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Abstract—Worst-case upper bounds are derived on the minimum
distance of parallel concatenated Turbo codes, serially concatenated
convolutional codes, repeat-accumulate codes, repeat-convolute codes,
and generalizations of these codes obtained by allowing non-linear and
large-memory constituent codes. It is shown that parallel-concatenated
Turbo codes and repeat-convolute codes with sub-linear memory are
asymptotically bad. It is also shown that depth-two serially concatenated
codes with constant-memory outer codes and sub-linear-memory inner
codes are asymptotically bad. Most of these upper bounds hold even
when the convolutional encoders are replaced by general finite-state
automata encoders. In contrast, it is proven that depth-three serially
concatenated codes obtained by concatenating a repetition code with two
accumulator codes through random permutations can be asymptotically
good.

Index Terms—Asymptotic growth, concatenated codes, minimum dis-
tance, Turbo codes, RAA codes.

I. INTRODUCTION

The low-complexity and near-capacity performance of Turbo codes
[3], [9] has led to a revolution in coding theory. The most famous
casualty of the revolution has been the idea that good codes should
have high minimum distance: the most useful Turbo codes have been
observed to have low minimum distance

In this work, we provide general conditions under which many
constructions of turbo-like codes, including families of serially-
concatenated convolutional codes [2] and Repeat-Accumulate (RA)
codes [5], [6], [7], must be asymptotically bad!'. We also present a
simple family of depth-3 serially concatenated convolutional codes
that are asymptotically good.

Our work is motivated by the analyses of randomly constructed
parallel and serially concatenated convolutional codes by Kahale
and Urbanke [7] and of parallel concatenated Turbo codes with two
branches by Breiling [4].

Kahale and Urbanke [7] provided probabilistic estimates on the
minimum distance of randomly generated parallel concatenated Turbo
codes with a constant number of branches. They also provided similar
estimates for the minimum distance of the random concatenation
of two convolutional codes with bounded memory. In particular,
Kahale and Urbanke proved that if one builds a parallel concatenated
code with k£ branches from random permutations and convolutional
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'A sequence of codes of increasing block length is called an asymptotically good
code if the message length and the minimum distance of the codes grows linearly with
the block length. Codes for which either the message length or minimum distance grow
sub-linearly with the block length are called asymptotically bad.

encoders of memory at most M, then the resulting code has minimum
distance at most 20 p1=2/k169M p and at least Q(n!=2/k)
with high probability, where n is the number of message bits.
For rate 1/4 serially concatenated convolutional codes with random
interleavers, they proved that the resulting code has minimum distance
at most 20(M1)1-2/do 1660 1y and at least Q(n'~2/4) with high
probability, where d,, is the free distance of the outer code and M;
is the inner code memory.

Breiling [4] proved that the parallel concatenation of two convolu-
tional codes with bounded memory has at most logarithmic minimum
distance, regardless of the choice of interleaver. In particular, for
parallel concatenated Turbo codes with two branches, Breiling proved
that no construction could be much better than a random construction:
if the constituent codes have memory M, then the minimum distance
of the resulting code is O(2°(*) logn).

These bounds naturally lead to the following five questions:

(better than random?) Do there exist asymptotically good
parallel concatenated Turbo codes with more than two branches
or do there exist asymptotically good repeat-convolute or repeat-
accumulate codes?

Note that the result of Breiling only applies to Turbo codes with
two branches and the results of Kahale and Urbanke do not
preclude the existence of codes that are better than the randomly
generated codes.

(larger memory?) What happens if we allow the memories
of the constituent convolutional codes to grow with the block
length?

All the previous bounds become vacuous if the memory even
grows logarithmically with the block length.

(non-linearity?) Can the minimum distance of Turbo-like codes
be improved by the use of non-linear constituent encoders, such
as automata encoders?

(concatenation depth?) Can one obtain asymptotically good
codes by serially concatenating a repetition code with two levels
of convolutional codes?

We will give essentially negative answers to the first three questions
and a positive answer to the last one. For parallel concatenations and
depth-2 serial concatenations of convolutional codes and non-linear
automata codes, we prove upper bounds on the minimum distance
of the resulting codes in terms of the memories of the constituent
codes. In Section II-A, we show that parallel concatenated codes
and repeat-convolute codes are asymptotically bad if their constituent
codes have sub-linear memory. These bounds hold even when the
codes are generalized by replacing the constituent convolutional codes
by automata codes. In Section II-B, we restrict our attention to
concatenations of ordinary convolutional codes, and obtain absolute
upper bounds that almost match the high-probability upper bounds
for random permutations obtained by Kahale and Urbanke.



In Section III-A, we show that depth-two serially concatenated codes
are asymptotically bad if their inner code has sub-linear memory and
their outer code has constant memory. This bound also applies to the
generalized case of constituent automata codes.

In contrast, we show in Section III-B that depth-three concatenations
of constant-memory codes can be asymptotically good. In particular,
we prove this for the random concatenation of a repetition code with
two accumulator codes.

A. Turbo-like codes

The fundamental components of the codes we consider in this
paper are convolutional codes and their non-linear generalizations,
which we call automata codes. The fundamental parameter of a
convolutional code that we will measure is its memory—the number
of registers in its encoder. The amount of memory can also be defined
to be the binary logarithm of the number of states in the encoder’s
state diagram. A general automata encoder is obtained by considering
an encoder with any deterministic state diagram. We will consider
automata encoders that read one bit at each time step, and output a
constant number of bits at each time step. These can also be described
as deterministic automata or transducers with one input bit and a
constant number of output bits on each transition. We will again
define the memory of an automata encoder to be the binary logarithm
of its number of states.

