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Abstract

We perform a smoothed analysis of Renegar’s condition number for linear programming
by analyzing the distribution of the distance to ill-posedness of a linear program subject
to a slight Gaussian perturbation. In particular, we show that for every n-by-d matrix Ā,
n-vector b̄, and d-vector c̄ satisfying

∥∥Ā, b̄, c̄
∥∥

F
≤ 1 and every σ ≤ 1,

E
A,b,c

[log C(A, b, c)] = O(log(nd/σ)),

where A, b and c are Gaussian perturbations of Ā, b̄ and c̄ of variance σ2 and C(A, b, c) is
the condition number of the linear program defined by (A, b, c). From this bound, we obtain
a smoothed analysis of interior point algorithms. By combining this with the smoothed anal-
ysis of finite termination of Spielman and Teng (Math. Prog. Ser. B, 2003), we show that the
smoothed complexity of interior point algorithms for linear programming is O(n3 log(nd/σ)).

1 Introduction

In [ST04], Spielman and Teng introduced the smoothed analysis of algorithms as an alternative
to worst-case and average-case analyses in the hope that it could provide a measure of the
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complexity of algorithms that better agrees with practical experience. The smoothed complexity
of an algorithm is the maximum over its inputs of the expected running time of the algorithm
under slight perturbations of that input. In particular, they consider the linear programming
problem of the normal form

max cTx s.t. Ax ≤ b

in which the input data (A, b, c) are subject to slight Gaussian perturbations. Recall that
the probability density function of the univariate Gaussian random variable with mean 0 and
variance σ2 is given by

µ(x) =
1

σ
√

2π
e−x2/(2σ2).

Definition 1.0.1 (Gaussian Perturbation). For any Ā ∈ IRn×d and σ ≥ 0, the Gaussian
perturbation of variance σ2 of Ā is A = Ā + G, where each entry of G is an independent
univariate Gaussian variable with mean 0 and variance σ2.

Spielman and Teng [ST04] proved that the smoothed complexity of a two-phase shadow ver-
tex simplex method was polynomial in n, d and 1/σ. That is, for any (Ā, b̄, c̄) such that∥∥(Ā, b̄, c̄)

∥∥
F
≤ 1 and σ ≤ 1, if (A, b, c) is the Gaussian perturbation of (Ā, b̄, c̄) of variance σ2,

then the linear program defined by (A, b, c) can be solved by a simplex algorithm in expected
time polynomial in nd/σ, where

∥∥(Ā, b̄, c̄)
∥∥

F
is the square root of the sum of squares of the

entries in Ā, b̄, and c̄.

In this paper, we perform a smoothed analysis of condition numbers for linear programs, and
thereby obtain a smoothed analysis of interior-point algorithms. Interior point algorithms for
linear programming are exciting both because they are known to run in polynomial time in
the worst case [Kar84] and because they have been used to efficiently solve linear programs in
practice [LMS90].

The worst-case complexity of solving linear programs has traditionally been stated in terms of
n, d, and L, where L is commonly called the “bit-length” of the input linear program, which
could also be a parameter measuring the precision needed to perform the arithmetic operations
exactly. The definition of L varies in the literature: Khachiyan [Kha79], Karmarkar [Kar84],
and Vaidya [Vai90] define L for integer matrices A to be some constant times

log(largest absolute value of the determinant of any square sub-matrix of A)
+ log(‖c‖∞) + log(‖b‖∞) + log(n + d).

Under this definition, L is not efficiently computable, and unless A comes from a very special
class of matrices, it is difficult to find L below Ω(n). Others use cruder upper bounds on L
such as the total number of bits in a row of the matrix or the total number of bits in the entire
matrix [Wri97].

Without using fast matrix multiplication1, the best bound known on the worst-case complex-
ity of any linear programming algorithm is Anstreicher’s [Ans99] bound of O

(
(n3/ log n)L

)
.

This bound improves slightly upon the bound of O(n3L), first independently obtained by
1Vaidya [Vai89] showed that fast matrix multiplication can be used to further improve the complexity of

interior-point algorithms. Also see Chapter 8 of Nesterov and Nemirovskii [NN94].
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Vaidya’s [Vai90]2 and Gonzaga [Gon88]. Several other variants of interior-point algorithms
have since been shown to have complexity O(n3L). These algorithms are iterative algorithms
that use O(

√
nL) iterations with an average of O(n2.5) operations per iteration. Note that all

these bounds assume n ≥ d.

The speed of interior point methods in practice is much better than that proved in their worst-
case analyses [IL94, LMS90, EA96]. It has been observed that the number of iterations of various
interior-point algorithms is much smaller than

√
nL. This discrepancy between worst-case anal-

ysis and practical experience is our main motivation for studying the smoothed complexity of
interior point methods.

As a corollary of the main result of this paper, we show that there exist interior-point algo-
rithms that return the exact answer to linear programs and have smoothed iteration complexity
O(
√

n log(nd/σ)) and smoothed complexity O(n3 log(nd/σ)) operations, for σ ≤ 1. In compari-
son, L could be much larger than log(nd/σ) in the O(n3L) worse-case bound. We thus partially
close the gap between the theoretical worst-case bound and practical observations.

Recently, Deza, Nematollahi and Terlaky [DET08] have proved a lower bound of Ω(
√

n/ log3 n)
on the complexity of path-following interior point methods. This lower bound holds even when
they only require the algorithm to produce a solution of small duality gap. The precision to
which numbers are specified in their construction is sub-quadratic in n, which suggests that it is
unlikely that one could greatly reduce the number of iterations by perturbing their examples by
perturbations of standard deviation O(1/n3). Other lower bounds on the complexity of interior
point algorithms have been obtained by Todd [Tod94] and Todd and Ye [TY96]. However, the
programs for which these lower bounds hold are very ill-conditioned.

Before stating our main result, we first review Renegar’s condition number for linear programs.

1.1 Condition Numbers of a Linear Program

A linear program is typically specified by a matrix A ∈ IRn×d together with two vectors b ∈ IRn

and c ∈ IRd. There are several canonical forms of linear programs specified by (A, b, c). The
following are four commonly used canonical forms:

max cTx s.t. Ax ≤ b and its dual min bTy s.t ATy = c, y ≥ 0 (1)
max cTx s.t. Ax ≤ b, x ≥ 0 and its dual min bTy s.t. ATy ≥ c, y ≥ 0 (2)

max cTx s.t. ATx = b, x ≥ 0 and its dual min bTy s.t. Ay ≥ c (3)
find x 6= 0 s.t. Ax ≤ 0 and its dual find y 6= 0 s.t. ATy = 0, y ≥ 0 (4)

In his pioneering work [Ren95b, Ren95a, Ren94], Renegar defined the condition number C(A, b, c)
of a linear program as the scale-invariant reciprocal of the distance of that program to “ill-
posedness”. A linear program is ill-posed if the program can be made both feasible and infeasible
by arbitrarily small changes to its data. Any linear program may be expressed in each of the
first three canonical forms. However, transformations among linear programming formulations

2Vaidya’s bound is explicit in its dependence on both n and d: O((n + d)d2 + (n + d)1.5d)L).
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do not in general preserve their condition numbers [Ren95a]. We therefore define a condition
number for each normal form considered.

Definition 1.1.1 (Primal Condition Number: Form (1)). For A ∈ IRn×d and b ∈ IRn,

(a) if Ax ≤ b is feasible, then

C
(1)
P (A, b) =

‖A, b‖F

sup {δ : ‖∆A,∆b‖F ≤ δ implies (A + ∆A)x ≤ (b + ∆b) is feasible}
,

(b) if Ax ≤ b is infeasible, then

C
(1)
P (A, b) =

‖A, b‖F

sup {δ : ‖∆A,∆b‖F ≤ δ implies (A + ∆A)x ≤ (b + ∆b) is infeasible}
.

It follows from the definition above that C
(1)
P (A, b) ≥ 1. We define the dual condition number

C
(1)
D (A, c) analogously. The condition number C(1)(A, b, c) is then defined as

C(1)(A, b, c) = max
(
C

(1)
P (A, b), C(1)

D (A, c)
)

.

For linear programs with canonical forms (2), (3), and (4) we define their condition numbers,
C(2)(A, b, c), C(3)(A, b, c) and C(4)(A), analogously. Note that each condition number is always
at least 1.

Working with linear programs in canonical form (2), Renegar developed an algorithm that
returns a feasible point with duality gap R ≤ O(nC(A, b, c)) or determines that the program
is infeasible or unbounded in O(n3 log C(A, b, c)) arithmetic operations. Applying any interior-
point algorithm that can reduce the duality gap from R to ε in O(

√
n log(R/ε)) iterations and

O(n3 log(R/ε)) operations to this feasible point, one can obtain a solution with relative accuracy
ε.

Subsequently, algorithms with complexity logarithmic in the condition number were developed
by Vera [Ver96] for forms (1) and (3) and by Cucker and Peña [CP01] for form (4). In [FV00],
Freund and Vera give a unified approach which both efficiently estimates the condition number
and solves the linear programs in any of these forms. The following theorem summarizes these
complexity results.

Theorem 1.1.2 (Condition-Based Complexity). For any linear program of form (i), i ∈
{1, 2, 3}, specified by (A, b, c) with n ≥ d and parameter ε ≤ 1, there is an interior-point algo-
rithm that determines that the program is infeasible or unbounded in O(n3 log(nC(i)(A, b, c)/ε))
operations, or finds a feasible solution x with duality gap at most ε ‖A, b, c‖F in O(n3 log(nC(i)(A, b, c)/ε))
operations. For a linear program of form (4) given by A, there is an algorithm that finds a fea-
sible solution x or determines that the program is infeasible in O(n3 log(nC(4)(A))) operations.

4



1.2 Smoothed Analysis of Condition Numbers: Our Results

The condition-based complexity of linear programming provides not only a natural framework
for evaluating the performance of linear-programming algorithms in the Real Turing machine
model or a finite-precision model, but also an instance-based characterization of a non-trivial
class of linear programs that can be solved quickly. If log C(i)(A, b, c) is much smaller than
L, then O(n3L) is an overly pessimistic upper bound on the complexity of solving the linear
program defined by (A, b, c).

