the m-th history upto time t. Let d be a positive integer. For 1 � i � d and all positive integers m let y(i;m):S+m ! Rbe a measurable funtion suh that jy(i;m)(h)j < Cm for all h 2 S+m and for some onstant C(independent of i;m; h). Furthermore let f1; : : : ; fd be funtions from Rd+1 to R.(i) There exists a onstant C 0 suh that for all m, for all t < m, and for all i � d:jY (i;m)t+1 � Y (i;m)t j < C 0;where Y (i;m)t := y(i;m)(H(i;m)t );(ii) for all i and uniformly over all (m; t) with t < m we haveE(Y (i;m)t+1 � Y (i;m)t j Ht) = fi(t=m; Y (1;m)t =m; : : : ; Y (d;m)t =m);(iii) for eah i � d the funtion fi is ontinuous and satis�es a Lipshitz ondition on D, where Dis some bounded onneted open set ontaining the intersetion of f(t; z1; : : : ; zd) j t � 0g withsome open neighborhood f(0; z1; : : : ; zd) j Pr(Y (i;m)0 = zim j 1 � i � d) 6= 0 for some mg.Then the following holds.(a) For (0; �1; : : : ; �d) 2 D the system of di�erential equationsdzid� = fi(�; z1; : : : ; zd); i = 1; : : : ; d;has a unique solution in D for zi:R! R passing through zi(0) = �i, 1 � i � d.(b) There is a onstant  suh thatPr(Y (i)t > mzi(t=m) + m5=6) < dm2=3 exp(� 3pm=2);for 0 � t � �m and for eah i, where zi(t) is the solution in (1) with �i = E(Y (i)0 )=m, and� = �(m) is the supremum of those � to whih the solution an be extended.3.2 The Di�erential EquationsWe begin with the initial random graph B, with k left nodes and �k right nodes. Suppose thatthe graph is given by the degree distribution pair �(x) and �(x), as explained in Setion 2.2, andsuppose that the total number of edges in the graph is E. As was explained above, the averagenode degree a` on the left initially satis�es a�1` = Pi �i=i, and similarly the average node degreear on the right initially satis�es a�1r =Pi �i=i.In the appliation of Theorem 1 eah time step orresponds to reovering one node on the lefthand side. Furthermore, the parameter m orresponds to the total number E of edges. Let Æ be thefration of erasures in the message. Initially, just prior to time 0, eah node on the left is removedwith probability 1 � Æ (beause the orresponding message bit is suessfully reeived), and thusthe initial subgraph of B ontains Æk nodes on the left. If the proess terminates suessfully, itruns until time Æk = EÆ=a`. As in the last subsetion, we denote by � the saled time t=E. Hene,� runs from 0 to Æ=a`.
8
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Let G be the graph obtained after a random deletion of (1 � Æ)k nodes on the left. We let Qtbe the t-th edge removed in the graph G, and by Gt the graph obtained after removing Q1; : : : ; Qt,all left nodes they are onneted to, and all edges oming out of these nodes. If the proess hasalready stopped at time t� 1, we set Gt = Gt�1 for onveniene.We denote by L(i)t the number of edges of left degree i at time t, and by R(i)t the number ofedges of right degree i at time t. Let E be the total number of edges in the original graph. We let`(i)t := L(i)t =E and r(i)t := R(i)t =E represent the fration of edges (in terms of E) of degree i on theleft and right, respetively, at time t. We denote by et the fration of the edges remaining at timet, that is, et =Pi `(i)t =Pi r(i)t .First we note that jL(i)t+1 � L(i)t j � i for all i and t, so Condition (i) in Theorem 1 is satis�ed.Reall that at eah step, a random node of degree one on the right is hosen, and the orrespondingnode on the left and all of its adjaent edges are deleted. (If there is no suh node, the proessneessarily stops.) The probability that the edge adjaent to the node of degree one on the righthas degree i on the left is `(i)t =et, and in this ase we lose i edges of degree i, see Figure 4(a). Hene,we have E(L(i)t+1 � L(i)t j Ht) = � i`(i)tet ;for i = 1; : : : ; d, where d is the maximum degree on the left hand side.Abusing the notation slightly, we setfi(s; `1; : : : ; `d) := � i`ie ;where e = Pj `j , and see that Condition (ii) of Theorem 1 is satis�ed for these funtions. Fur-thermore, �xing � > 0, we further see that these funtions satisfy Condition (iii) in the domain Dde�ned by the inequalities 0 < s < Æ + �, 0 < `i < 1 + �, for all i = 1; : : : ; d, and � < e < Æ + �.Now Theorem 1 implies that with high probability we have L(i)t = E`i(t=E) + O(E5=6) uniformlyfor all E� � t � (Æ + �)E, where `i(�) form the solution tod`i(�)d� = � i`i(�)e(�) (1)for i = 1; : : : ; d.These di�erential equations are solved by de�ning x so that dx=d� = �x=e(�). The value ofx in terms of � is then x := exp(� R �0 ds=e(s)). By substituting dx=x for d�=e(�), Equation (1)beomes d`i(x)=dx = i`i(x)=x, and integrating yields `i(x) = ixi. Note that x = 1 for t = 0, and`i(� = 0) = Æ�i. Hene, i = Æ�i and `i(x) = Æ�ixi: (2)9