Given a convolutional encoder () and k permutations 71, . . . , 7, each
of length n, we can define the parallel concatenated Turbo code with
k branches [3], [9] to be the code whose encoder maps an input
x € {0,1}" to (z,Q(m1(x)),..., Q(mr(x))), where m;(x) denotes
the permutation of the bits in 2 according to m; and Q(y) denotes
the output of the convolutional code @) on input y.

Given an integer k, we define the repeat-k-times encoder, 7, to be
the encoder that just repeats each of its input bits k£ times. Given
a convolutional encoder (), a message length n, and a permutation
7 of length kn, we define the repeat-convolute code [5] to be the
code whose encoder maps an input z € {0,1}" to (z, Q(7(rk(x)))).
That is, each bit of the input is repeated k times, the resulting kn
bits are permuted, and then fed through the convolutional encoder.
We also assume that the input = is output as well. While some
implementations do not include z in the output, its exclusion cannot
improve the minimum distance so we assume it appears. The number
k is called the repetition factor of the code. When the convolutional
encoder @ is the accumulator (i.e., the map Q(z); = > 7_, x;), this
code is called a repeat-accumulate (RA) code [5].

Given two convolutional encoders ), and (); that output h, and
h; bits per time step respectively, an integer n, and a permutation
m of length h,n, we define the depth-two serially concatenated
convolutional code [2], [9] to be the rate 1/h,h; code whose encoder
maps an input x € {0,1}" to the codeword Q;(m(Q,(z))). The
codes Q, and @; are called outer and inner codes, respectively.
A classical example of serially concatenated convolutional codes,
and that considered in [7], is a rate 1/4 code given by the map
(m(x, Lo(x)), Li(n((z, Lo(x)))), where L, and L, are rate-1 convo-
lutional codes. This fits into our framework with Q,(z) = (z, L,(x))

and Q;(z) = (z, Li(x)).

One can allow greater depth in serial concatenation. The only codes of
greater depth that we consider will be repeat-accumulate-accumulate
codes (RAA). These are specified by a repetition factor k, an integer
n, and two permutations m; and 7o of length kn. Setting (); and
Q2 to be accumulators, the resulting code maps an input = to

Q2(m2(Q1(m1 (1(2)))))-

We can generalize each of these constructions by allowing the
component codes to be automata codes. In this case, we will refer
to the resulting codes as generalized parallel concatenated Turbo
codes, generalized repeat convolute codes, and generalized serially
concatenated codes.

In practice, some extra bits are often appended to the input x so as to
guarantee that some of the encoders return to the zero state. As this
addition does not substantially increase the minimum distance of the
resulting code, we will not consider this technicality in this paper.

B. Previous results

Kahale and Urbanke [7] proved that if one builds a parallel con-
catenated Turbo code from a random interleaver and convolutional
encoders of memory at most M, then the resulting code has minimum
distance at most n'=2/%10g®™M n, and at least Q(n!=2/%) with high
probability. For rate 1/4 serially concatenated convolutional codes
of the form mentioned in the previous section with a random
interleaver, they proved that the resulting code has minimum distance
at most 20(Mi)p1-2/do 1569 1y and at least Q(n'~2/4°) with high
probability, where d,, is the free distance of the outer code and M;
is the inner code memory.

For parallel concatenated Turbo codes with two branches, Breiling [4]
proved that no construction could be much better than a random code:
if the constituent codes have memory M, then the minimum distance
of the resulting code is O(2°*) logn).

Serially concatenated codes of depth greater than 2 were studied by
Pfister and Siegel [8], who performed experimental analyses of the
serial concatenation of repetition codes with [ levels of accumulators
connected by random interleavers, and theoretical analyses of con-
catenations of a repetition code with certain rate-1 codes for large [.
Their experimental results indicate that the average minimum distance
of the ensemble starts becoming good for [ > 2, which is consistent
with our theorem. For certain rate-1 codes and ! going to infinity,
they proved their codes could become asymptotically good.

C. Our results

In Section II-A, we upper bound the minimum distance of generalized
repeat-convolute codes and generalized parallel concatenated Turbo
codes. We prove that generalized repeat-convolute codes of message
length n, memory M, and repetition factor k£ have minimum distance
at most O(n'~Y/*kM1/*). The same bound holds for generalized
parallel concatenated Turbo codes with & branches, memory M, and
message length n. Therefore such codes are asymptotically bad when
k is constant and M is sub-linear in n. Note that M sub-linear in
n corresponds to the case when the size of the corresponding trellis
is sub-exponential, and so it includes the cases in which the codes
have natural sub-exponential time iterative decoding algorithms. This



proof uses techniques introduced by Ajtai [1] for obtaining time-
space trade-offs for branching programs. Comparing our upper bound
with the 20 p1=2/k 1669y high-probability upper bound of
Kahale and Urbanke for parallel concatenated codes, we see that
our bound has a much better dependence on M and a slightly worse
dependence on k. A similar relation holds between our bound and the
O(2O(M) logn) upper bound of Breiling [4] for parallel concatenated
codes with 2 branches.

In Section II-B, we restrict our attention to linear repeat-convolute
codes, and prove that every repeat-convolute code with repetition
factor k in which the convolutional encoder has memory M has
minimum distance at most 20 p1=1/1k/21 105 For even k, this
bound is very close to the high-probability bound of Kahale and
Urbanke.

In Section ITI-A, we study serially concatenated codes with two levels,
and prove that if the outer code has memory M, and the inner code
has memory M;, then the resulting code has minimum distance at
most O(nl_l/ho(MO*‘?)Mil/h"(M(’H)). Accordingly, we see that such
codes are asymptotically bad when M, h, and h; are constants and
M; is sub-linear in n. The proof uses similar techniques to those
used in Section II-A. When specialized to the classical rate 1/4
construction of serially concatenated convolutional codes considered
by Kahale and Urbanke [7], our bound on the minimum distance
becomes O(n!~1/(2Mot4) gt/ GMoF4)y - comparing this with the
high-probability O (n!=2/d>20(M:) 166%™ ) upper bound of Kahale
and Urbanke, we see that our bound is better in terms of M;,

comparable in terms of d,, and close to their existential bound of
Q(nl=2/do),

Finally, in Section III-B, we show that serially concatenated codes
of depth greater than two can be asymptotically good, even if the
constituent codes are repetition codes and accumulators. In particular,
we prove that randomly constructed RAA codes are asymptotically
good with constant probability.