Our main result is an upper bound on the smoothed value of log C(i)(A, b, c). In Theorem 4.0.3,
we show for any (Ā, b̄, c̄), σ ≤ 1, and each i

E
A,b,c

[
log C(i)(A, b, c)

]
= O(log(nd/σ)), (5)

where A, b and c are Gaussian perturbations of Ā, b̄ and c̄ of variance σ2.

The bound on the smoothed complexity of interior point methods follows immediately from
Theorem 1.1.2, and (5). Note that in (5) and in the corollary below, we abuse notation by
writing C(4)(A, b, c) instead of C(4)(A).

Corollary 1.2.1 (Smoothed Complexity of IPM). For any n ≥ d, Ā ∈ IRn×d, b̄ ∈ IRn

and c̄ ∈ IRd such that
∥∥Ā, b̄, c̄

∥∥
F
≤ 1 and σ ≤ 1, let (A, b, c) be the Gaussian perturbation of

(Ā, b̄, c̄) of variance σ2. For any ε ≤ 1, let T (i)((A, b, c), ε) be the time complexity of the interior
point algorithms of Theorem 1.1.2 for finding ε-accurate solutions of the linear program defined
by (A, b, c) in form (i) or determining that the program is infeasible or unbounded. Then,

E
(A,b,c)

[
T (i)((A, b, c), ε)

]
= O

(
n3 log

(
nd

σε

))
.

Remark 1 (Assumption on σ and Big-O notation). In the remainder of this paper, we
will explicitly keep track of constants in our analysis and will not use “big-O” notation to hide
them. We will, however, assume σ ≤ 1/

√
(n + 1)(d + 1) and use this assumption to simplify

our expressions. To apply our analysis to the case when 1/
√

(n + 1)(d + 1) ≤ σ ≤ 1, we can
simply scale the space by a factor of 1/(σ

√
(n + 1)(d + 1)).

Note also that Corollary 1.2.1 is stated with the assumption n ≥ d. In the analysis of condition
numbers of this paper, we will explicitly keep track of the contributions of n and d.

As explained in [ST03b], when one combines this analysis with the smoothed analysis of the
finite termination procedure in that paper, one obtains an interior point algorithm that returns
the exact answer to the linear program and that has smoothed complexity O(n3 log(nd/σ)), for
σ ≤ 1.

Our work is partially motivated by a recent result of Blum and Dunagan [BD02] on the smoothed
analysis of the perceptron algorithm for linear programming. We build upon and extend their
analysis to Renegar’s condition number for the four standard forms discussed in Section 1.1. As
already noted, one can apply the smoothed condition number bounds of this paper directly to
many other linear programming algorithms whose complexity can be bounded in terms of the
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condition number of its input. These algorithms include the ellipsoid algorithm [Kha79, FV00],
von Neumann’s algorithm [EF00], and the recent perceptron algorithm with rescaling [DV04].

There have been many average-case analyses of condition numbers and interior point algorithms.
Anstreicher, Ji, Potra and Ye [AJPY93, AJPY99], have shown that under Todd’s degenerate
model for random linear programs [Tod91], a homogeneous self-dual interior point method runs
in O(

√
n log n) expected iterations. Borgwardt and Huhn [HB02] have obtained similar results

under any spherically symmetric distribution. The performance of other interior point methods
on random inputs has been heuristically analyzed through “one-step analyses”, but it is not
clear that these analyses can be made rigorous [Nem88, GT92, MTY93]. Cucker and Wschebor
[CW03], Cheung and Cucker [CC02], and Cheung, Cucker, and Hauser [CCH03] studied the
distribution of condition numbers of random linear programs drawn from various distributions,
and their bounds also imply that the average-case complexity of the interior-point method is
O(n3 log n). If one specializes our results to perturbations of the all-zero matrix Ā and the
all-zero vectors b̄ and c̄, then one obtains a similar average-case analysis of the distribution of
condition numbers under the Gaussian distribution.

In contrast with the average-case analysis, our smoothed analysis can be interpreted as demon-
strating that if there is a little bit of imprecision or noise in the input data, then the linear
program is unlikely to be poorly-conditioned, and hence can be solved quickly by interior-point
algorithms. We refer interested readers to [ST04] for discussions of worst-case, average-case, and
smoothed analyses of algorithms.

1.3 Organization of the Paper

In our analysis, we divide the eight condition numbers C
(i)
P and C

(i)
D , for i ∈ {1, 2, 3, 4}, into

two groups. The first group includes C
(1)
P , C

(2)
P , C

(2)
D , C

(3)
D , and with some additional work,

C
(4)
P . The remaining condition numbers belong to the second group. We will refer to a condition

number from the first group as a primal condition number and a condition number from the
second group as a dual condition number.

Section 2 is devoted to the smoothed analysis of primal condition numbers. We remark that the
techniques used in Section 2 do not critically depend upon A, b and c being Gaussian perturba-
tions, and similar theorems could be proved using slight modifications of our techniques if these
were smoothly distributed within spheres or cubes. In Section 3, we consider dual condition
numbers. Our analysis in this section does make critical use of the Gaussian distribution of A,
b and c. In Section 4, we prove our main result on condition numbers, Theorem 4.0.3, using the
smoothed bounds of the previous two sections. We conclude the paper in Section 5 with some
open questions.

2 Primal Condition Number

In this section we consider the the primal condition numbers. Instead of analyzing each pri-
mal condition number separately, we perform a unified analysis, motivated by the work of
Peña [Peñ00], by transforming each canonical form to conic form. We then obtain the stronger
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result that the smoothed value of the logarithm of the primal condition number of conic programs
in form (6) below is O(log nd/σ).

2.1 Primal Condition Number of Conic Programming

As the condition numbers are independent of the objective functions, we focus on the feasibility
problem for a conic linear program which can be written as:

find x such that Ax ≥ 0,x ∈ C , (6)

where A is an n-by-d matrix and C is a strictly-supported convex cone in IRd.

Definition 2.1.1 (Strictly-supported convex cone). A strictly-supported convex cone is a
non-empty convex set C such that for all x ∈ C and all α > 0, αx ∈ C , and such that there
exists a vector t for which tTx < 0 for all x ∈ C .

For a column vector aaa, let Ray (aaa) denote {αaaa : α > 0} and let H(aaa) =
{
x : aaaTx ≥ 0

}
denote

the half-space of points with non-negative inner product with aaa. Note that

Ax ≥ 0 and x ∈ C ⇐⇒ x ∈ C ∩
n⋂

i=1

H(aaai),

where aaaT
1 , . . . ,aaaT

n are the rows of A. Thus, the set C ∩
⋂n

i=1H(aaai) 6= ∅ if and only if the
corresponding conic program is feasible. Throughout this paper, if aaa1, . . . ,aaan are column vectors
in IRd, we let [aaa1, . . . ,aaan] denote the matrix whose rows are the aaaT

i s.

Note that a strictly-supported convex cone cannot contain the origin. For example, IRd and
H(aaa) are not strictly-supported convex cones, while {x : x 0 > 0} and Ray (aaa) are. Thus, 0
cannot be a feasible solution of program (6).

The following definition generalizes distance to ill-posedness from linear programing to conic
programing by explicitly taking into account the strictly-supported convex cone C .

Definition 2.1.2 (Distance to ill-posed). For a strictly-supported convex cone C (not subject
to perturbation) and a matrix, A, we define ρ(A,C ) by

a. if Ax ≥ 0, x ∈ C is feasible, then

ρ(A,C ) = sup {ε : ‖∆A‖F < ε implies (A + ∆A)x ≥ 0, x ∈ C is feasible} ;

b. if Ax ≥ 0, x ∈ C is infeasible, then

ρ(A,C ) = sup {ε : ‖∆A‖F < ε implies (A + ∆A)x ≥ 0, x ∈ C is infeasible} .

We note that this definition makes sense even when A is a row vector [aaa]. In this case, ρ(aaaT ,C )
measures the distance to ill-posedness when we only allow modification of aaa.
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2.2 Transformation to Conic Programming

The primal program of form (1) can be put into conic form with the introduction of a homoge-
nizing variable x0. Setting C = {(x , x0) : x0 > 0}, the homogenized primal program of form (1)
is

[−A, b](x , x0) ≥ 0, (x , x0) ∈ C .

By setting C = {(x , x0) : x0 > 0 and x ≥ 0}, one can similarly homogenize the primal program
of form (2). The dual programs of form (2) and form (3) can be homogenized by setting
C = {(y , y0) : y0 > 0 and y ≥ 0} and C = {(y , y0) : y0 > 0}, respectively, and considering the
program

[AT ,−c](y , y0) ≥ 0, (y , y0) ∈ C .

Note that in each of these homogenized programs, the variables lie in a strictly-supported convex
cone.

Proposition 2.2.1 (Preserving feasibility). Each of the homogenized programs is feasible if
and only if its original program is feasible.

Even though transformations among linear programming formulations in general do not preserve
condition numbers, Peña [Peñ00] has proved that homogenization does not alter the distance
to ill-posedness. For convenience, we will state the lemma for form (1), and note that similar
statements hold for C

(2)
P , C

(2)
D , and C

(3)
D .

Lemma 2.2.2 (Preserving the condition number). Let

max cTx s.t. Ax ≤ b

be a linear program. Let C = {(x , x0) : x0 > 0}. Then, C
(1)
P (A, b) = ‖A, b‖F /ρ([−A, b],C ).

The primal program of form (4) does not fit into form (6), as x can be any non-zero vector. To
handle it, we need the following definition.

