Ramanujan Graphs of Every Degree

Adam Marcus (Crisply, Yale)
Daniel Spielman (Yale)
Nikhil Srivastava (MSR India)
Expander Graphs

Sparse, regular well-connected graphs with many properties of random graphs.

Random walks mix quickly.
Every set of vertices has many neighbors.
Pseudo-random generators.
Error-correcting codes.
Sparse approximations of complete graphs.
Spectral Expanders

Let G be a graph and A be its adjacency matrix

$$
\begin{pmatrix}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
\end{pmatrix}
$$

Eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$

If d-regular (every vertex has d edges), $\lambda_1 = d$
Spectral Expanders

If bipartite (all edges between two parts/colors) eigenvalues are symmetric about 0

If d-regular and bipartite, $\lambda_n = -d$

```
0 0 0 1 0 1
0 0 0 1 1 0
0 0 0 0 1 1
1 1 0 0 0 0
0 1 1 0 0 0
1 0 1 0 0 0
```
Spectral Expanders

G is a good spectral expander if all non-trivial eigenvalues are small.
Bipartite Complete Graph

Adjacency matrix has rank 2, so all non-trivial eigenvalues are 0

```
 0 0 0 1 1 1
 0 0 0 1 1 1
 0 0 0 1 1 1
 1 1 1 0 0 0
 1 1 1 0 0 0
 1 1 1 0 0 0
```
Spectral Expanders

G is a good spectral expander if all non-trivial eigenvalues are small.

Challenge:
construct infinite families of fixed degree
Spectral Expanders

G is a good spectral expander if all non-trivial eigenvalues are small.

\[-d \quad -2\sqrt{d-1} \quad 0 \quad 2\sqrt{d-1} \quad d \]

Challenge:
construct infinite families of fixed degree

Alon-Boppana ‘86: Cannot beat $2\sqrt{d-1}$
Ramanujan Graphs: \(2\sqrt{d - 1}\)

\
\[G \text{ is a Ramanujan Graph if absolute value of non-trivial eigs } \leq 2\sqrt{d - 1} \]

-\(d\) \(\rightarrow\) \(-2\sqrt{d - 1}\) \(\rightarrow\) 0 \(\rightarrow\) \(2\sqrt{d - 1}\) \(\rightarrow\) \(d\)
Ramanujan Graphs: \(2\sqrt{d - 1}\)

\[G\] is a Ramanujan Graph
if absolute value of non-trivial eigs \(\leq 2\sqrt{d - 1}\)

Margulis, Lubotzky-Phillips-Sarnak'88: Infinite sequences of Ramanujan graphs exist for \(d = \text{prime} + 1\)
Ramanujan Graphs: \(2\sqrt{d} - 1 \)

\(G \) is a Ramanujan Graph if absolute value of non-trivial eigs \(\leq 2\sqrt{d} - 1 \)

\[-d \quad -2\sqrt{d - 1} \quad 0 \quad 2\sqrt{d - 1} \quad d \]

Friedman’08: A random \(d \)-regular graph is almost Ramanujan: \(2\sqrt{d - 1} + \epsilon \)
Theorem:
there are infinite families of bipartite Ramanujan graphs of every degree.
Theorem:
there are infinite families of bipartite Ramanujan graphs of every degree.

And, are infinite families of \((c,d)\)-biregular Ramanujan graphs, having non-trivial eigs bounded by

\[\sqrt{d - 1} + \sqrt{c - 1}\]
Bilu-Linial ‘06 Approach

Find an operation that doubles the size of a graph without creating large eigenvalues.

\[
\begin{align*}
-d & \quad (& \quad 0 & \quad) & \quad 2\sqrt{d-1} \\
-2\sqrt{d-1} & \quad 0 & \quad 2\sqrt{d-1} & \quad d
\end{align*}
\]
Bilu-Linial ‘06 Approach

Find an operation that doubles the size of a graph without creating large eigenvalues.
2-lifts of graphs
2-lifts of graphs

duplicate every vertex
2-lifts of graphs

duplicate every vertex
2-lifts of graphs

for every pair of edges: leave on either side (parallel), or make both cross
2-lifts of graphs

for every pair of edges: leave on either side (parallel), or make both cross
2-lifts of graphs

\[
\begin{array}{cccccc}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0
\end{array}
\]
2-lifts of graphs