Sine `i(x) goes to zero as � goes to Æ=a`, x runs over the interval (0; 1℄.To disuss the evolution of the right hand side, �rst note that jR(j)t+1 � R(j)t j < d, where d isthe maximum degree on the left. This is beause a left node is onneted to at most d right nodesand one of the right neighbors has been used to reover the left node. Hene, Condition (i) of thetheorem is satis�ed. Note that when we remove a node of degree i on the left, we remove the oneedge of degree one from the right, along with the i � 1 other edges adjaent to this node. Henethe expeted number of other edges deleted is at � 1, where at = P i`(i)t =et. The right endpointsof these i � 1 other edges on the right hand side are randomly distributed. If one of these edgesis of degree j on the right, we lose j edges of degree j, and gain j � 1 edges of degree j � 1, seeFigure 4(b). The probability that an edge has degree j on the right is just r(j)t =et. Then, for i > 1,we have E(R(i)t+1 �R(i)t j Ht) = (r(i+1)t � r(i)t ) i(at � 1)et(We assume that rt(i) is de�ned for all positive i, and is 0 for suÆiently large i.) The ase i = 1plays a speial role, as we must take into aount that at eah step an edge of degree one on theright is removed. This givesE(R(1)t+1 �R(1)t j Ht) = (r(2)t � r(1)t )(at � 1)et � 1:Let � be the maximum degree of a node on the right. Abusing the notation slightly, we setg�(�; r1; : : : ; r�) := �r��(a� 1)egi(�; r1; : : : ; r�) := (ri+1 � ri) i(a� 1)e for 1 < i < �;g1(�; r1; : : : ; r�) := (r2 � r1)(a� 1)e � 1;where e = Pj rj and a :=Pj j`j=e. Fixing any � > 0, we see as in the ase of the left hand sideevolution, that these funtions satisfy a Lipshitz ondition, as long as � = t=E > �. Appliationof Theorem 1 thus yields that almost surely, we have R(i)t = Eri(t=E) +O(E5=6) uniformly for all�E � t � (Æ + �)E, where ri(�) form the solution todri(�)dt = (ri+1(�)� ri(�)) i(a(�)� 1)e(�) for i > 1; (3)and dr1(�)d� = (r2(�)� r1(�))(a(�)� 1)e(�) � 1: (4)Our key interest is in the progression of r1(�) as a funtion of � . As long as r1(�) > 0, so thatwe have a node of degree one on the right, the proess ontinues; when r1(�) = 0 the proess stops.Hene we would like r1(�) > 0 until all nodes on the left are deleted and the proess terminatessuessfully.We proeed with the determination of rj(1), the expeted fration of edges of right degree oneat time 0: beause eah node on the left is deleted randomly just prior to time 0 with probability1 � Æ, and the graph is a random graph over those with the given degree sequene, to the nodeson the right it is as though eah edge is deleted with probability 1 � Æ. Hene, an edge whose
10



right inident node had degree j before the deletion stage remains in the graph and has degree iafterwards with probability �j�1i�1�Æi(1� Æ)j�i. Thus,
rj(1) = Xm�j �m�m� 1j � 1�Æj(1� Æ)m�j: (5)

In Appendix B we will solve the set of di�erential equations given by (3) and (4) with the initialondition (5). Here is the result.Proposition 1. For the solution to the system of di�erential equations given by (3) and (4) withthe initial ondition (5) we haver1(x) = Æ�(x)[x� 1 + �(1� Æ�(x))℄; (6)where x is de�ned via dx=d� = �x=e(�).This immediately gives rise to the following result.Proposition 2. Let B be a bipartite graph with k message bits that is hosen at random withedge-degrees spei�ed by �(x) and �(x). Let Æ be �xed so that�(1� Æ�(x)) > 1� x; for x 2 (0; 1℄:For all � > 0 there is some k0 suh that for all k � k0, if the message bits of C(B) are erasedindependently with probability Æ, then with probability at least 1 � k2=3 exp(� 3pk=2) the reoveryalgorithm terminates with at most �k message bits erased.Proof. Let E be the number of edges in the graph. Then E = ka`, where a` is the averagedegree of the nodes in the left side of the graph, whih is a onstant for �xed � and �. (Notethat a` =P�i=i.) Let � := �=a`. By (6) and the preeding disussions, with probability at least1� k2=3 exp(� 3pk=2) the number of nodes of degree one on the right is,Æ�(x) [x� 1 + �(1� Æ�(x))℄ +O(k5=6);for x 2 (�0; 1℄, where �0 = exp(� R �0 ds=e(s)). By our assumption, this number is positive (for largeenough k), whih proves the assertion.The foregoing proposition does not prove that the deoding proess terminates suessfullyreovering all the missing nodes on the left hand side. To do this, we need a ombinatorial argumentwhih says that random graphs are good expanders. This means that any small enough subset ofleft nodes has many right neighbors. The exat statement is given in the proof of the followingresult.Lemma 1. Let B be a bipartite graph with k left nodes hosen at random with edge-degrees spei�edby �(x) and �(x), suh that �(x) has �1 = �2 = 0. Then there is some � > 0, suh that, withprobability 1 � O(k�3=2), the reovery proess restrited to the subgraph indued by any �-frationof the left nodes terminates suessfully.Proof. Let S be any set of nodes on the left of size at most �k, where � will be hosen later. Leta be the average degree of these nodes. If the number of nodes on the right that are neighbors ofS is greater than ajSj=2, then one of these nodes has only one neighbor in jSj, and so the proessan ontinue. Thus, we only need to show that the initial graph is a good expander on small sets.11



Let Es denote the event that a subset of size s of the nodes on the left has at most as=2 neighbors.We �rst bound Pr(Es), and then sum Pr(Es) over all values of s no larger than �k. Fix any subsetS of the left nodes of size s, and any subset T of the right nodes of size as=2. There are �ks� waysof hoosing S, and � �kas=2� ways of hoosing T . The probability that T ontains all the as neighborsof the verties in S is (as=2�k)as. Hene, we have
Pr(Es) � �ks�� �kas=2�� as2�k�as :