Definition 2.2.3 (Alternative distance to ill-posed). For a convex cone that is not strictly-
supported, C , and a matrix, A, we define ρ(A,C ) by

a. if Ax ≥ 0, x 6= 0, x ∈ C is feasible, then

ρ(A,C ) = sup {ε : ‖∆A‖F < ε implies (A + ∆A)x ≥ 0, x 6= 0, x ∈ C is feasible}

b. if Ax ≥ 0, x 6= 0, x ∈ C is infeasible, then

ρ(A,C ) = sup {ε : ‖∆A‖F < ε implies (A + ∆A)x ≥ 0, x 6= 0, x ∈ C is infeasible}

This definition would allow us to prove the analogues of Lemmas 2.3.15 and 2.3.1 for primal
programs of form (4). We omit the details of this variation on the arguments in the interest of
simplicity.
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2.3 Smoothed Analysis of Primal Condition Number of Conic Programs

Lemma 2.3.1 below states the main result of this section. Note that a simple union bound over
C

(2)
P and C

(2)
D using Lemma 2.3.1 together with Theorem 1.1.2 yields Corollary 1.2.1 for form

(2).

Lemma 2.3.1 (Logarithm of primal conic condition number). For any n ≥ d ≥ 2, any
strictly-supported convex cone C , Ā ∈ IRn×d satisfying

∥∥Ā∥∥
F
≤ 1, and σ ≤ 1/

√
nd,

E
A

[
log2

‖A‖F

ρ(A,C )

]
≤ 4 log2

(
nd

σ

)
+ 17,

where A is the Gaussian perturbation of Ā of variance σ2.

In a moment, we will derive Lemma 2.3.1 from the following lemma.

Lemma 2.3.2 (Smoothed Analysis of Distance to ill-posed). For any n ≥ d ≥ 2, any
strictly-supported convex cone C , Ā ∈ IRn×d satisfying

∥∥Ā∥∥
F
≤ 1, σ ≤ 1/

√
nd, and 0 < ε ≤ 1/2,

Pr
A

[ρ(A,C ) ≤ ε] ≤
(

98n2d1.5

σ2

)
ε ln1.5

(
1
ε

)
, (7)

where A is the Gaussian perturbation of Ā of variance σ2.

We postpone the proof of Lemma 2.3.2 to Section 2.3.3. We now apply it to prove Lemma 2.3.1.

Proof of Lemma 2.3.1. First notice that

E
A

[
log2

‖A‖F

ρ(A,C )

]
= E

A
[log2 ‖A‖F ] + E

A

[
log2

1
ρ(A,C )

]
.

Because
∥∥Ā∥∥

F
≤ 1 and σ ≤ 1/

√
nd, Lemma A.1.5 implies

E
A

[log2 ‖A‖F ] ≤ 1/2.

By Lemma 2.3.2,

Pr
A

[
1

ρ(A,C )
≥ x

]
≤ α log1.5

2 x

x
, where α =

98n2d1.5

σ2
.

As n, d ≥ 1, σ ≤ 1, and α ≥ 98 > 10, we may apply Lemma A.2.2 to bound

E
A

[
log2

1
ρ(A,C )

]
≤ 2 log2(eα).

Thus,

E
A

[
log2

‖A‖F

ρ(A,C )

]
≤ 1/2 + 2 log2(eα) ≤ 1/2 + 2 log2(98e) + 2 log2

n2d1.5

σ2
< 4 log2

nd

σ
+ 17.
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We will prove Lemma 2.3.2 by separately considering the cases in which the program is feasible
and infeasible. We will handle the feasible case in Section 2.3.1, and deal with the infeasible
case in Section 2.3.2. We then combine both cases and complete the analysis in Section 2.3.3.

The thread of argument in both Sections 2.3.1 and 2.3.2 consists of a geometric characterization
of the conic programs with poor primal condition number, followed by a probabilistic argument
demonstrating that this characterization is rarely satisfied in the smoothed model. Throughout
the proofs in this section, C will always refer to the original strictly-supported convex cone, and
a subscripted C , such as C 1, will refer to a modification of this cone.

For a convex body K in IRd, let ∂K be its boundary. For any ε ≥ 0, let

∂ (K , ε) =
{
x : ∃x ′ ∈ ∂K ,

∥∥x − x ′
∥∥

2
≤ ε
}

The key probabilistic tool used in the analysis is Lemma 2.3.4, which we will derive from the
following result of Ball [Bal93]. A slightly weaker version of this lemma was proved in [BD02]
and also in [BR76, pages 23-38].

Theorem 2.3.3 (Ball [Bal93]). Let µ be the density function of a d-dimensional vector of
independent Gaussian random variables of mean 0 and variance 1. Then for any convex body
K in IRd, ∫

∂K
µ ≤ 4d1/4.

Lemma 2.3.4 (Hitting ∂ (K , ε)). Let K be a convex body in IRd, let x̄ ∈ IRd, and let x be the
Gaussian perturbation of x̄ of variance σ2. Then,

Pr
x

[x ∈ ∂ (K , ε) \K ] ≤ 4d1/4ε

σ
, and (outside boundary)

Pr
x

[x ∈ ∂ (K , ε) ∩K ] ≤ 4d1/4ε

σ
. (inside boundary)

Proof. We derive the result assuming σ = 1. The result for general σ follows by scaling.

Let µ denote the density according to which x is distributed. To derive the first inequality, we
let K ε denote the set of points of distance at most ε from K , and observe that K ε is convex.

Integrating by shells, we obtain

Pr [x ∈ ∂ (K , ε) \K ] ≤
∫ ε

t=0

∫
∂K t

µ

≤ 4d1/4ε,

by Theorem 2.3.3.

We similarly derive the second inequality by defining K ε to be the set of points inside K of
distance at least ε from the boundary of K and observing that K ε is convex for any ε. To see
that K ε is convex, note that x ∈ K ε if and only if the ball of radius ε around x is contained in
K , and that the ball of radius ε around any convex combination of points x and y is contained
in the convex hull of the balls of radius ε around these points.
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In this section and the next, we use the following consequence of Lemma 2.3.4 repeatedly.

Corollary 2.3.5 (Distance to ill-posed, single constraint). For a vector āaa ∈ IRd, let aaa be
the Gaussian perturbation of āaa of variance σ2. Then, for any strongly supported convex cone
C 0 in IRd

Pr
aaa

[C 0 ∩H(aaa) is non-empty and ρ(aaa,C 0) ≤ ε] ≤ 4d1/4ε,

σ
and

Pr
aaa

[C 0 ∩H(aaa) is empty and ρ(aaa,C 0) ≤ ε] ≤ 4d1/4ε.

σ

Proof. Let K be the set of aaa for which C 0∩H(aaa) = ∅, i.e., let K be the interior of the polar cone
of C 0. Observe that ρ(aaa,C 0) is exactly the distance from aaa to the boundary of K . Since K is a
convex cone, these two inequalities follow directly from the two inequalities of Lemma 2.3.4.

2.3.1 Feasible Case

In this subsection, we will prove:

Lemma 2.3.6 (Distance to ill-posed: feasible case). Let C be a strictly-supported convex
cone in IRd, let Ā ∈ IRn×d, and let A be the Gaussian perturbation of Ā of variance σ2. Then
for any σ ≥ 0 and ε > 0,

Pr
A

[(Ax ≥ 0, x ∈ C is feasible) and (ρ(A,C ) ≤ ε)] ≤ 4nd5/4ε

σ
.

To prove Lemma 2.3.6, we first establish a necessary geometric condition for ρ to be small.
This condition is stated and proved in Lemma 2.3.7. In Lemma 2.3.8, we apply Helly’s Theo-
rem [Hel23, LDK63] to simplify this geometric condition, expressing it in terms of the minimum
of ρ over individual constraints. This allows us to use Lemma 2.3.5 to show that this geometric
condition is unlikely to be met. Lemma 2.3.6 then follows immediately from Lemmas 2.3.7
and 2.3.11 below.

We remark that a result similar to Lemma 2.3.7 appears in [CC01].

Lemma 2.3.7 (Geometric condition that ρ is small). For any strictly-supported convex
cone C and aaa1, . . . ,aaan ∈ IRd such that C ∩

⋂
iH(aaai) 6= ∅,

ρ([aaa1, . . . ,aaan],C ) ≥ sup
p∈C ,‖p‖2=1

min
i

aaaT
i p.

Proof. Let p be any unit vector in C , and let ∆aaa1, . . . ,∆aaan be such that C∩
⋂

iH(aaai+∆aaai) = ∅.
As p 6∈

⋂
iH(aaai + ∆aaai), there exists an i for which (aaai + ∆aaai)Tp < 0, which implies

min
i

aaaT
i p ≤ aaaT

i p < −∆aaaT
i p ≤ ‖∆aaai‖2 ‖p‖2 = ‖∆aaai‖2 ≤ ρ([aaa1, . . . ,aaan],C ).
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Lemma 2.3.8 (Consequnce of Helly’s Theorem). For any strictly-supported convex cone
C ⊆ IRd and aaa1, . . . ,aaan ∈ IRd such that C ∩

⋂
iH(aaai) 6= ∅,

sup
p∈C ,‖p‖2=1

min
i

aaaT
i p ≥ min

i
ρ

aaai,C ∩
⋂
j 6=i

H(aaaj)

/d.

We will derive Lemma 2.3.8 from Lemmas 2.3.9 and 2.3.10, which we now state and prove.

Lemma 2.3.9 (Cone to unit vector, single constraint). For any strictly-supported convex
cone C 0 ⊂ IRd and aaa ∈ IRd such that C 0 ∩H(aaa) 6= ∅,

ρ(aaa,C 0) = sup
p∈C 0,‖p‖2=1

aaaTp.

Proof. The “≥” direction follows from Lemma 2.3.7. So it suffices to show

ρ(aaa,C 0) ≤ sup
p∈C 0,‖p‖2=1

aaaTp.

As C 0 is strictly-supported, there exists a vector t such that tTx < 0 for all x ∈ C 0. We now
divide the proof into two cases depending on whether aaa ∈ C 0.

If aaa ∈ C 0, then we let p = aaa/ ‖aaa‖2. It is easy to verify that

aaaTp = ‖aaa‖2 = max
‖p‖2=1

aaaTp = sup
p∈C 0,‖p‖2=1

aaaTp.

Moreover, C 0 ∩H(aaa − (aaa − εt)) = ∅ for every ε > 0. So, ρ(aaa,C 0) ≤ ‖aaa‖2 = aaaTp.