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
2-lifts of graphs

\[
\begin{align*}
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
\end{align*}
\]
Eigenvalues of 2-lifts (Bilu-Linial)

Given a 2-lift of G, create a signed adjacency matrix A_s with a -1 for crossing edges and a 1 for parallel edges.

\[
\begin{pmatrix}
0 & -1 & 0 & 0 & 1 \\
-1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0
\end{pmatrix}
\]
Eigenvalues of 2-lifts (Bilu-Linial)

Theorem:
The eigenvalues of the 2-lift are the union of the eigenvalues of A (old) and the eigenvalues of A_s (new)

\[
\begin{pmatrix}
0 & -1 & 0 & 0 & 1 \\
-1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
\end{pmatrix}
\]
Eigenvalues of 2-lifts (Bilu-Linial)

Theorem:
The eigenvalues of the 2-lift are the union of the eigenvalues of A (old) and the eigenvalues of A_s (new)

Conjecture:
Every d-regular graph has a 2-lift in which all the new eigenvalues have absolute value at most $2\sqrt{d-1}$
Eigenvalues of 2-lifts (Bilu-Linial)

Conjecture:
Every d-regular graph has a 2-lift in which all the new eigenvalues have absolute value at most $2\sqrt{d - 1}$

Would give infinite families of Ramanujan Graphs:

start with the complete graph, and keep lifting.
Eigenvalues of 2-lifts (Bilu-Linial)

Conjecture:
Every d-regular graph has a 2-lift in which all the new eigenvalues have absolute value at most $2\sqrt{d-1}$

We prove this in the bipartite case.

A 2-lift of a bipartite graph is bipartite.
Eigenvalues of 2-lifts (Bilu-Linial)

Theorem:
Every d-regular graph has a 2-lift in which all the new eigenvalues have absolute value at most $2\sqrt{d - 1}$.

Trick: eigenvalues of bipartite graphs are symmetric about 0, so only need to bound largest.
Eigenvalues of 2-lifts (Bilu-Linial)

Theorem:
Every d-regular \textbf{bipartite} graph has a 2-lift in which all the new eigenvalues have absolute value at most $2\sqrt{d-1}$.
First idea: a random 2-lift

Specify a lift by \(s \in \{\pm 1\}^m \)

Pick \(s \) uniformly at random
First idea: a random 2-lift

Specify a lift by \(s \in \{\pm 1\}^m \)

Pick \(s \) uniformly at random

Are graphs for which this usually fails
First idea: a random 2-lift

Specify a lift by $s \in \{\pm 1\}^m$

Pick s uniformly at random

Are graphs for which this usually fails

Bilu and Linial proved G almost Ramanujan, implies new eigenvalues usually small.

Improved by Puder and Agarwal-Kolla-Madan
The expected polynomial

Consider \(E_s \left[\chi A_s (x) \right] \)
The expected polynomial

Consider \(\mathbb{E}_s \left[\chi_{A_s}(x) \right] \)

Prove max-root \(\left(\mathbb{E}_s \left[\chi_{A_s}(x) \right] \right) \leq 2\sqrt{d-1} \)

Prove \(\chi_{A_s}(x) \) is an interlacing family

Conclude there is an \(s \) so that \(\text{max-root} \left(\chi_{A_s}(x) \right) \leq 2\sqrt{d-1} \)
The expected polynomial

Theorem (Godsil-Gutman ’81):

$$\mathbb{E}_s \left[\chi A_s (x) \right] = \mu_G (x)$$

the matching polynomial of G
The matching polynomial
(Heilmann-Lieb ‘72)

\[\mu_G(x) = \sum_{i \geq 0} x^{n-2i} (-1)^i m_i \]

\[m_i = \text{the number of matchings with } i \text{ edges} \]
\[\mu_G(x) = x^6 - 7x^4 + 11x^2 - 2 \]
\[\mu_G(x) = x^6 - 7x^4 + 11x^2 - 2 \]

One matching with 0 edges
\[\mu_G(x) = x^6 - 7x^4 + 11x^2 - 2 \]