Note that �nk� � (ne=k)k, hene we have
Pr(Es) � � sk�(a=2�1)s s � �s2k �s=2 ;

where  is a onstant (depending on � and a). Sine the graph does not have nodes of degree oneor two, we have that Pr(E1) = Pr(E2) = 0. Choosing � � 1=(22) yields�kXs=1�s2k �s=2 = �kXs=3�s2k �s=2 � 32kpk + �kXs=4 12s = O� 1kpk� ;whih shows that, with high probability, the original graph is an expander on small subsets.The above proof shows that the main ontribution for the error-probability omes from nodesof degree three on the left. For the same reason, it is easy to see that nodes of degree two will leadto a onstant error probability. We leave the details of this argument to the reader.Altogether we obtain the main theorem of this setion.Theorem 2. Let k be an integer, and suppose that C = C(B1; : : : ; Bm; C) is a asade of bipartitegraphs as explained in Setion 2, where B1 has k left nodes. Suppose that eah Bi is hosen atrandom with edge-degrees spei�ed by �(x) and �(x), suh that �(x) has �1 = �2 = 0, and supposethat Æ is suh that �(1� Æ�(x)) > 1� x; (7)for all 0 < x � 1. Then, if at most a Æ-fration of the oordinates of an enoded word in C areerased independently at random, then our erasure deoding Algorithm terminates suessfully, withprobability 1�O(k�3=4), and does so in O(k) steps.Proof. At eah level of the asade the number of edges equals the average degree of the nodeson the left times the number of the nodes. The average degree is always 1= R 10 �(t)dt, whih is aonstant. Hene, the total number of edges in the the asade (up to the last layer) is O(k), whihshows that the reovery proess needs O(k) steps. (See Remark 1.)Next we bound the probability that there is some j suh that the fration of left nodes lost onthe left side of the graph Bj is larger than Æ0 := Æ+1= 8pk. We use a version of the Cherno� boundsgiven in [19, Prob. 4.7(), pp. 98℄. Aording to that, for any j the probability that there aremore erasures than Æ(k=2j) + (k=2j)3=4 is upper bounded by exp(�2pk=2j), whih is smaller thanexp(�2 4pk). The required probability is ertainly at most equal to the sum of these probabilities(union bound), whih is log(k) exp(� 4pk)=2. (Note that there are log(k)=2 suh j's).For large enough k Condition (7) is satis�ed for Æ0 instead of Æ (by ontinuity). Hene, invokingProposition 2, for any � > 0 and any of the graphs Bj in the asade our deoding algorithm 1stops with less than �k=2j nodes unorreted, with probability 1�O(exp(�k)) for some positive12



. Now Lemma 1 applies and shows that, for small enough �, the reovery proess ends suessfullywith probability 1 � O((2j=k)3=2). The probability that our algorithm fails on at least one of thegraphs is thus at most Pj(2j=k)3=2, where j runs from 0 to log(k)=2. This is equal to O(k�3=4),whih shows the assertion.For designing graphs that lead to good odes, it is thus neessary to ful�ll Condition (7). It issometimes desirable to use the \dual ondition"Æ�(1� �(y)) < 1� y; (8)for y 2 [0; 1), whih is obtained from (7) by substituting y := ��1(1�x). Note that � has an inverseon (0; 1℄, as it is monotonially inreasing.In the next setion we use this theorem to analyze deoding properties of odes obtained fromregular graphs.
4 Capaity Ahieving CodesIn this setion we will onstrut for any erasure probability p families of odes with linear timeerasure deoding algorithms that an orret any p-fration of erasures and whose rates omearbitrarily lose to the apaity 1 � p of the erasure hannel. In other words, we onstrut odesthat are lose to optimal in terms of their erasure reovery rate, and have linear time enodingand deoding algorithms. We do this by �nding an in�nite family of solutions to the di�erentialequations of Setion 3 in whih Æ is lose to 1�R, where R is the rate.Let B be a bipartite graph with k left nodes and �k right nodes. We desribe our hoie for theleft and right degree sequenes of B that satisfy Condition (7). Let D be a positive integer that isused to trade o� the average degree with how well the deoding proess works, i.e., how lose wean make Æ to � = 1�R and still have the proess �nish suessfully most of the time.The left degree sequene is desribed by the following trunated heavy tail distribution. LetH(D) = PDi=1 1=i be the harmoni sum trunated at D, and thus H(D) � ln(D). Then, for alli = 2; : : : ;D + 1, the fration of edges of degree i on the left is given by�i := 1=(H(D)(i� 1)):The average left degree a` equals H(D)(D+1)=D. Reall that we require the average right degree,ar, to satisfy ar = a`=�. The right degree sequene is de�ned by the Poisson distribution withmean ar: for all i � 1 the fration of edges of degree i on the right equals�i = e���i�1(i� 1)! ;where � is hosen to guarantee that the average degree on the right is ar. In other words, � satis�es�e�=(e� � 1) = ar.Note that we allow �i > 0 for all i � 1, and hene �(x) is not truly a polynomial, but apower series. However, trunating the power series �(x) at a suÆiently high term gives a �nitedistribution of the edge degrees for whih the next lemma is still valid.We show that when Æ = �(1�1=D), then Condition (7) is satis�ed, i.e., �(1�Æ�(x)) > 1�x on(0; 1℄, where �(x) =Pi �ixi�1 and �(x) =Pi �ixi�1. Note that �(x) is the expansion of � ln(1�x)trunated at the Dth term, and saled so that �(1) = 1. Further, �(x) = e�(x�1).Lemma 2. With the above hoies for �(x) and �(x) we have �(1 � Æ�(x)) > 1 � x on (0; 1℄ ifÆ � �=(1 + 1=D). 13