Throughout this paper, our goal is to obtain asymptotic bounds. We
make no claim about the suitability of our bounds for any particular
finite n.

II. REPEAT-CONVOLUTE-LIKE AND PARALLEL TURBO-LIKE
CODES

In this section we consider codes that are obtained by serially
concatenating a repeat-k-times code r; with any code () that can be
encoded by an automata (transducer) with at most 2 states and one
output bit per transition. More precisely, if @ is such an encoder, 7 is a
permutation of length kn, and ry, is the repeat-k-times map, we define
the generalized repeat-convolute code to be the code whose encoder
Cix,0 maps a string x € {0,1}" to Ci .0 () := (z, Q(n(rr(2)))).

We consider also the parallel concatenated variations of these codes.
Given an automata () with at most 2% states and one output bit
per transition and k permutations 71, ..., 7, each of length n, we
define the generalized parallel concatenated Turbo code [3], [9] to
be the code whose encoder Py, . x, o maps an input z € {0,1}" to

PTF17~~~,7F1¢7Q(‘T) = (1‘7 Q(Wl (‘T))J SRR Q(ﬂ—k(‘r)))

A. An upper bound on the minimum distance

Theorem 1: Let k > 2 be a constant integer, () an automata encoder
with at most 2?7 states, and n an integer.

Let 7 be a permutation of length kn. If n > 2¥k M, then the minimum
distance of the generalized repeat-convolute code encoded by Cj, .o
is at most

30! EMVE 4 2K EM 4k + 1.

The same bound holds for the parallel concatenated Turbo-like code
encoded by Py, . .., where m1,...,m, are permutations each of
length n.

.....

Proof: We first consider the case of repeat-convolute-like codes.
We explain at the end of the proof how to modify the proof to handle
parallel concatenated Turbo-like codes.

To prove this theorem, we make use of a technique introduced by
Ajtai [1] for proving time-space trade-offs for branching programs.
In particular, for an input x of length n, the encoding action of
is naturally divided into kn time steps in which the automata reads
a bit of 7(z), outputs a bit, and changes state. For convenience, we
will let I = {1,...,kn} denote the set of time steps, and we will let
s;(x) denote the state of () on input 7(rg(x)) at the end of the i’th
time step.

Let C denote the encoder C, . Following Ajtai [1], we will prove
prove the existence of two input strings, « and y,aset U C {1,...,n}
of size at most 3k%n!~1/kMY/k £ 1 and J C I of size at most
2FkM + k such that z and y may only differ on bits with indices in
U and s;(x) and s;(y) may only differ on time steps with indices in
J. The claimed bound on the minimum distance of code encoded by
C will follow from the existance of these two strings.

To construct the set J, we first divide the set of time steps I into b
consecutive intervals, where b is a parameter we will specify later. We
choose these intervals so that each has size |kn/b| or [kn/b]. For
example, if k =2, n =4, and b = 3 we can divide I = {1,...,8}
into the intervals [1, 3], [4, 6], and [7, 8].

For each index of an input bit ¢ € {1,...,n}, we let S; denote
the multiset of time intervals in which () reads input bit ¢ (this is a
multiset as a bit can appear multiple times in the same interval). As
each bit appears k times, the multisets .S; each have size k. As there
are b intervals, there are at most b* possible k-multisets of intervals.
So, there exists a set U C {1,...,n} of size at least n/b* and a
multiset of intervals, S, such that for all ¢ € U, S; = S. Let U be
such a set with |U| = [n/b"] and let T be the corresponding set of
intervals. Let [ = |T'|. The set J will be the union of the intervals in
T.

Let ¢1,...,%; be the last times in the time intervals in 7' (e.g., in
the above example the last time of the interval [4,6] is 6). For each
x € {0, 1}", that is zero outside U, we consider the vector of states of
Q at times t1,...,# on input 7(r(z)): {s¢, (z)}l_,. As the number
of such possible sequences is at most 2! and the number of z that
are zero outside U is 2|U‘, if

2lUl > oML (1)

then there should exist two different strings x and y that are both
zero outside of U and such that s, (z) = s¢,(y) fori=1,...,1. To



make sure that (1) is satisfied, we set

n \1/k
b= (—) 1
)|
Our assumption that n > 2kl M ensures that b > 1. Now, since

1) x and y agree outside U,

2) the bits in U only appear in time intervals in 7', and

3) @ traverses the same states at the ends of time intervals in T’
on inputs 7(rg(x)) and 7w (rg(y)),

() must traverse the same states at all times in intervals outside T’
on inputs 7(rk(x)) and 7(rk(y)). Thus, the bits output by @ in time
steps outside intervals in 7" must be the same on inputs 7(rg(z))
and 7(rg(y)). So Q(w(ri(z))) and Q(m(rk(y))) can only disagree
on bits output during times in the intervals in 7', and hence on at
most [ [kn/b] bits. This means that the distance between C(z) and
C(y) is at most

|U| + 1 [kn/b]
n
< [b_k] + K [kn/b], as |U] = [n/b¥] and I < k,
n k%n
< - -
< ptlt otk
k2
< Rt o TR
[(L)l/k—l—‘ ()" -1
i kM
1/k
n k*n 579
< Uk FT ik, 1k 1+k+1
((ﬁ) —1) (737) " (Far) 7 -
n \1/k k n \1/k
_ n W) k*n (W) +hk+1
- () n \U/k_ n \U/k(n \UR
kM T - (W) (W) -
k2
< 2k+27"1/k+k+1, as n > 28k M
(%47) T
= 2FKM + 22! VM REVE 4k 1,
< 3kt TVEMYE 4 2REM 4k + 1,

as k'/F < 3/2.