If aaa 6∈ C 0, we consider cl (C 0), the closure of C 0. There are two cases depending on whether

sup
p∈C 0,‖p‖2=1

aaaTp (8)

is equal to 0. If this quantity is equal to 0, then C 0 ∩H(aaa + εt) = ∅ for every ε, because for any
q ∈ C 0, aaa + εtTq = aaaTq + εtTq < 0. Thus, ρ(aaa,C 0) = 0. If the quantity (8) is greater than
0, let q be the point of cl (C 0) that is closest to aaa. As the quantity (8) is strictly positive, q
lies inside H(aaa) and is not the origin. Let p = q/ ‖q‖2. As C 0 is a cone, q is perpendicular to

aaa−q , and so qTaaa = qTq . Thus, the distance from aaa to q is
√
‖aaa‖2

2 − ‖q‖2
2 =

√
‖aaa‖2

2 − (aaaTp)2,
as aaaTp = ‖q‖2. Conversely, for any unit vector r ∈ cl (C 0), the distance from Ray (r) to aaa is√
‖aaa‖2

2 − (aaaT r)2. Thus, the unit vector r ∈ cl (C 0) maximizing aaaT r must be p.

As C 0 is convex, the hyperplane through the origin and q that is orthogonal to aaa − q separates
C 0 from aaa. So, C 0 ∩H(aaa − q + εt) = ∅ for any ε > 0, and so ρ(aaa,C 0) ≤ ‖q‖2 = aaaTp.

Lemma 2.3.10 (Helly Reduction). For a strictly-supported convex cone C 0 ⊂ IRd, aaa1, . . . ,aaan ∈
IRd and ε > 0, if there exist unit vectors p1, . . . ,pn ∈ C 0, such that

aaaT
i pi ≥ ε, for all i, and

aaaT
i pj ≥ 0, for all i and j,

12



then there exists a unit vector p ∈ C 0 such that

aaaT
i p ≥ ε/d, for all i.

Proof. We prove this lemma using Helly’s Theorem [Hel23, LDK63] which states that if a col-
lection of convex sets in IRd has the property that every sub-collection of d + 1 of the sets has a
common point, then the entire collection has a common point. Let

Si = {x ∈ C 0 : aaaT
i x/ ‖x‖2 ≥ ε/d}.

We begin by proving that every d of the Sis contain a point in common. Without loss of
generality, we consider S1, . . . ,Sd. Let q =

∑d
i=1 pi/d. Then, for each 1 ≤ j ≤ d,

aaaT
j q = aaaT

j

(
d∑

i=1

pi/d

)
≥ aaaT

j

(
pj/d

)
≥ ε/d.

As ‖q‖2 =
∥∥∥∑d

i=1 pi/d
∥∥∥

2
≤
(∑d

i ‖pi‖2

)
/d ≤ 1, aaaT

j q/ ‖q‖2 ≥ aaaT
j q , so q is contained in each of

S1, . . . ,Sd.

As C 0 is strictly-supported, there exists t such that tTx < 0, ∀x ∈ C 0. Let

S′i = Si

⋂
{x : tTx = −1}.

Then, x ∈ Si implies −x/tTx ∈ S′i. So, every d of the S′i have a point in common. As these are
convex sets lying in a d − 1 dimensional space, by Helly’s Theorem there exists a point q that
lies within all of the S′is. As S′i ⊂ Si, this point lies inside all the Sis. So, p = q/ ‖q‖2 is the
desired unit vector.

Proof of Lemma 2.3.8. For each i, we apply Lemma 2.3.9 to the vector aaai and the cone cl (C )∩⋂
j 6=iH(aaaj) to find a unit vector pi ∈ cl (C ) ∩

⋂
j 6=iH(aaaj) such that

aaaT
i pi = ρ

aaai,C ∩
⋂
j 6=i

H(aaaj)

 .

As C ∩
⋂n

j=1H(aaaj) is not empty, aaaT
i pi ≥ 0. As pi ∈ cl (C ) ∩

⋂
j 6=iH(aaaj), we also have

aaaT
j pi ≥ 0,

for all j. Applying Lemma 2.3.10 with C 0 = cl (C ) ∩
⋂n

j=1H(aaaj) − {0}, we find a unit vector
p ∈ C 0 satisfying

aaaT
i p ≥ min

i
ρ

aaai,C ∩
⋂
j 6=i

H(aaaj)

/d,

for all i.
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Lemma 2.3.11 (Probability of the geometric condition). Let C be a strictly-supported
convex cone in IRd, let āaa1, . . . , āaan ∈ IRd, and let aaa1, . . . ,aaan be the Gaussian perturbations of
āaa1, . . . , āaan of variance σ2. Then,

Pr

[
C ∩

⋂
i

H(aaai) 6= ∅ and sup
p∈C ,‖p‖2=1

min
i

aaaT
i p < ε

]
≤ 4nd5/4ε

σ
.

Proof. By Lemma 2.3.8,

Pr

[
C ∩

⋂
i

H(aaai) 6= ∅ and sup
p∈C ,‖p‖2=1

min
i

aaaT
i p < ε

]

≤ Pr

C ∩
⋂
i

H(aaai) 6= ∅ and min
i

ρ

aaai,C ∩
⋂
j 6=i

H(aaaj)

 < dε

 .

Applying a union bound over i and then Corollary 2.3.5, we find this probability is at most

n∑
i=1

Pr

C ∩
⋂
j

H(aaaj) 6= ∅ and ρ

aaai,C ∩
⋂
j 6=i

H(aaaj)

 < dε

 ≤ n∑
i=1

4d1/4(dε)
σ

=
4nd5/4ε

σ
.

2.3.2 Infeasible Case

In this subsection, we prove:

Lemma 2.3.12 (Distance to ill-posed: infeasible case). Let C be a strictly-supported
convex cone IRd, let Ā ∈ IRn×d, and let A be the Gaussian perturbation of Ā of variance σ2.
Then for any 0 < σ ≤ 1/

√
d and 0 ≤ ε ≤ 1/2,

Pr
A

[(Ax ≥ 0, x ∈ C is infeasible) and (ρ(A,C ) ≤ ε)] ≤
(

97n2d1.5

σ2

)(
ε ln1.5

(
1
ε

))
(9)

To prove Lemma 2.3.12, we consider adding the constraints one at a time. If the program is
infeasible in the end, then there must be some constraint, which we call the critical constraint,
that takes it from being feasible to being infeasible. In Lemma 2.3.14, we give a geometric
quantity that is a lower bound of the distance to ill-posedness when the critical constraint is
added. We then bound the probability that this geometric quantity is small. We start with an
extension of Lemma 2.3.9 to the infeasible case.

Lemma 2.3.13 (ρ bound on inner product). For any strictly-supported convex cone C ⊂ IRd

and aaa ∈ IRd such that C ∩H(aaa) = ∅,

sup
p∈C ,‖p‖2=1

pTaaa ≤ −ρ(aaa,C ).

14



Proof. For any unit vector p ∈ C and any ε > 0, if we set ∆aaa =
(
ε− pTaaa

)
p, then

pT (aaa + ∆aaa) = pTaaa +
(
ε− pTaaa

)
pTp = pTaaa +

(
ε− pTaaa

)
= ε,

implying C ∩H(aaa + ∆aaa) 6= ∅. Thus ρ(aaa,C ) ≤
∣∣pTaaa

∣∣.
Lemma 2.3.14 (Geometric bound of the feasible-to-infeasible transition). Let n ≥ d ≥
2, let C be a strictly-supported convex cone in IRd, let p ∈ C , let aaa1, . . . ,aaak+1 ∈ IRd, and let α
and β be positive. If

aaaT
i p ≥ α, for 1 ≤ i ≤ k, and

aaaT
k+1x ≤ −β, for all x ∈ C ∩

⋂k
i=1H(aaai), ‖x‖2 = 1.

then

ρ([aaa1, . . . ,aaak+1] ,C ) ≥ min
{

α

2
,

αβ

4α + 2 ‖aaak+1‖2

}
.

Proof. Let

ε = min
{

α

2
,

αβ

4α + 2 ‖aaak+1‖2

}
. (10)

It sufficient to show for any {∆aaa1, . . . ,∆aaak+1} satisfying ‖∆aaai‖2 < ε for 1 ≤ i ≤ k + 1,

C ∩
k+1⋂
i=1

H(aaai + ∆aaai) = ∅.

Assume by way of contradiction that there exists a unit vector x ′ ∈ C ∩
⋂k+1

i=1 H(aaai + ∆aaai).
Then for any i ≤ k, (aaai + ∆aaai)Tx ′ ≥ 0, implying

aaaT
i x ′ ≥ −∆aaaT

i x ′ ≥ −‖∆aaai‖2

∥∥x ′∥∥
2
≥ −ε.

Let x = x ′ + ε
αp. Then

aaaT
i x = aaaT

i

(
x ′ +

ε

α
p
)

= aaaT
i x ′ + aaaT

i

ε

α
p ≥ −ε +

ε

α
α ≥ 0.

As x ′ ∈ C and p ∈ C , and hence x ′ + ε
αp ∈ C , we have x ∈ C ∩

⋂k
i=1H(aaai). Note also that

1− ε/α ≤ ‖x‖2 ≤ 1 + ε/α.

To derive a contradiction, we now compute

(aaak+1 + ∆aaak+1)Tx ′ = (aaak+1 + ∆aaak+1)T (x − (ε/α)p)

= aaaT
k+1x + ∆aaaT

k+1x − (ε/α)aaaT
k+1p − (ε/α)∆aaaT

k+1p

≤ −β ‖x‖2 + ‖∆aaak+1‖2 ‖x‖2 + (ε/α) ‖aaak+1‖2 + (ε/α) ‖∆aaak+1‖2

< −β(1− ε/α) + ε(1 + ε/α) + (ε/α) ‖aaak+1‖2 + (ε2/α)
= −β(1− ε/α) + ε

(
(1 + ε/α) + ‖aaak+1‖2 /α + ε/α

)
≤ −β/2 + ε (2 + ‖aaak+1‖2 /α) , by ε ≤ α/2
≤ 0, by (10),

which contradicts x ′ ∈ C ∩
⋂k+1

i=1 H(aaai + ∆aaai)
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We now prove Lemma 2.3.12 by proving that it is reasonably likely that there exist α and β
that are not too small and satisfy the conditions Lemma 2.3.14.