Proof. Sine �(x) inreases monotonially in x, we have�(1� Æ�(x)) > �(1 + Æ ln(1� x)=H(D)) = (1� x)�Æ=H(D):As a` = H(D)(1 + 1=D) and ar = a`=�, we obtain �Æ=H(D) = (1 � e��)(1 + 1=D)Æ=� < Æ(1 +1=D)=� � 1, whih shows that the right hand side of the above inequality is larger than 1 � x on(0; 1℄.A problem is that Lemma 1 does not apply to this system beause there are nodes of degree twoon the left. Indeed, simulations demonstrate that for these hoies of �(x) and �(x) a small numberof nodes often do remain. To overome this problem, we make a small hange in the struture ofthe graph B. Let  := �=D2. We split the �k right nodes of B into two distint sets, the �rstset onsisting of (� � )k nodes and the seond set onsisting of k nodes. The graph B is thenformed by taking the union of two graphs, B1 and B2. B1 is formed as desribed up to this pointbetween the k left nodes and the �rst set of (� � )k right nodes. B2 is formed between the k leftnodes and the seond set of k right nodes, where eah of the k left nodes has degree three and the3k edges are onneted randomly to the k right nodes.Lemma 3. Let B be the bipartite graph desribed above. Then, with probability 1� O(k�3=2), thedeoding proess terminates suessfully when started on a subgraph of B indued by Æk of the leftnodes and all �k of the right nodes, where Æ = �(1� 1=D).Proof. In the analysis of the proess, we may think of B2 as being held in reserve to handlenodes not already dealt with using B1. First, using the same method as in Lemma 1 we an provethat there is some � suh that an set S of s � �k left nodes in the graph B2 expands to a set ofat least 3s=2 nodes on the right, with probability 1 � O(1=k3=2). (Note that all nodes on the lefthave degree three in this graph.) Combining Proposition 2 and Lemma 2, we see that the reoveryproess started on B1 terminates with less than �k nodes on the left unreovered, with probability1�O(exp(�ka)) for some positive a: note that the ratio of the number of left nodes to the numberof right nodes in the graph B2 equals �(1 � 1=D2), hene the ondition in Lemma 2 translatesto Æ � �(1 � 1=D2)=(1 + 1=D) = �(1 � 1=D), whih is obviously true. By the aforementionedexpansion property of the subgraph of B2 indued by the set of unreovered left nodes, we see thatthe proess terminates suessfully.Note that the degree of eah left node in this modi�ed onstrution of B is at most three biggerthan the average degree of eah left node in the onstrution of B desribed at the beginning ofthis setion. We an use this observation and the lemma above to immediately prove the following.Theorem 3. For any R with 0 < R < 1, any � with 0 < � < 1, and suÆiently large blok lengthn, there is a linear ode and a deoding algorithm that, with probability 1 � O(n�3=4), is able toorret a random (1�R)(1� �)-fration of erasures in time proportional to n ln(1=�).Proof. Set D = d1=�e to get a one level ode with the properties desribed in Lemma 3.Casade versions of these odes as desribed in Setion 2 to get the entire ode. As was pointedout above, the average degree a` of the left nodes in eah of the layers is upper bounded by3 +PDi=1 1=i < 4 + ln(1=�), whih is proportional to ln(1=�). Hene, the total number of edgesin the bipartite layers of the graph is proportional to n ln(1=�), whih proves the assertion on thedeoding time.Using Lemma 3 and the same analysis as in the proof of Theorem 2, we an show that the odeonstruted above an reover, with probability 1 � O(n�3=4), all the message bits, if a random
14
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Æ-fration of the odeword is missing, where Æ = �(1 � 1=D). Noting that � = 1 � R, we obtainthe result.Figure 5 shows the running time of the enoding/reovery algorithms (as multiples of the bloklength) versus the overhead needed to reover. For instane, for suÆiently large n, one anonstrut in this way [n; k℄q-odes that have enoding/reovery algorithms running in time � 7n,whih an reover a odeword from a random set of 1:002k of its oordinates.
5 Pratial ConsiderationsThe disussions in the preeding setions have been of a more theoretial, rather than a pratialnature. However, as the graph odes designed via the above mentioned theorems an be used inpratial situations, it is important to desribe possible implementations. We start with modifyingour onstrution by allowing erasures to also our on the right hand side. An analysis of thistype provides us with some insight in how to design asaded versions of our odes with muhfewer levels, and faster deoding algorithms for the end level. Next, we show how to use a linearprogramming approah to design bipartite graphs whih give rise to very good odes. Finally, webriey disuss some of our implementations. A preliminary report on the results of this setionappeared in [9℄.5.1 Fration of Left Nodes UnreoveredSo far we have assumed in our analysis that in eah layer of the asade all the hek bits arereeived when trying to reover the message bits. The reason we made this assumption is thatin the original onstrution the asading sequene of bipartite graphs is ompleted by adding astandard erasure orreting ode at the last level.There are some pratial problems with this. One annoyane is that it is inonvenient toombine two di�erent types of odes. A more serious problem is that standard erasure orretingodes take quadrati time to enode and deode (if the alphabet size is large enough; otherwise,ubi running time will do). Suppose the message is mapped to a odeword twie its length. Inorder to have the ombined ode run in linear time, this implies that the last graph in the asadingsequene has pk left nodes, where k is the number of nodes assoiated with the original message,i.e., there are O(log(k)) graphs in the sequene. In the analysis, we assume that an equal fration15
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of the nodes in eah level of the graph are reeived. However, there is variane in this fration ateah level, with the worst expeted frational variane at the last level of 1= 4pk. Thus, if a messageof length 65; 536 is strethed to a odeword of length 131; 072, then just beause of the varianeof 1= 4pk = 0:063, we expet to have to reeive 1.063 times the message length of the odeword inorder to reover the message.A solution to this problem is to use many fewer levels of graphs in the asade, and to avoidusing a standard erasure orreting ode in the last level. That is, for the last layer, we ontinueto use a randomly hosen graph. We have tried this idea, with the last graph hosen from anappropriate distribution, and it works quite well. For example, using only three levels of graphswe an reliably reover a message of length 65; 536 from a random portion of length 67; 700 (i.e.,1.033 times the optimal of 65; 536) of a blok-length of 131; 072.To design the graph for this solution, we need to analyze the deoding proess when a randomportion of both the message bits and the hek bits are missing. The following result gives theexpeted fration of right nodes of degree one with respet to the number of edges in the graph,and estimates the fration of left nodes unreovered at eah step of the algorithm.Lemma 4. The fration r1(x) of edges of right degree one at x with respet to the number of edgesin the original graph B equalsr1(x) = Æ(1� Æ0)�(Æ0 + (1� Æ0)x) �x� 1 + �(1� Æ�(Æ0 + (1� Æ0)x))� :Furthermore, up to lower order terms, the fration of left nodes unreovered at time x equals