Now, we explain how to apply the proof to the generalized parallel
concatenated Turbo codes. Let my,...,m; be permutations each
of length n, () be an automata encoder with at most 2 states
and consider the parallel concatenated Turbo-like code encoded by
Pr,... .- Let m be the length-kn permutation constructed from
m1,..., T and the repetition map ry, in such a way that w(ry(z)) =
(m1(z),...,mi(x)) for all x € {0,1}"™. Let Q' be the time-varying
automata that works exactly like ) except that it is goes back to
the start state at the time steps n + 1,2n 4+ 1,...,(k — I)n + 1.
Thus Pr,, .x.0(x) = (z,Q (n(rg(x)))) for all z € {0,1}™. In
other words, we can realize P, . ., o as a time-varying repeat-
convolute-like code whose encoder C, o maps a string z € {0,1}"
to Ci,x,q (x) :== (z, Q' (w(r(x)))). To extend the minimum distance
bound to generalized parallel concatenated Turbo codes, it is sufficient
to note that the proof of Theorem 1 works without any changes
for time-varying generalized repeat-convolute codes, which the are

natural generalizations of repeat-convolute-like codes obtained by
allowing the automata to be time-varying 2.

Corollary 1: Let k be a constant. Then, every generalized repeat-
convolute code with input length n and memory M and repetition
factor k and every generalized parallel concatenated Turbo code with
input length n, convolutional encoder memory M and k branches
has minimum distance O(n'~1/* M'/¥). Thus, such codes cannot be
asymptotically good for M sub-linear in n.

This means that if we allow M to grow like logn, or even like nt—¢
for some ¢ > 0, the minimum relative distance of the code will still
go to zero. Moreover, M sub-linear in n corresponds to the case in
which the size of the corresponding trellis is sub-exponential, and
therefore it includes all the cases in which such codes have natural
sub-exponential-time iterative decoding algorithms.

It is interesting to compare our bound with that obtained by Ka-
hale and Urbanke [7], who proved that a randomly chosen par-
allel concatenated code with k branches has minimum distance
20(M) p1-2/k 1560() 1) with high probability. Theorem 1 has a much
better dependence on M and a slightly worse dependence on n. A
similar comparison can be made with the bound of Breiling [4], who
proved that every parallel concatenated code with k£ = 2 branches has
minimum distance at most 2°() log n. In the next section, we prove
an upper bound whose dependence on M and n is asymptotically
similar to that obtained by these authors.

B. Improving the bound in the linear, low-memory case

We now prove that every repeat-convolute code with repetition factor
k, memory M, and input length n, and every parallel concatenated
Turbo code with k branches, memory M, and input length n has
minimum distance at most O(20M)p!=1/1%/21 1og ).

Theorem 2: Let k > 2 and n be integers and let ) be a convolutional
encoder with memory M.

Let m be a permutation of length kn. Assuming M < (loggn —
3)/k, the minimum distance of the repeat-convolute code encoded
by C x,q is at most

16k =/ 1R/2192M 160 1 4 6 log, n.

Thus, when k is constant, the minimum distance of the repeat-
convolute code encoded by C}, ¢ is

Q0 (M) 1=1/[k/2] 100 .

If M < (log, n—3)/k—1log, k, the same bounds hold for the parallel
T, Q) where Tlyeee, Tk

.....

are permutations each of length n.

If we ignore constant factor, we see that our bound asymptotically
matches the bound of Breiling for parallel concatenated Turbo codes
with two branches [4] (i.e. when k& = 2). The constant factor in
our bound is however larger. We have not attempted to optimize the

2 A time-varying automata is specified by a state transition map § : Sx {0,1} x7 —
S and an output map v : S X {0,1} x 7 — {0, 1}, where S is the set of states and
T ={1,2,3,...} is the set of time steps



constants in our proof. Our main objective is to establish, when & > 2,
an asymptotic bound in terms of the growth of n and M.

When k is even, our bound asymptotically matches also the bound
for randomly constructed parallel-concatenated Turbo codes proved
by Kahale and Urbanke [7]. As Kahale and Urbanke proved similar
lower bounds for k& > 3, we learn that the minimum distances of
randomly constructed Turbo codes is not too different from that of
optimally constructed Turbo codes.

Proof of Theorem 2:

First we note that if the convolutional code is non-recursive, it is
trivial to show that on input 10"~ (i.e., a 1 followed by n — 1 zeros)
the output codeword will have weight at most k2. Thus, without
loss of generality, we assume that the convolutional code is recursive.

Our proof of Theorem 2 will make use of the following fact about
linear convolutional codes mentioned in Kahale-Urbanke [7]:

Lemma 1: [7] For any recursive convolutional encoder ) of memory
M, there is a number & < 2™ such that, after processing any input
of the form 0*107°~'1 for any positive integer j, () comes back to
the zero state after processing the second 1. In particular, the weight
of the output of @) after processing any such input is at most j9.

We consider first the case of repeat-convolute codes. We explain at
the end of the proof how to customize the proof to the setting parallel
concatenated Turbo codes.

Let § be the number shown to exist in Lemma 1 for convolutional
code @). As in [7] and [4], we will construct a low-weight input x
on which C  g(x) also has low-weight by taking the exclusive-or
of a small number of weight 2 inputs each of whose two 1s are
separated by a low multiple of ¢ Os. As the code encoded by Cy, » 0
is a linear code, its minimum distance equals the minimum weight
of its codewords.