Proof of Lemma 2.3.12. First note that for 1/100 < ε ≤ 1/2, the right-hand side (9) is at least
1 and so the lemma is trivially true. So in the remainder of the proof, we assume ε ≤ 1/100.
Let aaa1, . . . ,aaan be the rows of A, and for k ∈ {0, 1, . . . , n}, let

C 0 = C and C k = C ∩
k⋂

i=1

H(aaak).

We observe the following simple monotonicity property of the distance to ill-posedness for in-
feasible conic programs: if C k = ∅ then C k+1 = ∅, and so

ρ ([aaa1, . . . ,aaak],C ) ≤ ρ ([aaa1, . . . ,aaan],C ) .

Let Ek denote the event that C k−1 6= ∅ but C k = ∅. We have

Pr [C n = ∅ and ρ ([aaa1, . . . ,aaan],C ) ≤ ε] ≤
n−1∑
k=0

Pr [Ek+1 and ρ ([aaa1, . . . ,aaak+1],C ) ≤ ε] . (11)

If Ek+1 occurs, then C k 6= ∅, and we may define a non-negative quantity

κ(aaa1, . . . ,aaak) = sup
p∈Ck,‖p‖2=1

min
1≤i≤k

aaaT
i p. (12)

Ek+1 and Lemma 2.3.13 imply that for all x ∈ C k such that ‖x‖2 = 1, aaaT
k+1x ≤ −ρ (aaak+1,C ).

If we let p be the unit vector at which the supremum in (12) is achieved, we may apply
Lemma 2.3.14 and Lemma A.2.6 to show that Ek+1 implies

ρ ([aaa1, . . . ,aaak+1],C ) ≥ min
{

κ(aaa1, . . . ,aaak)
2

,
κ(aaa1, . . . ,aaak)ρ(aaak+1,C k)

4 + 2 ‖aaak+1‖2

,
ρ(aaak+1,C k)
4 + 2 ‖aaak+1‖2

}
≥ min {κ(aaa1, . . . ,aaak), κ(aaa1, . . . ,aaak)ρ(aaak+1,C k), ρ(aaak+1,C k)}

4 + 2 ‖aaak+1‖2

. (13)

For any 0 < λ, Corollary 2.3.5 and Lemma 2.3.11, respectively, imply

∀aaa1,...,aaak:Ck 6=∅, Pr
aaak+1

[Ek+1 and ρ(aaak+1,C k) ≤ λ] ≤ 4d1/4λ

σ
,

Pr
aaa1,...,aaak

[C k is feasible and κ(aaa1, . . . ,aaak) ≤ λ] ≤ 4nd5/4λ

σ
.

By Proposition A.2.4, we have for 0 < λ ≤ 1/e

Pr
aaa1,...,aaak+1

[Ek+1 and κ(aaa1, . . . ,aaak)ρ(aaak+1,C k) ≤ λ] ≤ 16nd1.5λ

σ2

(
1 + max

(
0, ln

1
λ

+ ln
σ2

16nd1.5

))
.

≤ 16nd1.5λ

σ2
ln

1
λ

.
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Applying Proposition A.2.5 to add up these three bounds, we obtain

Pr [Ek+1 and min {κ(aaa1, . . . ,aaak), κ(aaa1, . . . ,aaak)ρ(aaak+1,C k), ρ(aaak+1,C k)} < λ]

≤ λ

(
(16 ln(1/λ) + 8)nd1.5

σ2

)
. (14)

To complete the proof, we now consider the denominator of (13). Because aaak+1 is the Gaussian
perturbation of variance σ2 of āaak+1 and ‖āaak+1‖2 ≤ 1,

Pr
[
4 + 2 ‖aaak+1‖2 ≥ 6 ln1/2 1/ε

]
≤ Pr

[
4 + 2 ‖aaak+1‖2 ≥ 6 + 3 ln1/2 1/ε

]
≤ Pr

[
‖aaak+1‖2 ≥ 1.5 ln1/2 1/ε

]
≤ ε, (15)

where the first inequality follows from 6 ≤ 3 ln1/2(1/ε) when ε ≤ 1/100 and the last inequality
follows from Proposition A.1.3.

We now set λ = 6ε ln1/2(1/ε). We note that ε ≤ 1/100 implies λ ≤ 1/11 ≤ 1/e. Observe that
the event

min {κ(aaa1, . . . ,aaak), κ(aaa1, . . . ,aaak)ρ(aaak+1,C k), ρ(aaak+1,C k)}
4 + 2 ‖aaak+1‖2

≤ ε

would imply

min {κ(aaa1, . . . ,aaak), κ(aaa1, . . . ,aaak)ρ(aaak+1,C k), ρ(aaak+1,C k)} < λ, or 4 + 2 ‖aaak+1‖2 ≥ 6 ln1/2(1/ε).

So, we may apply (13), (14) and (15) to obtain

Pr [Ek+1 and ρ ([aaa1, . . . ,aaak+1],C ) ≤ ε]

≤ ε +
(

6ε ln1/2

(
1
ε

))(
16nd1.5

σ2

)((
ln

(
1

6ε ln1/2(1/ε)

)
+

1
2

))

≤ ε +
(

96nd1.5

σ2
ε ln1/2

(
1
ε

))(
ln
(

1
ε

)
− ln 6 + 1/2

)
≤ ε +

96nd1.5

σ2
ε ln1.5

(
1
ε

)
≤ 97nd1.5

σ2
ε ln1.5

(
1
ε

)
.

Plugging this in to (11), we get

Pr [C 0 is infeasible and ρ ([aaa1, . . . ,aaan],C ) ≤ ε] ≤ 97n2d1.5ε ln1.5(1/ε)
σ2

.

2.3.3 Primal condition number, putting the feasible and infeasible cases together

We now combine the results of Sections 2.3.1 and 2.3.2 to prove Lemma 2.3.2.
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Proof of Lemma 2.3.2. Note that for 1/100 < ε ≤ 1/2 the right-hand side of (7) is at least 1 and
so the lemma is trivially true. So we assume ε ≤ 1/100. By Lemma 2.3.6 and Lemma 2.3.12,
respectively

Pr [(Ax ≥ 0, x ∈ C is feasible) and (ρ(A,C ) ≤ ε)] ≤ 4nd5/4ε

σ
,

Pr [(Ax ≥ 0, x ∈ C is infeasible) and (ρ(A,C ) ≤ ε)] ≤ 97n2d1.5εln1.5(1/ε)
σ2

.

Thus, as 0 < ε ≤ 1/100

Pr [ρ(A,C ) ≤ ε] = Pr [(Ax ≥ 0, x ∈ C is feasible) and (ρ(A,C ) ≤ ε)]

+ Pr [(Ax ≥ 0, x ∈ C is infeasible) and (ρ(A,C ) ≤ ε)]

≤ 98n2d1.5εln1.5(1/ε)
σ2

.

Lemma 2.3.15 (Primal conic condition number). Let n ≥ d ≥ 2, let C be a strictly-
supported convex cone in IRd, let Ā ∈ IRn×d satisfy

∥∥Ā∥∥
F
≤ 1, and let A be the Gaussian

perturbation of Ā of variance σ2. Then for any x ≥ 1 and σ ≤ 1/
√

nd,

Pr
[
‖A‖F

ρ(A,C )
≥ x

]
≤ 197n2d1.5

σ2

(
ln2 x

x

)
.

Proof. The lemma is trivially true for any 1 ≤ x ≤ 100 as, in this case, the right-hand side is at
least 1. So in the rest of the proof, we will assume x ≥ 100. For any ε < 1/100, 0.5 ln1/2(1/ε) ≥ 1,
so

Pr
[
‖A‖F ≥ 2 ln1/2(1/ε)

]
≤ Pr

[
‖A‖F ≥ 1 + 1.5 ln1/2(1/ε)

]
≤ Pr

[∥∥A− Ā
∥∥

F
≥ 1.5 ln1/2(1/ε)

]
≤ ε (by Proposition A.1.3 and σ ≤ 1/

√
nd).

By Lemma 2.3.2 for any λ ≤ 1/2

Pr [ρ(A,C ) ≤ λ] ≤ 98n2d1.5λln1.5(1/λ)
σ2

.

Let ε = 1/x and λ = 2ε ln1/2(1/ε). As x ≥ 100 implies λ ≤ 1/2, we have

Pr
[
‖A‖F

ρ(A,C )
≥ x

]
≤ Pr

[
‖A‖F ≥ 2 ln1/2(1/ε)

]
+ Pr [ρ(A,C ) ≤ λ]

≤ ε +
(

98n2d1.5

σ2

)(
2ε ln1/2(1/ε)

)
ln1.5

(
1

2ε ln1/2(1/ε))

)

≤ ε +
(

196n2d1.5

σ2

)(
ε ln2(1/ε)

)
≤
(

197n2d1.5

σ2

)(
ln2 x

x

)
.
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3 Dual Condition Number

In this section, we consider linear programs of the form

ATy = c, y ≥ 0.

The dual program of form (1) and the primal program of form (3) are both of this type. The
dual program of form (4) can be handled using a slightly different argument than the one we
present. As in section 2, we omit the details of the modifications necessary for form (4). We
consider the following dual distance to ill-posedness.

Definition 3.0.1 (Dual distance to ill-posed). For A ∈ IRn×d and c ∈ IRd,

a. if ATy = c, y ≥ 0 is feasible, then

ρ(A, c) = sup
{
ε : ‖∆A,∆c‖F < ε implies (A + ∆A)Ty = c + ∆c, y ≥ 0 is feasible

}
b. if ATy = c, y ≥ 0 is infeasible, then

ρ(A, c) = sup
{
ε : ‖∆A,∆c‖F < ε implies (A + ∆A)Ty = c + ∆c, y ≥ 0 is infeasible

}
The main result of this section is:

Lemma 3.0.2 (Logarithm of dual condition number). For any Ā ∈ IRn×d and c̄ ∈ IRd

such that
∥∥Ā, c̄

∥∥
F
≤ 1, and for any σ ≤ 1/

√
(n + 1)d, if A and c are the Gaussian perturbations

of variance σ2 of Ā and c̄, respectively, then

E
(A,c)

[
log2

‖A, c‖F

ρ(A, c)

]
≤ 15 + 4 log2

nd

σ
.