Æa` � Z (Æ0+(1�Æ0)x)0 �(y)dy:We will prove this lemma later in Appendix C. We immediately obtain the ondition�(1� Æ�(Æ0 + (1� Æ0)x)) > 1� x x 2 (0; 1℄ (9)for suessful deoding.The above inequality is not possible to satisfy for all x 2 (0; 1℄ if Æ0 > 0, for any value of Æ: forx = 0 the left hand side equals �(1 � Æ�(Æ0)) whih is stritly less than 1. There is an intuitivereason for this: the subgraph ~B on whih the proess starts has edges of degree one on the left;these edges an only orret the left nodes they are onneted to, and annot help any other nodeon the left.However, it turns out to be an interesting question to see what fration of the left nodes anbe reovered when a fration Æ0 of the right nodes is missing. The answer to this question an beused to design asading odes where the deoding proess moves from right to left bootstrapping16



up to reover a higher and higher fration of nodes at eah suessive deoded layer of the graphuntil it is able to reover all of the �rst (message) layer. (See Figure 6.)Given the (�) and (�) vetors, Condition 9 an be used to ompute the smallest value of x forwhih the ondition is still valid. The seond part of Lemma 4 then gives the fration of unreoverednodes on the left at this value of x.5.2 Computing Degree Sequenes Using Linear ProgrammingIn this setion we desribe a heuristi approah that has proven e�etive in pratie to �nd a goodright degree sequene given a spei� left degree sequene. The method uses linear programmingand the di�erential equation analysis of Setion 3. Reall that a neessary ondition for the proessto omplete is that �(1� Æ�(x)) > 1� x on (0; 1℄. We �rst desribe a heuristi for determining fora given �(x) representing the left degree sequene and a value for Æ whether there is an appropriate�(x) representing the right degree sequene satisfying this ondition. We begin by hoosing a setMof positive integers whih we want to ontain the degrees on the right hand side. To �nd appropriate�m,m 2M , we use the ondition given by Theorem 2 to generate linear onstraints that the �i mustsatisfy by onsidering di�erent values of x. For example, by examining the ondition at x = 0:5,we obtain the onstraint �(1� Æ�(0:5)) > 0:5, whih is linear in the oeÆients of �(x).We generate onstraints by hoosing for x multiples of 1=N for some integer N . We also inludethe onstraints �m � 0 for all m 2 M . We then use linear programming to determine if suitable�m exist that satisfy our derived onstraints. Note that we have a hoie for the funtion we wishto optimize; one hoie that works well is to minimize the sum of �(1� Æ�(x))+x�1 on the valuesof x hosen to generate the onstraints. The best value for Æ for given N is found by binary searh.Given the solution from the linear programming problem, we an hek whether the �i omputedsatisfy the ondition �(1� Æ�(x)) > 1� x on (0; 1℄.Due to our disretization, there are usually some onit subintervals in whih the solution doesnot satisfy this inequality. Choosing large values for the tradeo� parameter N results in smalleronit intervals, although it requires more time to solve the linear program. For this reason weuse small values of N during the binary searh phase. One a value for Æ is found, we use largervalues of N for that spei� Æ to obtain small onit intervals. In the last step we get rid of theonit intervals by appropriately dereasing the value of Æ. This always works sine �(1� Æ�(x))is a dereasing funtion of Æ.We ran the linear programming approah on left degree sequenes of the form 3; 5; 9; : : : ; 2i+1for odes with rates 1=2; 2=3; 3=4; 4=5; 9=10 and average left degrees 5:70; 6:82; 8:01. These resultsare gathered in Figure 1 whih shows how muh of the odeword is suÆient to reover the entiremessage as a fration of the message length as the message length goes to in�nity. Sine thesegraphs do not have nodes of degree two on the left, Theorem 2 imply that with high probabilitythe orresponding odes reover the entire message from the portion of the odeword indiated inthe table, provided the message length is large enough. However, as the maximum degrees in theexamples we have found are rather large (about 30000), these odes are rather impratial.One major disadvantage of the approah given above is that we need to �x the left hand side ofthe graph. To overome this diÆulty, we use the dual ondition (8). We an now use this onditionand the linear programming approah to solve for the best � given �, then use the original onditionto solve for the best � given this �, and so on. We have tried this strategy and it gives good results,although at this point we have not proved anything about its onvergene to a (possibly optimal)pair of probability distributions.For example, we found that the following pair of degree sequene funtions yield [2k; k℄q-odeswhih are able to reover from a random set of 1:01k oordinates, with high probability; the
17



Average RateDegree 1=2 2=3 3=4 4=5 9=105.70 1.036 1.023 1.016 1.013 1.0066.82 1.024 1.013 1.010 1.007 1.0048.01 1.014 1.008 1.007 1.005 1.002
Table 1: Close to optimal odes for di�erent rates and average left degrees.