To construct this low-weight input, we first note that every bit of the
input x appears exactly k times in the string 7 (r(x)). For every i €
{1,...,n} and every 1 < j <k, let 0,(¢) denote the position of the
j’th appearance of the bit ¢ in 7(r(z)). For each bit, 4, consider the
sequence (o1 (2) mod §,02(i) mod 4, ..., 0% (i) mod §). Since there
are at most 6 such possible sequences and n input bits, there exists
aset U C {1,...,n} of size at least [n/6*| such that all of its
elements induce the same sequence. That is, for all 7 and j in U,
o1(¢) — oy(j) is divisible by § for all 1 < [ < k. From now on,
we will focus on the input bits with indices in U, and construct a
low-weight codeword by setting some of these bits to 1.

As in the proof of Theorem 1, we now partition the set of time steps
{1,...,kn} into b consecutive intervals, I, I, ..., I, each of length
[kn/b] or |kn/b|, where b is a parameter we will specify later. For
every index ¢ € U, we let the signature of i be the k-tuple whose
j’th component is the index of the interval to which ¢;(¢) belongs.

Now, we construct a hypergraph H as follows: H has k parts, each
part consisting of b vertices which are identified with the intervals
Ii, ..., Iy. There are |U| hyperedges in H, one corresponding to each
input bit with index in U. The vertices contained in the hyperedge
are determined by the signature of the corresponding bit: if input bit
i has signature (41,42, ...,1x), then the ¢’th hyperedge contains the

i;’th vertex of the j’th part, for every j = 1,...,k. Thus, H is a k-
partite k-uniform hypergraph (i.e., each hyperedge contains exactly k
vertices, each from a different part) with b vertices in each part and
|U| > n/é edges.

We now define a family of subgraphs such that if A contains one
of these subgraphs, then the code encoded by Cj, » o must have a
low-weight codeword. We define an ¢-forbidden subgraph S of H to
be a set of at least one and at most 2¢ hyperedges in 7 such that each
vertex in H is contained in an even number of the hyperedges of S.
(One can think of an /-forbidden subgraph as a generalization of a
cycle of length ¢ to hypergraphs). In Lemma 2, we prove that if H
contains an {-forbidden subgraph then the code encoded by Cj, .o
has a codeword of weight at most 2/ + ¢ [kn/b]. In Lemma 3, we
prove that if  contains at least 4b/*/2] edges, then it contains a
klog, b forbidden subgraph. As 7 has at least n/6* edges, if we set

b {(%)1/(79/2% ’

then n/6% > 4b/*/21; so, Lemma 3 will imply that H has a k log, b-
forbidden subgraph and Lemma 2 will imply that the code encoded by
Ch =, has a codeword of weight at most 2k log, b+ k log, b [kn/b].
Plugging in the value we have chosen for b, we find that the minimum
distance of the code encoded by Cy ¢ is at most

2klogy b+ k [kn/b]logy b

< dlogyn+2[kn/bllogyn, as klogy b < 2log,n,
k
< 2% logy n + 6logy 1
kn
S 2m10g2n+610g2n
5F

§5/ /2] 1
= 2R TR (1 2y TR — (oF )ty 10827+ Bloga

§5/Tk/2]
S 2knW8 I—k/2-| log2n+610g2 n,

< 16k2ptYIR/2192M 160 1 4 6log, 1,

where the last inequality follows from § < 2M and the second-to-last
inequality follows from combining this inequality with the assumption
in the theorem that n > 8 - 2¥M to show n > 8%, and applying the
bound (47% — 8 *)/x >1/8 forall 0 <z < 1.

Now, we explain how to modify the proof to handle parallel concate-
nated Turbo codes. Let 71,...,m; be permutations each of length
n, () be a recursive convolutional encoder with memory M, and
consider the parallel concatenated Turbo code encoded by P =
Pr.... .- We can associate with P the repeat-convolute encoder
C = Cinr,q, where 7 is the length-kn permutation constructed
from my,...,m; and the repetition map r; in such a way that
m(ri(x)) = (m(z),...,mx(x)) for all z € {0,1}™. To extend the
bound to parallel-concatenated Turbo codes, we will force P and C
have the same input-output behavior on the special low-weight inputs
considered in this proof. To do this, we set

b_k\‘(rzk)l/(k/?] /kJ,

and require that n+1, 2n+1, ..., (k—1)n+1 be the first times in the
intervals in which they appear. We then guarantee that, on the special



low-weight inputs considered in the proof, the convolutional encoder
will be in the zero state at steps n + 1, 2n+ 1, ..., (k—1)n+ 1,
and so it will have the same output as P. The rest of the analysis
is similar, except that we use the slightly stronger assumption M <
(logyn — 3)/k — log, k.

Lemma 2: If H contains an ¢-forbidden sub-hypergraph, then there
is an input sequence of weight at most 2/ whose corresponding
codeword in Cj, » o has weight at most 2¢ + ¢ [kn/b].

Proof: Let S denote the set of hyperedges of the ¢-forbidden
sub-hypergraph in H, and consider the set B of bits of the input that
correspond to the hyperedges of S. By definition, B C U and |B| <
2{. We construct an input z of weight at most 2¢ by setting the bits in
B to 1 and other bits to 0, and consider the codeword corresponding
to z: (x, Q(w(rk(x)))). As each vertex of H is contained in an even
number of the hyperedges in .S, each interval in Z contains an even
number of bits that are 1 in 7(r(z)). Thus, by the definition of U
and Lemma 1, Q(7(ri(z))) is zero everywhere except inside those
intervals of 7 that contain a bit that is 1 in 7(ry(z)). Since there
are at most ¢ such intervals, the weight of Q(m(ry(z))) is at most
£[kn/b]. Therefore, the weight of the codeword corresponding to z
is at most 2¢ + ([kn/b]. |

Lemma 3: Every k-partite k-uniform hypergraph H with b vertices
in each part and at least 4b/%/21 hyper-edges contains a klog, b-
forbidden sub-hypergraph.