As with the primal conic condition number, we first develop a geometric characterization of
linear programs with large dual condition numbers. We then give a smoothed analysis of this
geometric condition.

3.1 Geometric conditions of dual condition numbers

For a set of vectors aaa1, . . . ,aaan, let Cone (aaa1, . . . ,aaan) denote {x : x =
∑

i λiaaai, λi ≥ 0}, and let
Hull (aaa1, . . . ,aaan) denote {x : x =

∑
i λiaaai, λi ≥ 0,

∑
i λi = 1} .

We observe that ATy = c, y ≥ 0 is feasible if and only if

c ∈ Cone (aaa1, . . . ,aaan) ,

and that for c 6= 0, this holds if and only if

Ray (c) intersects Hull (aaa1, . . . ,aaan) .
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For a convex set S, let ∂ (S) denote the boundary of S. For S ⊂ IRd and x ∈ IRd, let dist (x ,S)
denote the distance of x to S, that is, inf {ε : ∃e , ‖e‖2 ≤ ε, s.t. x + e ∈ S} .

We consider the following change of variables from (aaa1, . . . ,aaan) to (z ,x 1, . . . ,xn−1) which will
help to simplify our analysis.

z =

(
n∑

i=1

aaai

)
/n, and x i = aaai − z , for i = 1 to n− 1. (16)

For notational convenience, we let xn = aaan−z , although xn is not independent of {z ,x 1, . . . ,xn−1}.
In this set of new variables, the ill-posed linear programs are characterized by the following
lemma.

Lemma 3.1.1 (Ill-posed in new variables). For any A = [aaa1, . . . ,aaan] ∈ IRn×d and c ∈ IRd,
let z ,x 1, . . . ,xn be defined by (16). Then

ATy = c, y ≥ 0, c 6= 0 is ill-posed if and only if z ∈ ∂ (Ray (c)−Hull (x 1, . . . ,xn)) .

Proof. First, observe that

ATy = c, y ≥ 0 is feasible ⇐⇒ Ray (c) intersects Hull (aaa1, . . . ,aaan)
⇐⇒ Ray (c) intersects z + Hull (x 1, . . . ,xn)
⇐⇒ z ∈ Ray (c)−Hull (x 1, . . . ,xn) .

If z ∈ ∂ (Ray (c)−Hull (x 1, . . . ,xn)), then the system is feasible, but an arbitrarily small
change in z can make the system infeasible, so the instance is ill-posed. Conversely, if z 6∈
∂ (Ray (c)−Hull (x 1, . . . ,xn)), then sufficiently small changes in x , c and x 1, . . . ,xn will not
cause z to cross the boundary, and so the system is well-posed. For a quantitative version of
this later statement, see Lemma A.3.1.

We now establish the following geometric condition.

Lemma 3.1.2 (Distance to ill-posed). For any A = [aaa1, . . . ,aaan] ∈ IRn×d and c ∈ IRd, let
z ,x 1, . . . ,xn be defined by (16). Let

k1 = dist (z , ∂ (Ray (c)−Hull (x 1, . . . ,xn))) and k2 = ‖c‖2 .

Then

ρ(A, c) ≥ min
{

k1

8
,
k2

4
,

k1k2

24 maxi ‖aaai‖2

}
.

Proof. For any ∆c and ∆aaa1, . . . ,∆aaan ∈ IRd, let

∆z =

(
n∑

i=1

∆aaai

)
/n, and ∆x i = ∆aaai −∆z , for i = 1 to n.

If maxi ‖∆aaai‖2 ≤ k1/8, then clearly ‖∆z‖2 ≤ k1/8, and ‖∆x i‖2 ≤ k1/4. If further

‖∆c‖2 ≤
k1k2

2k1 + 4(‖z‖2 + maxi ‖x i‖2)
,
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then by Lemma A.3.1, ATy = c, y ≥ 0 is feasible if and only if (A+∆A)Ty = c +∆c, y ≥ 0
is feasible, where ∆A = [∆aaa1, . . . ,∆aaan]. Thus

ρ(A, c) ≥ min
{

k1

8
,

k1k2

2k1 + 4(‖z‖2 + max ‖x i‖2)

}
≥ min

{
k1

8
,
k2

4
,

k1k2

8(‖z‖2 + max ‖x i‖2)

}
,

where the last inequality follows from Lemma A.2.7. The lemma then follows from ‖z‖2 =
‖(1/n)

∑
aaai‖2 ≤ max ‖aaai‖2, and ‖x i‖2 ≤ ‖aaai‖2 + ‖z‖2 ≤ 2 maxi ‖aaai‖2.

3.2 Probabilistic analysis of dual condition numbers

We start with a simple probability lemma which will be useful for our analysis.

Lemma 3.2.1 (Unlikely ill-posed in new variables). Let c,x 1, . . . ,xn ∈ IRd. For any
z̄ ∈ IRd and for any positive σ, if z is the Gaussian perturbation of z̄ of variance σ2/n, then

Pr
z

[dist (z , ∂ (Ray (c)−Hull (x 1, . . . ,xn))) ≤ ε] ≤ 8d1/4n1/2ε

σ
.

Proof. The lemma follows directly from Lemma 2.3.4 because Ray (c)−Hull (x 1, . . . ,xn) is a
convex set.

Lemma 3.2.2 (Dual condition number). Let n ≥ d ≥ 2, Ā ∈ IRn×d and c̄ ∈ IRd be such
that

∥∥Ā, c̄
∥∥

F
≤ 1, and let σ ≤ 1/

√
(n + 1)d. If A and c are the Gaussian perturbations of

variance σ2 of Ā and c̄, respectively, then

Pr
[
‖A, c‖F

ρ(A, c)
> x

]
≤

(
2184d1/4n1/2

σ2

)
ln2 x

x
.

Proof. The lemma is trivially true for any 1 ≤ x ≤ 200, as in this case the right-hand side is at
least 1. So in the remainder of the proof, we will assume x > 200. Let ε = 1/x, so 0 < ε ≤ 1/200.

Let Ā = [āaa1, . . . , āaan] and A = [aaa1, . . . ,aaan]. Define z , x 1, . . . ,xn by (16). We consider the
change of variables from aaa1, . . . ,aaan to z and x 1, . . . ,xn−1. By Proposition A.1.4, z is a Gaussian
perturbation of z̄ = 1

n

∑
i āaai of variance σ2/n, and moreover, z is independent of x 1, . . . ,xn−1.

Let
k1 = dist (z , ∂ (Ray (c)−Hull (x 1, . . . ,xn))) and k2 = ‖c‖2 .

By Lemma 3.2.1, for any λ > 0 and for any x 1, . . . ,xn,

Pr
z

[k1 ≤ λ] = Pr
z

[dist (z , ∂ (Ray (c)−Hull (x 1, . . . ,xn))) ≤ λ] ≤ 8 · d1/4n1/2λ

σ
.

By Proposition A.1.1, for λ > 0

Pr
c

[k2 ≤ λ] = Pr
c

[‖c‖2 ≤ λ] ≤ Pr
c

[|c1| ≤ λ] ≤
√

2
π

λ

σ
.

21



Because z and c are independent, by Proposition A.2.4, we have for 0 < λ ≤ 1/e and for any
x 1, . . . ,xn

Pr
z ,c

[k1k2 < λ] ≤
8
√

2/πd1/4n1/2λ

σ2

(
1 + max

(
0, ln

1
λ

+ ln
σ2

8
√

2/πd1/4n1/2

))

≤ 7d1/4n1/2λ

σ2
ln

1
λ

.

Applying Proposition A.2.5 to add up these three bounds, we obtain for λ ≤ 1/e and for any
x 1, . . . ,xn

Pr
z ,c

[min {k1, k2, k1k2} < λ] ≤ 8 · d1/4n1/2λ

σ
+

eλ

σ
+

7d1/4n1/2λ

σ2
ln

1
λ
≤ 18d1/4n1/2λ

σ2
ln

1
λ

. (17)

By Lemma 3.1.2, we have

‖A, c‖F

ρ(A, c)
≤ ‖A, c‖F

(
max

{
8
k1

,
4
k2

,
24 maxi ‖aaai‖2

k1k2

})
(18)

≤ 24
(
‖A, c‖F max(max

i
‖aaai‖2 , 1)

)(
max

{
1
k1

,
1
k2

,
1

k1k2

})
. (19)

As ‖A, c‖F + 1 ≥ max(maxi ‖aaai‖2 , 1), we have

Pr
[
max(max

i
‖aaai‖2 , 1) ≥ 2.5 ln1/2(1/ε)

]
≤ Pr

[
‖A, c‖F ≥ 2 ln1/2(1/ε)

]
, as 1 ≤ 0.5 ln1/2(1/ε),

≤ Pr
[
‖A, c‖F > 1 + 1.5 ln1/2(1/ε)

]
≤ ε, by Proposition A.1.3, using σ ≤

√
1/(n + 1)d.

Let λ = (2 ln1/2(1/ε))(2.5 ln1/2(1/ε))ε = 5ε ln(1/ε). As ε ≤ 1/200 implies λ ≤ 1/7 ≤ 1/e, we
have

Pr
[
‖A, c‖F

24ρ(A, c)
> x

]
≤ Pr

[
‖A, c‖F ≥ 2 ln1/2(1/ε)

]
+ Pr

[
max

(
max

i
‖aaai‖2 , 1

)
≥ 2.5 ln1/2(1/ε)

]
+Pr [min (k1, k2, k1k2) ≤ λ]

≤ ε + ε +

(
18d1/4n1/2

σ2

)(
5ε ln

(
1
ε

)
ln
(

1
5ε ln(1/ε)

))

≤ 2ε +

(
90d1/4n1/2

σ2

)(
ε ln2

(
1
ε

))
≤

(
91d1/4n1/2

σ2

)
ln2 x

x
.