orresponding average degree is 12:
�(x) = 0:430034x2 + 0:237331x12 + 0:007979x13 + 0:119493x47 + 0:052153x48 +0:079630x161 + 0:073380x162�(x) = 0:713788x9 + 0:122494x10 + 0:163718x199:Note that, in ontrast to the examples above, the maximum node degrees in these graphs aremuh smaller. This makes them more pratial for smaller values of k, than the odes giving riseto Table 1.5.3 Implementations and TimingsIn this subsetion we report on some of the implementations of our odes. In all these examplesa message onsisting of 640000 pakets was enoded into a vetor of 1280000 pakets, and eahpaket onsisted of 256 bytes. The asade onsisted of three layers: a �rst layer onsisting of640K nodes on the left, and 320 K nodes on the right, a seond layer onsisting of 320K nodeson the left and 160K nodes on the right, and a third layer onsisting of 160K nodes on the leftand on the right. The edge distributions of the graphs used in the �rst and the seond layer werethe heavy tail/Poisson distribution disussed in Setion 4. The edge distribution in the third layerwas di�erent, and used some of the analysis of Setion 5.1: the edge distribution on the left was a\double heavy tail" distribution, given by �(x) := ~�(x2), where ~� is the edge distribution funtionof the heavy tail distribution.To hose an appropriate random bipartite graph B with E edges, k nodes on the left, and �knodes on the right, the program started with a bipartite graph B0 with E nodes on both the left andright hand sides, with eah node of B0 representing an edge slot. Eah node on the left hand sideof B0 was assoiated with a node on the left side of B, so that the distribution of degrees is givenby (�1; : : : ; �m), and similarly for the right. The program then hoose a random mathing (i.e., arandom permutation) between the two sets of E nodes on B0. This indued a random bipartitegraph on B (perhaps with multi-edges) in the obvious manner with the desired degree struture.In experiments it turned out that the existene of multi-edges is not a serious problem. This anbe explained by the observation that one an analyze the proess for random multigraphs insteadof random graphs and that this analysis turns out to yield essentially the same results as the onearried out in Setion 3.A shemati desription of the ode is given in Figure 7. The average degree of the nodes in thisgraph was 8. The deoding algorithm was exeuted 1000 times, eah time with a di�erent randomloss pattern. Figure 8 shows length overhead statistis: the horizontal axis represents � and thevertial axis represents the perentage of times where (1 + �) times the length of the message wasneeded to ompletely reover the message, based on the 1000 trials. In ompliane with the results
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of Setion 3 we see that the parameters are sharply onentrated around their mean value.On a DEC-alpha mahine with 300MHz and 64MB RAM the enoding took 0.58 CPU-seonds,and the deoding took 0.94 seonds, on average. This orresponds to a throughput of roughly 280Mbit/se.On a Pentium Pro at 200 MHz and 64MB RAM, the enoding took 0.58 seonds, while thedeoding took 1.73 seonds, on average. This orresponds to a throughput of roughly 150 Mbit/se.It should be noted that most of the time in our algorithm is spent in pointer hasing. The odeused was a straightforward C-implementation. Use of more sophistiated data-types, and moreintelligent pre-fething strategies would probably speed up the ode onsiderably.
6 ConlusionWe have introdued in this paper a lass of error-orreting odes, based on a asade of bipartitegraphs. Although the idea of using sparse bipartite graphs for onstruting odes is not new [6, 25℄,the onstrution of the graphs in eah of the layers is novel. We obtained the onstrution byanalyzing a simple deoding algorithm. The analysis used results asserting the sharp onentrationof parameters in a disrete random proess around their means. Using this, we established a simpleondition that the degree sequenes of the left and right hand sides of the bipartite graphs had tosatisfy in order for the proess to �nish suessfully. We designed a family of apaity-ahievingodes on the erasure hannel with linear time enoding and deoding algorithms. We should pointout that our model of omputation, as it stands, is that of a random aess mahine with unitost. However, our onstrution an be modi�ed using pre-fething strategies to yield linear timealgorithms for random aess mahines with logarithmi ost. The modi�ation is quite similar tothat given in [24℄.
7 Further DevelopmentsThe appearane of the �rst version of this paper as an extended abstrat in [13℄ inspired newdevelopments whih we would like to briey omment on in this setion. First, the analysis of thispaper was simpli�ed in [9℄ by using proper martingale arguments. Nevertheless, sine we feel thatthe approah outlined in this paper (in partiular, Theorem 1) may have other appliations, weopted for leaving the analysis in its original form. One of the main results of this paper is thefat that properly hosen irregular graphs perform a lot better than regular graphs, and that theonly parameters that determine the asymptoti performane are the frations of nodes of variousdegrees. This observation together with the new analysis were ombined in [10℄ to study irregularlow-density parity-hek odes on the binary symmetri hannel, with simple hard-deision deodingalgorithms going bak to Gallager [6℄ . 4 This paper appears to have been inuential. First, theidea of using irregular odes was taken up and extended by other researhers (see, e.g., [14℄).Seond, the main \onentration theorem" of [10℄ was extended to a large lass of hannel modelsin a landmark paper by Rihardson and Urbanke [22℄, whih �rst appeared in 1998. Based on theirapproah, they developed the \density evolution" algorithm, a numerial proedure to approximatethe threshold of noise below whih the belief propagation algorithm 5 is asymptotially suessful.Several months later, their method was further extended in [21℄ in whih sequenes of odes wereonstruted for whih the belief propagation algorithm had a performane extremely lose to theShannon apaity, beating Turbo odes [2℄ by a wide margin for modest blok-lengths.4An updated version of this paper appears in this issue [12℄.5Our erasure deoder turns out to be the belief propagation algorithm for the erasure hannel [21℄.
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Another main result of this paper was to show that there are families of degree sequenes suhthat the orresponding graphs asymptotially meet the apaity of the erasure hannel (using oursimple erasure deoding algorithm). Another family of suh degree sequenes was exhibited in [23℄.So far, these have been the only known apaity-ahieving families of degree sequenes, and anotherexample of a ommuniation hannel for whih apaity-ahieving sequenes exist for all rates isyet to be found.
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A Proof of Theorem 1Reall that a sequene of random variablesX0;X1; : : : is alled a martingale ifE[Xi j X0; : : : ;Xi�1℄ =Xi�1 for all i � 1. The sequene is alled a sub-martingale (super-martingale) ifE[Xi j X0; : : : ;Xi�1℄ �Xi�1 (E[Xi j X0; : : : ;Xi�1℄ � Xi�1). For the proof of our onentration result we need the followingwell-known result, often alled Azuma's inequality [26, Lemma 1℄.Theorem 4. Let X0;X1; : : : be a supermartingale with respet to a sequene of �-algebras Fi withF0 = f;;
g, and suppose that X0 = 0 and jXk+1 � Xkj �  for some onstant  and for i � 0.Then for all � > 0 we have Pr(Xk � �) � exp(��2=2k):
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Proof of Theorem 1: : We modify the proof in [26℄ slightly to obtain the error bounds asserted inthe theorem. First, note that by a standard result in the theory of �rst order di�erential equations,there is a unique solution in (a).As in [26℄ we simplify the notation by onsidering d = 1 and referring to y(1;m), z1, and f1 asy, z, and f , and so on. The proof for general d is similar.Let w := dm2=3e, and assume that 0 � t � m � w. We �rst demonstrate onentration ofYt+w�Yt. Notie that the Lipshitz ondition on f and Condition (ii) imply that for all 0 � k < wE(Yt+k+1 � Yt+k j Ht+k) = f� t+ km ; Yt+km � � f� tm; Ytm�+  2k + 1mfor some onstant .For �xed t, de�ne the random variable Xk := Yt+k � Yt � kf(t=m; Yt=m)� k2=m. Note that
Xk+1 �Xk = Yt+k+1 � Yt+k � f tm; Ytm!�  2k + 1m :