Proof: We construct a bipartite graph G from H as follows:
For every [k/2]-tuple (i1, 12, ..., i[x/2]) Where i; is a vertex in the
j’th part of H, we put a vertex in the first part of GG, and for every
|k/2]-tuple (i 2741, .. .,9k) Where i; is a vertex in the j’th part of
‘H, we put a vertex in the second part of G. If there is a hyperedge
{i1,%2,...,1k} in H, where ¢; is a vertex of the j’th part, we connect
the vertices (41,72, ...,i15/2]) and (ifx/2141,---,%%) in G.

By the above construction, each edge in G corresponds to a hyperedge
in H. There are at least 4b/%/2] edges and at most 2b/*/21 vertices
in G. Thus, by Lemma 4 below, G has a cycle of length at
most 2log, (2b/%/21) < 2klog, b. It is easy to see that the hyper-
edges corresponding to the edges of this cycle constitute a klog, b-
forbidden sub-hypergraph in H. ]

Lemma 4: Let G be a graph on n vertices with at least 2n edges.
Then, G has a cycle of length at most 2 log, n.

Proof: We first prove the theorem in the case that every vertex of
G has degree at least 3. In this case, if the shortest cycle in the graph
had length 2d+ 1, then a breadth-first search tree of depth d from any
vertex of the graph would contain at least 1+ 3 Z;—i;ol 20 =3.29-2
distinct vertices. As 3-2!982" — 2 > n_ this would be a contradiction
for d > log, n. So, the graph must contain a cycle of length at most
2logy n.

We may prove the lemma in general by induction on n. Assume the
lemma has been proved for all graphs with fewer than n vertices,
and let G be a graph on n vertices with at least 2n edges. If the
degree of every node in G is at least 3, then GG has a cycle of length
at most 2log, n by the preceding argument. On the other hand, if
G has a vertex of degree 2, we consider the graph G’ obtained by

deleting this vertex and its two adjacent edges. The graph G’ has
n — 1 vertices and at least 2(n — 1) edges, and so by induction has
a cycle of length at most 2logy(n — 1). As G’ is a subgraph of G,
G also has a cycle of length at most 2log,(n — 1) < 2log, n, which
proves the lemma. ]

ITI. SERIALLY CONCATENATED CODES

In this section, we consider codes that are obtained by serially con-
catenating convolutional codes and, more generally, automata codes.
In Section III-A, we prove an upper bound on the minimum distance
of the concatenation of a low-memory outer automata encoder with
an arbitrary inner automata encoder. In particular, we prove that
if the memory of the outer code is constant and the memory of
the inner code is sub-linear, then the code is asymptotically bad.
In contrast, in Section III-B, we prove that if the input is first
passed through a repetition code and a random permutation, then
the code is asymptotically good with constant probability, even if
both convolutional encoders are accumulators.

A. Upper bound on the minimum distance when the outer code is
weak

In this section, we consider the serial concatenation of automata
codes. We assume that each automata outputs a constant number
of bits per transition. This class of codes includes the serially
concatenated convolutional codes introduced by Benedetto, Divsalar,
Montorsi and Pollara [2] and studied by Kahale and Urbanke [7]. If
the outer code has constant memory and the inner code has sub-
linear memory, then our bound implies that the code cannot be
asymptotically good.

Formally, we assume that @, (Q;, respectively) is an automata
encoder with at most 2o (2Mi, respectively) states and h, (h;,
respectively) output bits per transition. For an integer n and a
permutation 7 of length h,n, we define Cg, g, ~ to be the encoder
that maps an input z € {0,1}" to the codeword Cg, g, (z) =
Qi(m(Qo(z))) € {0,1}1hin We will assume without loss of
generality that (), Q;, and 7 are such that this mapping is an injective
mapping. The encoders (), and (); are called the outer and inner
encoders, respectively.

Theorem 3: Let @, be an automata encoder with at most 2 states
that outputs h, bits at each time step, and let (); be an automata
encoder with at most 2V states that outputs h; bits at each time
step. For any positive integer n and any permutation 7 of length nh,,
the minimum distance of the serially-concatenated code encoded by
Cq,,Q:,~ is at most

1 —1
3h2hi(M, + 2)n' ™ Fetitorm Moo

In particular, if M, is constant (and h; and hg are constants), the
minimum distance of the serially-concatenated code encoded by

Cq,,Qir 18

1
1— 1 r g (Mg F2)
O(n ho(Mot2) JVf oMo )

3

and consequently any such family of codes is asymptotically bad as
long as M; is sub-linear in n.



Proof: The proof follows the same outline as the proof of
Theorem 1. We begin by setting I, = {1,...,n} to be the set
of times steps in the computation of @, on input x € {0,1}",
and setting I; = {1,...,hon} to be the set of times steps in the
computation of Q; on input 7 (Q,(z)) € {0,1}"*". We similarly, let
{sgt) (x) }t ] denote the sequence of states traversed by ), on input

el,
2 and {sz(-t) (a:)}
tel;
on input 7 (Q,(x)).

To prove the claimed bound on the minimum distance of the code
encoded by Cq, o, », we will prove the existence of two distinct
input strings = and y, aset V C {1,...,n}, aset J, C I, and a set
J; C I; such that  and y are both 0 on bits not in V/, sgt)(x) and
sgt)(y) only differ for ¢ € J,, and sgt)(:c) and sgt)(y) only differ for
t € J;. The minimum distance bound will then follow from an upper
bound on the size of J;.

denote the sequence of states traversed by @;

To construct these sets, we make use of parameters m, and m; to

. o . def
be determined later. We first partition the set I, into b, = |n/m,]
intervals each of size m, or m, + 1, and we partition the set /; into

def . )
b; = |nh,/m;] intervals each of size m; or m; + 1.