So,

Pr
[
‖A, c‖F

ρ(A, c)
> x

]
≤

(
91d1/4n1/2

σ2

)
ln2(x/24)

x/24
≤

(
2184d1/4n1/2

σ2

)
ln2(x)

x
.
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We conclude this section with the proof of Lemma 3.0.2.

Proof of Lemma 3.0.2. By (18), we have

E
[
log2

‖A, c‖F

ρ(A, c)

]
≤ log2(24) + E [log2 ‖A, c‖F ] + E

[
log2(max(max

i
‖aaai‖2 , 1))

]
+

+E
[
log2 max

{
1
k1

,
1
k2

,
1

k1k2

}]
≤ 5 + 2E [log2 ‖A, c‖F ] + E

[
log2 max

{
1
k1

,
1
k2

,
1

k1k2

}]
≤ 5 + 1 + 2 log2

(
18d1/4n1/2

σ2

)
, by Lemma A.1.5, Lemma A.2.2 and (17),

≤ 15 + 4 log2

nd

σ
.

4 Combining the Primal and Dual Analyses

Theorem 4.0.3 (Smoothed Analysis of C(A, b, c)). Let n ≥ d ≥ 2 and let Ā ∈ IRn×d,
b̄ ∈ IRn and c̄ ∈ IRd satisfy

∥∥Ā, b̄, c̄
∥∥

F
≤ 1. If σ ≤ 1/

√
(n + 1)(d + 1) and (A, b, c) the

Gaussian perturbation of (Ā, b̄, c̄) of variance σ2, then for each i ∈ {1, 2, 3, 4},

Pr
A,b,c

[
C(i)(A, b, c) > x

]
≤

(
522n2d1.5

σ2

)
ln2 x

x
, and

E
(A,b,c)

[
log C(i)(A, b, c)

]
≤ 18 + 4 log

nd

σ
.

Proof. Note that the transformation of each canonical form into the conic form leaves the Frobe-
nius norm unchanged. Also, a Gaussian perturbation in the original becomes a Gaussian per-
turbation in the conic form. Therefore, by Lemma 2.2.2, the smoothed bounds on the primal
condition number of the conic form imply smoothed bounds on each of the condition numbers
C

(1)
P , C

(2)
P , C

(2)
D , C

(3)
D .

By Lemma 2.3.15, Lemma 3.2.2, and Proposition A.2.5 we have

Pr
A,b,c

[
C(i)(A, b, c) > x

]
≤
(

197n2d1.5

σ2

)
ln2 x

x
+

(
2184d1/4n1/2

σ2

)
ln2 x

x
.

≤
(

522n2d1.5

σ2

)
ln2 x

x
,

as n ≥ d ≥ 2.
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To bound the log of the condition number, we use Lemmas 2.3.1 and Lemma 3.0.2 to show

E
A,b,c

[
log C(i)(A, b, c)

]
≤ E

A,b,c

[
log
(
C

(i)
P (A, b) + C

(i)
D (A, c)

)]
≤ max

(
E

A,b,c

[
log
(
2C

(i)
P (A, b)

)]
, E
A,b,c

[
log
(
2C

(i)
D (A, c)

)])
≤ 18 + 4 log

(
nd

σ

)
,

where in the second-to-last inequality we used that fact that for positive random variables β
and γ,

log(β + γ) ≤ max (log(2β), log(2γ)) .

5 Open Problems and Conclusion

One way to strengthen the results in this paper would be to prove that they hold under more
restrictive models of perturbation. For example, we ask whether similar results can be proved
if one perturbs the linear program subject to maintaining feasibility or infeasibility. This would
be an example of a property-preserving perturbation, as defined in [ST03a].

A related question is whether these results can be proved under zero-preserving perturbations
in which only non-zero entries of A are subject to perturbations. Unfortunately, the following
example shows that in this model of zero-preserving perturbations, it is not possible to bound
the condition number by poly

(
n, d, 1

σ

)
with probability at least 1/2. Thus, any attempt to

prove a bound better than O(n3L) on the smoothed complexity of interior point algorithms
under zero-preserving perturbations would have to use an analysis that does not merely apply
a bound on the condition number.

Define the matrix

Ā =


−1 ε

−1 ε
· · ·
−1 ε


where ε is a parameter to be chosen later. For ease of exposition, we will normalize

∥∥Ā∥∥
F

to
be 1 at the end of formulation. Let A be a zero preserving Gaussian perturbation of Ā with
variance σ2, and consider the linear program Ax ≥ 0,x ∈ C where C = {x : x > 0}. The ith

constraint of Āx ≥ 0 is exactly
εxi+1 ≥ xi

We now set σ = δ/
√

4 ln n, and defer our choice of δ to later. Applying Proposition A.1.2, we
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find

Pr[|ai,i − (−1)| ≥ δ] ≤ 1
2n
√

lnn
, and (20)

Pr[|ai,i+1 − ε| ≥ δ] ≤ 1
2n
√

lnn
. (21)

Thus, for n sufficiently large, with probability at least 1/2 no entry of A differs from the
corresponding entry in Ā by more than δ. For the rest of the proof, we assume this to be the
case.

If ε > δ (which we will arrange later), we then have that Ax ≥ 0,x ∈ C is feasible, and

x =

[(
ε− δ

1 + δ

)n

,

(
ε− δ

1 + δ

)n−1

, . . . , 1

]

is a feasible solution. We also have that for every feasible x , (ε + δ)xi+1 ≥ (1 − δ)xi, for all i.
Define

∆A =


0 . . . 0 −( ε+δ

1−δ )n−2

0 . . . 0 0
· · ·

0 . . . 0 0

 .

We now show that (A + ∆A)x ≥ 0,x ∈ C is infeasible, and hence ρ(A,C ) ≤ ‖∆A‖F =
( ε+δ
1−δ )n−2. To see this, note that the constraint given by the top row of (A + ∆A) is

−x1 + εx2 −
(

ε + δ

1− δ

)n−2

xn ≥ 0,

while the other rows of A+∆A constrain x2 ≤ ( ε+δ
1−δ )n−2xn. Assuming ε ≤ 1 (which we arrange

later), this constraint is impossible to satisfy for x ∈ C .

Setting ε = 1
n and σ = 1

n2 (and hence δ =
√

4 ln n
n2 ) yields ρ(A,C ) = ( ε+δ

1−δ )n−2 = (O(1)
n )n−2,

which is exponentially small and also satisfies the requirements on ε. We can upper bound
‖A‖F by ‖A‖F ≤

√
n(1 + δ)2 + n(ε + δ)2 ≤ 2

√
n. Thus the condition number, which is equal

to ‖A‖F /ρ(A,C ), is at least Ω(n)n−3.

If we had normalized
∥∥Ā∥∥

F
= 1 at the beginning of the proof, the corresponding variables would

have been set to ε ≈ 1
n
√

n
, σ ≈ 1

n2
√

n
, which still proves the negative result. This concludes our

discussion of impossibility results for smoothed analysis.

We would like to point out that condition numbers appear throughout Numerical Analysis and
that condition numbers may be defined for many non-linear problems. The speed of algorithms
for optimizing linear functions over convex bodies (including semidefinite programming) has
been related to their condition numbers [Fre02, FV00], and it seems that one might be able to
extend our results to these algorithms as well. Condition numbers have also been defined for
non-linear programming problems, and one could attempt to perform a smoothed analysis of
non-linear optimization algorithms by relating their performance to the condition numbers of
their inputs, and then performing a smoothed analysis of their condition numbers.
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This paper also made the first step towards these analyses. Our results in Section 2 showed that
for any strictly-supported convex cone C , the smoothed value of the logarithm of the primal
condition number of conic program

max cTx s.t. Ax ≤ b, x ∈ C

is O(log(nd/σ)). We conjecture similar result holds for the dual condition number of the conic
program.

The approach of proving smoothed complexity bounds by relating the performance of an algo-
rithm to some property of its input, such as a condition number, and then performing a smoothed
analysis of this quantity has also been recently used in [ST03a, SST06]. Finally, we hope that this
work illuminates some of the shared interests of the Numerical Analysis, Operations Research,
and Theoretical Computer Science communities.
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A Mathematical Background and Useful Inequalities

A.1 Gaussian random variables

Proposition A.1.1. Let x be a Gaussian random variable of variance σ2 ≤ 1 and arbitrary
mean. For all ε ≥ 0,

Pr [|x| ≤ ε] ≤
√

2
π

ε.

Proof. The density function of x is never more than 1/
√

2π.
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The following bound on the tails of Gaussian distributions is standard (see, for example [Fe68,
Section VII.1])

Proposition A.1.2 (Gaussian tail bound). Let x be a Gaussian random variable of variance
σ2 and mean 0. For all δ ≥ 0,

Pr [|x| ≥ δ] ≤
√

2
π

σ

δ
e−δ2/2σ2

.

Proposition A.1.3 (Chi-Square bound). For any d-dimensional Gaussian random vector x
of variance σ2 centered at the origin, and for d ≥ 2, ε ≤ 1/100 and σ ≤ 1/

√
d

Pr
[
‖x‖2 ≥ 1.5 ln1/2(1/ε)

]
≤ ε

Proof. This may be derived by substituting these values into Equality (26.4.8) of [AS70], which
says that for all k ≥ 0,

Pr [‖x‖2 ≥ kσ] ≤
(
k2
)d/2−1

e−k2/2

2d/2−1Γ(d
2)

.

For example, Spielman and Teng [ST04, Corollary 2.19] show that this equality implies that for
every λ ≥ 3,

Pr
[
‖x‖2 ≥ 3

√
d lnλσ

]
≤ λ−2.9d.

Substituting λ = ε−1/4, we obtain

Pr
[
‖x‖2 ≥ 1.5

√
d ln(1/ε)σ

]
≤ ε2.9d/4 ≤ ε,

for d ≥ 2.