This shows that the Xk form a supermartingale with respet to Ht; : : : ;Ht+w, as 0 � E(Xk+1 �XkjHt+k) = E(Xk+1jHt+k) �Xk. Furthermore, the above equality shows that jXk+1 �Xkj � C2for some onstant C2. We an now apply the inequality of Theorem 4. As X0 = 0, we obtainPr(Xw � �C2) � exp(� �22w ), for any 0 < �. (The parameter � will be hosen later.) The lowertail an be bounded in exatly the same way, using a submartingale. This gives for any onstantB (to be hosen later)
Pr ����� Yt+w � Yt � wf tm; Ytm! ������ ( +B)w2m + �C2! � exp�� �22w�: (10)

Now let k` := `w, where ` = 0; 1; : : : ; `0 and `0 = bminfm=w; �m=wg. Let
T` := (w2 + �mC2)((1 +Bw=m)` � 1)Bw :We prove by indution on ` that�` := Pr(jYk` � z(k`=m)mj � T`) � ` exp�� �22w�:The assertion is obvious for the indution starting at ` = 0, as z(0) = E(Y0)=m. De�neA1 := Yk`+1 � Yk` � wf(k`=m; Yk`=m);A2 := Yk` �mz(k`=m);A3 := mz(k`+1=m)�mz(k`=m)� wf(k`=m; Yk`=m):Note that jYk`+1 �mz(k`+1=m)j = jA1 +A2 � A3j � jA1j+ jA2j+ jA3j:The indutive hypothesis gives that jA2j < T` with probability at least 1�` exp(��2=2w). Further,by 10 we have jA1j < w2=m+ �C2 with probability at least 1 � exp(��2=2w). To bound A3 weproeed as follows. By the mean value theorem we have that z(k`+1=m) � z(k`=m) = wz0(�)=m,where z0 is the derivative of z and � is some real number with k`=m � � � k`+1=m. Note that zsatis�es the di�erential equation in (1), hene z0(�) = f(�; z(�)), and by the Lipshitz ondition23



on f we obtain jA3j � Lw(jk`=m� �j+ jYk`=m� z(�)j). By the ontinuity of z and the indutivehypothesis, we see that for suitable hoie of the onstant B we have
jA3j � B w2m + wT`m !;

for large enough m. Altogether we obtainjA1j+ jA2j+ jA3j � T`+1with probability at least 1 � ` exp(��2=2w) � exp(��2=2w) = 1 � (` + 1) exp(��2=2w). Now wehoose � = pm. Then T` � Tm=w � (exp(B)� 1)(( +B)m4=3+m3=2C2)=(Bm2=3) = O(m5=6) forall `. Hene, we see that (2) is satis�ed at t = k` with probability at least 1�m2=3 exp(� 3pm=2).Furthermore, as jYt�Yk` j � C 0m2=3 for all k` � t � k`+1, we ontend that Yt = mz(t=m)+O(m5=6)for all t in the spei�ed range, with probability at least 1�m2=3 exp(� 3pm=2).We remark that one an have better hoies for � and w in the above proof whih make theerror terms smaller, at the expense of making the error probability slightly larger.
B Proof of Proposition 1We will prove Proposition 1 in this appendix. We start with the substitution x := exp(� R �0 ds=e(s)).This means that dx=x = �d�=e(�), and this transforms for i > 1 Equation (3) into

r0i(x) = i(�ri+1(x) + ri(x))a(x)� 1x ;where prime stands for derivative with respet to the variable x, and a(x) is the average degree ofthe graph at time x. Note that a(x) equalsP i`i(x)=e(x), whih in terms of the funtion �(x) anbe written as 1 + x�0(x)=�(x). Hene, we obtain for i > 1
r0i(x) = i(�ri+1(x) + ri(x))�0(x)�(x) :As is veri�ed easily, the expliit solution is given byri(x) = �(x)i��iZ x0 ri+1(y)�(y)�i�0(y)�(y) dy + i� (11)for some onstants i to be determined from the initial onditions for ri. These equations anbe solved reursively, starting with the highest nonzero ri, say r�. In this ase, we have r0�(x) =�r�(x)�0(x)=�(x), whih gives r�(x) = ��(x)� for some onstant �. Using indution, it is theneasy to prove that ri(x) =Xj�i(�1)i+j�j � 1i� 1�j�(x)j : (12)