As ), outputs at most (m, + 1)h, bits during the time steps in an
interval in I,, the bits output by @), during an interval in I, are read
by @, during at most (m, + 1)h, intervals in I;. As there are fewer
than (b;)(meTDhe sets of at most (m, + 1)h, intervals in I;, there
exists a set of at least b,/(b;)"™o+ 1" intervals in I, such that all
the bits output by @), during these intervals are read by (); during
a single set of at most (m, + 1)h, intervals in I;. Let U denote the
set of at least b, /(b;)™oF D% intervals in I, and let T denote the
corresponding set of at most (m,+1)h, intervals in I;. We then let V
denote the set of input bits read by @, during the intervals in U. As
all the intervals in I, have size at least m,, we have |V| > m, |U].
The set J, will be the union of the intervals in U and J; will be the
union of the intervals in 7'.

Let {uj}‘j[ill and {t; }‘fi‘l denote the last time steps in the intervals
in U and T respectively. For each x € {0,1}" that is zero outside

, Ul
V', we consider (sguj)(a:)) , the sequence of states traversed by
j=1

() r

7|
Qo on x at times uy, ..., u|y|, and, (sZ (:c)) , the sequence of

J:
states traversed by Q; on input 7(Q,(x)) at times ¢1,. ... There
are at most 2MlUI2M:IT| guch pairs of sequences. So, if

oMo|UlgMilT|  olVI 2)

then there are two distinct  and y in {0,1}" that are both 0O
N\ T w\ UI
outside V' and a pair of sequences (sl(-tj)) and (s(() ]))
j=1 j=1
such that s\ (z) = s((-tj)(y) = s forall 1 < j < |T| and
s (2) = 8 (y) = 58" for all 1 < j < |U|. This means that the
bits output and states traversed by ), on inputs = and y are the same
at time steps outside the time intervals in U, and therefore the bits
output and states traversed by @); on inputs 7(Q,(x)) and 7(Q,(y))
are the same outside time steps in intervals in 7'. Thus

0< d(OinQovﬂ'('r)7 CQi,Qom(y)) <mihi |T| < (mo + 1)mihohi.
3)

As this bound assumes (2), we will now show that for

me, = M, + 1, and

m; = 3hon'” et 2s (M) (ot 27hs |
this assumption is true.
Our setting of m,, reduces (2) to
\U| = |T| M;,
which would be implied by

bo

pmeri > (Mo + DhoMs. @

To derive this inequality, we first note that since 22/* < 3forax > 1,
1 1
mi > hon'” W28 (((my + 1)he)2M;) Oe+2ms

Rearranging terms, we find this implies

n (moil)ho nho b
(mo + 1)2R2M, Z g =

Again rearranging terms, we obtain

n > bl(-m°+l)h° (mo + I)thMi > p{motho (mo + V)mohoM; +my,

which implies
{iJ > p{metDhe (1 4 1)y M,
Mo
By now dividing both sides by bgmﬁl)ho and recalling b, = LWLJ ,
we derive (4).

Finally, the bound on the minimum distance of the code now follows
by substituting the chosen values for m, and m; into (3).

We now compare this with the high-probability upper bound of
O(n'=2/do9Mi 10g°M) ) on the minimum distance of rate 1/4
random serially concatenated convolutional codes obtained by Kahale
and Urbanke [7]. In their case, we have h, = h; = 2, and our upper
bound becomes O(n!~1/(@Mo+4) 71/ Moty "y note that the
dependence of our bound on d, is comparable, and the dependence
of our bound on M; is much better.

B. A strong outer code: when serially concatenated codes become
asymptotically good

The proof technique used in Theorem 3 fails if the outer code is not
a convolutional code or encodable by a small finite automata. This
suggests that by strengthening the outer code one might be able to
construct asymptotically good codes. In fact, we will prove that the
serial concatenation of an outer repeat-accumulate code with an inner
accumulator yields an asymptotically good code with some positive
probability.

Let & > 2 be an integer, r;y be the repeat-k-times map, Q1
and Q)2 be accumulators®, n be an integer, and m; and 7wy be

3While Q1 and Q> are identical as codes, we give them different names to indicate
their different roles in the construction.
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Fig. 1. an RAA code

permutations of length kn. We define Cy ., », to be the encoder
that maps input strings = € {0,1}" to the codeword C, r, ., (z) 1=
Q2(m2(Q1(m1(rk(x))))). We call the code encoded by C ry x, an
RAA (Repeat, Accumulate, and Accumulate) code (See Figure 1).
We note that this code has rate 1/k.

In contrast with the codes analyzed in Theorem 3, these RAA codes
have a repeat-accumulate encoder, Cy, r, (y) = Q1(m1(ri(z)) where
those analyzed in Theorem 3 merely have an automata encoder.

Theorem 4: Let k& > 2 and n be integers, and let 71 and 7o be
permutations of length kn chosen uniformly at random. Then for
each constant § > 0, there exists a constant € > 0 and an integer ng,
such that the RAA code encoded by C}, r, , has minimum distance
at least en with probability at least 1 — § for all n > ny.

So specifically, there exists an infinite family of asymptotically good
RAA codes.

Proof: Conditions bounding the size of € will be appear through-
out the proof.

Let E., denote the expected number of non-zero codewords in the
code encoded by C r, , of weight less than or equal to en. Taking
a union bound over inputs and applying linearity of expectation, we
see that the probability the minimum distance of the code encoded
by Ch,x,,x, is less than en is at most E,. Thus, we will bound this
probability by bounding E.,,.