Proposition A.1.4 (Independence of mean and displacements). Let āaa1, . . . , āaan ∈ IRd

and let aaa1, . . . ,aaan be the Gaussian perturbations of āaa1, . . . , āaan of variance σ2. Let

z̄ =
1
n

∑
i

āaai, z =
1
n

∑
i

aaai, and x i = aaai − z , for 1 ≤ i ≤ n.

Then, z is the Gaussian perturbation of z̄ of variance σ2/n and is independent of x 1, . . . ,xn.

Lemma A.1.5. Let āaa ∈ IRm satisfy ‖āaa‖2 ≤ 1 and let σ ≤ 1/
√

m. If aaa is the Gaussian
perturbation of āaa of variance σ2, then

E
aaa

[log2 ‖aaa‖2] ≤ 1/2.

Proof. Because logarithm is a concave function, we have

E
aaa

[log2 ‖aaa‖2] ≤ log2(Eaaa [‖aaa‖2]) ≤ log2

√
E
aaa

[
‖aaa‖2

2

]
= log2

√
mσ2 + ‖āaa‖2

2,

as ‖aaa‖2
2 is a non-central χ2 random variable with dn degrees of freedom and non-centrality

parameter ‖āaa‖2 [AS70, 26.4.37]. Therefore, from the assumption σ ≤ 1/
√

m and ‖aaa‖2 ≤ 1,

E
aaa

[log2 ‖aaa‖2] ≤ log2

√
2 = 1/2.
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A.2 Useful Inequalities

Proposition A.2.1. Let µ(x, y) be a non-negative integrable function, and let x and y be dis-
tributed according to µ(x, y). Then for any event A(x, y),

Pr
x,y

[A(x, y)] ≤ max
x

Pr
y

[A(x, y)] ,

where, in the right-hand term, y is distributed according to the induced distribution µ(x, y).

Lemma A.2.2 (Almost linear to log). Let A be a positive random variable such that for all
x ≥ e,

Pr
A

[A ≥ x] ≤ α ln1.5 x

x
,

for some α ≥ 10. Then,
E
A

[log2 A] ≤ 2 log2(eα)

Proof. We will use the following inequality, which is easy to verify numerically:

Fact A.2.3. For all α ≥ 10 and x ≥ 2 ln α, x− 1.5 ln x ≥ x/2.

Then,

E
A

[lnA] =
∫ ∞

0
Pr
A

[lnA > x] dx =
∫ ∞

0
Pr
A

[A > ex] dx

≤
∫ ∞

0
min

(
1,

αx1.5

ex

)
dx ≤

∫ 2 ln α

0
dx +

∫ ∞

2 ln α

αx1.5

ex
dx

= 2 ln α + α

∫ ∞

2 ln α
e−x+1.5 ln x dx

≤ 2 ln α + α

∫ ∞

2 ln α
e−x/2 dx = 2 lnα + 2 = 2 ln(eα),

where the last inequality follows from Fact A.2.3.

Thus EA [log2 A] = (log2 e)EA [lnA] ≤ 2(log2 e) ln(eα) = 2 log2(eα).

The following proposition is due to Sankar, Spielman and Teng [SST06, Corollary C.2].

Proposition A.2.4 (Linear combination). Let A and B be two positive random variables.
Assume Pr [A ≥ x] ≤ α

x and Pr [B ≥ x|A] ≤ β
x , for some α, β > 0. Then,

Pr [AB ≥ x] ≤ αβ

x

(
1 + max

(
0, ln

(
x

αβ

)))
Proposition A.2.5 (Min by sum). For any positive random variables A and B and for any
λ > 0,

Pr [min(A,B) < λ] ≤ Pr [A < λ] + Pr [B < λ] = Pr
[

1
A

>
1
λ

]
+ Pr

[
1
B

>
1
λ

]
.
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Lemma A.2.6. For positive α, β and any vector aaak+1,

αβ

2α + ‖aaak+1‖2

≥ min
{

αβ

2 + ‖aaak+1‖2

,
β

2 + ‖aaak+1‖2

}
.

Proof. For α ≥ 1, we have

αβ

2α + ‖aaak+1‖2

=
β

2 + ‖aaak+1‖2 /α
≥ β

2 + ‖aaak+1‖2

,

while for α ≤ 1 we have
αβ

2α + ‖aaak+1‖2

≥ αβ

2 + ‖aaak+1‖2

.

Lemma A.2.7. For any positive A, k1 and k2,

k1k2

2k1 + A
≥ min

(
k2

4
,
k1k2

2A

)
.

Proof. For 2k1 ≥ A, we have k1k2/(2k1 +A) ≥ k2/4; and for 2k1 ≤ A, we have k1k2/(2k1 +A) ≥
k2k2/(2A).

A.3 Convex Geometry

Lemma A.3.1 (Perturbation of new variables). For any α > 0, let c, z ,x 1, . . . ,xn ∈ IRd

be a set of vectors such that

dist (z , ∂ (Ray (c)−Hull (x 1, . . . ,xn))) > α. (22)

Let

β =
α ‖c‖2

2α + 4(‖z‖2 + maxi ‖x i‖2)
.

Then for any ‖∆x i‖2 ≤ α/4, ‖∆z‖2 ≤ α/4, and ‖∆c‖2 ≤ β,

z + ∆z 6∈ ∂ (Ray (c + ∆c)−Hull (x 1 + ∆x 1, . . . ,xn + ∆xn))

Proof. Assume by way of contradiction that

z + ∆z ∈ ∂ (Ray (c + ∆c)−Hull (x 1 + ∆x 1, . . . ,xn + ∆xn)) .

We first consider the case that z 6∈ Ray (c)−Hull (x 1, . . . ,xn). In this case, we will show that
dist (z , ∂ (Ray (c)−Hull (x 1, . . . ,xn))) ≤ α, contradicting assumption (22). Since z + ∆z ∈
∂ (Ray (c + ∆c)−Hull (x 1 + ∆x 1, . . . ,xn + ∆xn)),

z + ∆z = λ(c + ∆c)−
∑

i

γi(x i + ∆x i),
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for some λ ≥ 0 and γ1, . . . , γn ≥ 0 such that
∑

i γi = 1. We establish an upper bound on λ by
noting that

λ =
‖z + ∆z +

∑
i γi(x i + ∆x i)‖

‖c + ∆c‖
. (23)

We may lower bound the denominator of (23) by ‖c‖ /2, as

‖∆c‖ ≤ α ‖c‖
2α + 4(‖z‖+ maxi ‖x i‖)

≤ ‖c‖ /2.

We upper bound the numerator of (23) by∥∥∥∥∥z + ∆z +
∑

i

γi(x i + ∆x i)

∥∥∥∥∥ ≤ ‖z‖+ α/4 +
∑

i

γi(‖x i‖+ ‖∆x i‖)

≤ ‖z‖+ α/4 + max
i
‖x i‖+ α/4

= ‖z‖+ max
i
‖x i‖+ α/2.

Thus,

λ ≤ ‖z‖+ maxi ‖x i‖+ α/2
‖c‖ /2

.

Since (
z + ∆z − λ∆c +

∑
i

γi∆x i

)
=

(
λc −

∑
i

γix i

)
∈ Ray (c)−Hull (x 1, . . . ,xn) ,

we find that

dist (z , ∂ (Ray (c)−Hull (x 1, . . . ,xn)))

≤

∥∥∥∥∥∆z − λ∆c +
∑

i

γi∆x i

∥∥∥∥∥
≤ ‖∆z‖+ λ ‖∆c‖+

∑
i

γi ‖∆x i‖

≤ α

4
+
(
‖z‖+ maxi ‖x i‖+ α/2

‖c‖ /2

)(
α ‖c‖

2α + 4(‖z‖+ maxi ‖x i‖)

)
+

α

4
= α,

contradicting assumption (22).

We now consider the case that z ∈ Ray (c)−Hull (x 1, . . . ,xn). Since

z + ∆z ∈ ∂ (Ray (c + ∆c)−Hull (x 1 + ∆x 1, . . . ,xn + ∆xn)) ,

there exists a hyperplane H passing through z + ∆z and tangent to the convex set
Ray (c + ∆c)−Hull (x 1 + ∆x 1, . . . ,xn + ∆xn). By the assumption that
dist (z , ∂ (Ray (c)−Hull (x 1, . . . ,xn))) > α, there is some δ0 > 0 such that, for every δ ∈
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(0, δ0), every point within distance α + δ of z lies within Ray (c)−Hull (x 1, . . . ,xn). Choose
δ ∈ (0, δ0) that also satisfies δ ≤ ‖z‖ + maxi ‖x i‖. Let q be the point at distance 3α

4 + δ from
z + ∆z in the direction perpendicular to H and away from the set. Clearly,

dist (q ,Ray (c + ∆c)−Hull (x 1 + ∆x 1, . . . ,xn + ∆xn)) =
3α

4
+ δ. (24)

Since dist (z , z + ∆z ) ≤ α
4 and dist (z + ∆z , q) = 3α

4 + δ, dist (z , q) ≤ α + δ, and

q ∈ Ray (c)−Hull (x 1, . . . ,xn) .

Because q ∈ Ray (c) − Hull (x 1, . . . ,xn), there exist λ ≥ 0 and γ1, . . . , γn ≥ 0 satisfying∑
i γi = 1 such that

q = λc −
∑

i

γix i.

We upper bound λ as before:

λ =
‖q +

∑
i γix i‖

‖c‖
≤ ‖z‖+ α + δ + maxi ‖x i‖

‖c‖
≤ ‖z‖+ maxi ‖x i‖+ α/2

‖c‖ /2
.

Hence,
q + λ∆c −

∑
i

γi∆x i = λ(c + ∆c)−
∑

i

γi(x i + ∆x i)

∈ Ray (c + ∆c)−Hull (x 1 + ∆x 1, . . . ,xn + ∆xn) ,

and thus

dist (q ,Ray (c + ∆c)−Hull (x 1 + ∆x 1, . . . ,xn + ∆xn)) ≤

∥∥∥∥∥λ∆c −
∑

i

γi∆x i

∥∥∥∥∥
≤ λ ‖∆c‖+ max

i
‖∆x i‖

≤ α/2 + α/4
≤ 3α/4,

which contradicts (24).
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