Further, sine �(1) = 1, one veri�es by indution that
i =Xj�i �j � 1i� 1�rj(1):
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Plugging (5) into the last equation we see that
i =Xm�i�m� 1i� 1 ��mÆi:

(Use �m�1j�1 ��j�1i�1� = �m�1i�1 ��m�jj�i �.) Hene, we obtain for i > 1 from (12)
ri(x) = Xm�j�i(�1)i+j�j � 1i� 1��m� 1j � 1��m(Æ�(x))j: (13)

To obtain the formula for r1(x), we note that r1(x) = e(x)�Pi>1 ri(x). The sum of the right handside of 13 over all i � 1 equalsXm�j(�1)j�1�m� 1j � 1��m(Æ�(x))jXi�j (�1)i�1�j � 1i� 1� = Æ�(x):
(The inner sum equals 1 if j = 1, and is zero otherwise.) Hene, we have

r1(x) = e(x)� Æ�(x) + Æ�(x)Xm �m Xj�m(�1)j�1�m� 1j � 1�(Æ�(x))j�1= xÆ�(x)� Æ�(x) + Æ�(x)Xm �m(1� Æ�(x))m�1
= Æ�(x)hx� 1 + �(1� Æ�(x))i:This ompletes the proof.

C Proof of Lemma 4Again, we begin with the initial random graph B, with k left nodes and �k right nodes, and ontinueto work with the generating funtions �(x) and �(x) from Setion 3. Suppose that eah node onthe right is removed with probability Æ0, while nodes on the left are removed with probability Æ.The new proess an now be studied as a proess with erasures on the left only, whih runs on thesubgraph ~B of the initial onsisting of the (1� Æ0)�n undeleted nodes on the right. Let ~�i be thefration of edges of degree i in ~B with respet to the total number of edges in ~B. De�ne ~� similarly.Obviously, ~�i = �i, as the number of edges of degree i and the number of total edges in ~B are a(1� Æ0)-fator of those of B. As for ~�i, it is easily seen that~�i =Xj�i �j�j � 1i� 1�(1� Æ0)i(Æ0)j�i:
This is done as follows: an edge of degree j is with probability 1 � Æ0 onneted to an undeletednode on the right. The probability that j � i of the remaining j � 1 edges is onneted to one ofthe deleted nodes on the right is exatly a (1� Æ0)-fration of the above sum.The above formula shows that ~�(x) = �(Æ0 + (1 � Æ0)x). Invoking Theorem 1 we see that theexpeted number of edges of right degree one at time x (with respet to the total number of edgesin ~B) equals Æ�(Æ0 + (1� Æ0)x) �x� 1 + �(1� Æ�(Æ0 + (1� Æ0)x))� :

25



Sine the number of edges in ~B is (1� Æ0) times the number of edges in B, the assertion on r1(x)follows.To prove the seond part of the proposition, we retain the notation established earlier, e.g., e(x)is the fration of the original edges remaining at x. Let E be the number of edges in the originalgraph, N be the number of left nodes in the original graph, and thus the average left node degreeis a` = E=N . We de�ne b(x) to be the average node degree among nodes on the left that have atleast one edge at x.We de�ne fi to be the fration of left nodes of degree i in the original graph, and thus fi =a` � �i=i. We de�ne f(x) to be the expeted fration of original left nodes still not reovered atx. We de�ne ~f to be the fration of left nodes that have all their neighbors among the original Æ0fration of missing right nodes. We de�ne f̂(x) to be the expeted fration of left nodes that haveat least one neighbor not among the original Æ0 fration of missing right nodes and that are stillnot reovered at x.One an verify that f(x) = Æ ~f + f̂(x), and that ~f = Pi fi(Æ0)i. Thus, our goal is to dedue alosed form expression for f̂(x). The number of unreovered left nodes with at least one neighborat x is equal to the number of edges remaining at x divided by b(x). The number of edges at x ise(x)E, and thus, f̂(x) = e(x)Eb(x)N = a` � e(x)=b(x):We now turn to b(x). It an be veri�ed thatb(x) = e(x)R x0 e(y)=ydy :From this it follows that f̂(x) = a` � R x0 e(y)=ydy: Reall that e(y) = Æ(1� Æ0)y�(Æ0+(1� Æ0)y), andthus e(y)=y = Æ(1� Æ0)�(Æ0 + (1� Æ0)y). Further, reall that �(z) =Pi �izi�1. Thus,Z x0 �(Æ0 + (1� Æ0)y)dy = Xi �ii � (Æ0 + (1� Æ0)y)i1� Æ0 �����x0 :Thus, Z xy e(y)=ydy = ÆXi �ii � (Æ0 + (1� Æ0)y)i �����x0= Æa` Xi fi � (Æ0 + (1� Æ0)y)i �����x0 :This implies f̂(x) = ÆhXi fi � (Æ0 + (1� Æ0)x)i � ~fi:
Finally, f(x) = f̂(x) + Æ ~f = ÆPi fi � (Æ0 + (1 � Æ0)x)i. By using Theorem 1, this shows that thefration of nodes unreovered at time x is, up to small order terms, equal to

Æa` � Z (Æ0+(1�Æ0)x)0 �(y)dy;and ompletes the proof.
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