To bound FE,, we use techniques introduced by Divsalar, Jin and
McEliece [5] for computing the expected input-output weight enu-
merator of random Turbo-like codes. For an accumulator code of
message length N, let ASJJN}Z denote the number of inputs of weight
w on which the output of the accumulator has weight h. Divsalar,
Jin and McEliece [5] prove that

A2 = (o)) (ujer 1)

where (}) is defined to be zero if a < b. Therefore, if the input to
@ is a random string of length NV and weight w, the probability that
the output has weight h is

Awn_ (Gro) Guyar o)

() ()

Now consider a fixed input = € {0,1}". If z has weight w and 7
is a random permutation of length kn, then 71 (rg(x)) is a random
string of length kn and weight kw. This random string is the input
to the accumulator Q1. Therefore, by (6), for any h; the probability
that the output of @1 has weight h; is A,(CT;L /(F™). If this happens,
the input to Q2 will be a random string of welght h1, and therefore,
again by (6), the probability that the output of ()2 has weight h will
be equal to Ah ,)l ( hl)' Thus, for any fixed input string = of weight

(6)

w, and any fixed h; and h, the probability over the choice of 7 and
mo that the output of ()1 has weight h; and the output of ()2 (which
is also the output of Cy 1, ,) has weight h is equal to

(kn) 4 (kn)
Akw hl hl ,h

() G7)

Thus, by the linearity of expectation, the expected number of non-
zero codewords of the code encoded by C' r, -, of weight at most
en equals

IPIPIEELTE

2en 2h1/k en ( )Akkwn)hlA kn)

kn\ (kn ’
() (i)
as the terms with [h1/2] > h or [kw/2] > hy are zero. Using the

inequalities (z) < (ex/y)Y, Ly/ZJ) < (dex/y)¥ an.d (fy/gkl) <
(4dex/y)Y, for positive integers  and y, we bound this sum by

Een =

hi1=1 w=1 h=1

E,
2en 2h1/k en

- Yyt

hi1=1 w=1 h=1
2en 2h1/k en

R

w=1
kw/2 (4e_h1)kw/2 (4hk )Lh1/2J (h )’—hl/Q-‘ 1
1 1

B (i) Gema - D (G ) Gl 2)

() G7)
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() (e o
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The summand in the above expression is at maximum when h = en.
Therefore,
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since h% < et for all h; > 1. To bound (7), note that the sum has

the form
m
l
S = E amem,
=1

k
where a = 4e2.\/e/k, 3 = (%) ni=k/2 | = E, and m = 2en. If
we can guarantee that

aerleﬁ(erl)l S %axeﬁxl7 (8)
forall x =1,...,m — 1, we can use the bound
S < 2ae”. 9)

We can express (8) as B((z+1)' —z') < In 5-. Thus (8) holds for all
the desired values of z if B((m + 1) —m!) < In 5, or equivalently

l
1 1
Bm! (1+—> -1 <In—,
m 2a
which can be guaranteed when

1
215ml*1§1n% and [ <m, (10)

via the bounds
l

l
1 l
(1+—) <el/m<i4(e—1)—<142—,
m m m
where we need [ < m in the second inequality. Going back to (7),
we get via (9) and (10) that
2 (4«?)%1—&/2 16e2/€ ()
E., < =2(4e%\/e/k)e\F = ——e\F ,

k
nl—Fk/2

(11
when
QE g knlfk/Q(Qen)k/Qfl <In L JE and k < 2en
2\ k - 8e2 V € 2 = ’
or, equivalently, when
k
1 4 k k
In— > |2k = ok/2-1 | ck/2-1 —2111£ and — < 2en.
€ k 8e2 2
(12)

It follows from (11) and (12), that for each & > 2, and for each
constant § > 0, there is constant ¢ > 0 such F., < ¢ when n is
sufficiently large.

While the constants we obtain are not particularly sharp, they are
sufficient to prove the existence of asymptotically good families of
depth-three serially-concatenated codes based on accumulators.

This result should be compared with the work of Pfister and
Siegel [8], who performed experimental analyses of the serial con-
catenation of repetition codes with [ levels of accumulators connected
by random interleavers, and theoretical analyses of concatenations
of a repetition code with certain rate-1 codes for large [. Their
experimental results indicate that the average minimum distance of
the ensemble starts becoming good for [ > 2, which is consistent with
our theorem. For certain rate-1 codes and [ going to infinity, they
proved their codes could become asymptotically good. In contrast,
we prove this for [ = 2 and accumulator codes.

IV. CONCLUSION AND OPEN QUESTIONS

We derived in Section II-A a worst-case upper bound on the minimum
distance of parallel concatenated convolutional codes, repeat convo-
lute codes, and generalizations of these codes obtained by allowing
non-linear and large-memory automata-based constituent codes. The
bound implies that such codes are asymptotically bad when the
underlying automata codes have sub-linear memory. In the setting of
convolutional constituent codes, a sub-linear memory corresponds to
the case when the size of the corresponding trellis is sub-exponential,
and so it includes the cases in which the codes have natural sub-
exponential time iterative decoding algorithm. In Section II-B, we
improved the bound in the setting of low-memory convolutional
constituent codes. We leave the problem of interpolating between
the two bounds open:

« Is it possible to interpolate between the bounds of Theorems 1
and 27

Then, we derived in Section III-A a worst-case upper bound on the
minimum distance of depth-2 serially concatenated automata-based
codes. Our bound implies that such codes are asymptotically bad
when the outer code has a constant memory and the inner code has
a sub-linear memory. This suggests the following question:

o If one allows the memory of the outer code in a depth-2 serially
concatenated code to grow logarithmically with the block length,
can one obtain an asymptotically good code?

In contrast, we proved in Section III-B that RAA codes, which
are depth-3 serially concatenated codes obtained by concatenating
a repetition code with two accumulator codes through random per-
mutations, can be asymptotically good. This result naturally leads to
the following open questions:

o Can one obtain depth-3 serially concatenated codes with better
minimum distance by replacing the accumulators in the RAA
codes with convolutional codes of larger memory? Also, can
one improve the minimum distance bounds on the RAA codes?

o Can the RAA codes be efficiently decoded by iterative decoding,
or any other algorithm?
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