7 matchings with 1 edge
\[\mu_G(x) = x^6 - 7x^4 + 11x^2 - 2 \]
\[
\mu_G(x) = x^6 - 7x^4 + 11x^2 - 2
\]
Proof that \[\mathbb{E}_s \left[\chi A_s(x) \right] = \mu_G(x) \]

Expand \[\mathbb{E}_s \left[\det(xI - A_s) \right] \] using permutations

\[
\begin{array}{cccccc}
 x & \pm1 & 0 & 0 & \pm1 & \pm1 \\
\pm1 & x & \pm1 & 0 & 0 & 0 \\
0 & \pm1 & x & \pm1 & 0 & 0 \\
0 & 0 & \pm1 & x & \pm1 & 0 \\
\pm1 & 0 & 0 & \pm1 & x & \pm1 \\
\pm1 & 0 & 0 & 0 & \pm1 & x \\
\end{array}
\]
Proof that $\mathbb{E}_s[\chi_{A_s}(x)] = \mu_G(x)$

Expand $\mathbb{E}_s[\det(xI - A_s)]$ using permutations

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>±1</th>
<th>0</th>
<th>0</th>
<th>±1</th>
<th>±1</th>
</tr>
</thead>
<tbody>
<tr>
<td>±1</td>
<td>x</td>
<td>±1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>±1</td>
<td>x</td>
<td>±1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>±1</td>
<td>x</td>
<td>±1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>±1</td>
<td>0</td>
<td>0</td>
<td>±1</td>
<td>x</td>
<td>±1</td>
<td>0</td>
</tr>
<tr>
<td>±1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>±1</td>
<td>x</td>
<td>±1</td>
</tr>
<tr>
<td>±1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>±1</td>
<td>x</td>
</tr>
</tbody>
</table>

same edge: x, ±1
same value: ±1, 0
Proof that \(\mathbb{E}_s \left[\chi_{A_s}(x) \right] = \mu_G(x) \)

Expand \(\mathbb{E}_s \left[\det(xI - A_s) \right] \) using permutations

same edge: \(x \pm 1 \quad 0 \quad 0 \quad \pm 1 \quad \pm 1 \)
\(\pm 1 \quad x \quad \pm 1 \quad 0 \quad 0 \quad 0 \)
\(0 \quad \pm 1 \quad x \quad \pm 1 \quad 0 \quad 0 \)
\(0 \quad 0 \quad \pm 1 \quad x \quad \pm 1 \quad 0 \)
\(\pm 1 \quad 0 \quad 0 \quad \pm 1 \quad x \quad \pm 1 \)
\(\pm 1 \quad 0 \quad 0 \quad 0 \quad \pm 1 \quad x \)

same value
Proof that $\mathbb{E}_s [\chi_{A_s}(x)] = \mu_G(x)$

Expand $\mathbb{E}_s [\det(xI - A_s)]$ using permutations

<table>
<thead>
<tr>
<th></th>
<th>±1</th>
<th>±1</th>
<th>0</th>
<th>0</th>
<th>±1</th>
<th>±1</th>
</tr>
</thead>
<tbody>
<tr>
<td>±1</td>
<td>x</td>
<td>±1</td>
<td>±1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>±1</td>
<td>x</td>
<td>±1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>±1</td>
<td>x</td>
<td>±1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>±1</td>
<td>0</td>
<td>0</td>
<td>±1</td>
<td>x</td>
<td>±1</td>
<td>±1</td>
</tr>
<tr>
<td>±1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>±1</td>
<td>x</td>
</tr>
</tbody>
</table>

Get 0 if hit any 0s
Proof that $\mathbb{E}_s \left[\chi_{A_s}(x) \right] = \mu_G(x)$

Expand $\mathbb{E}_s \left[\det(xI - A_s) \right]$ using permutations

Get 0 if take just one entry for any edge
Proof that $\mathbb{E}_s[\chi_{A_s}(x)] = \mu_G(x)$

Expand $\mathbb{E}_s[\det(xI - A_s)]$ using permutations

Only permutations that count are involutions
Proof that $\mathbb{E}_s \left[\chi_{A_s}(x) \right] = \mu_G(x)$

Expand $\mathbb{E}_s \left[\det(xI - A_s) \right]$ using permutations

Only permutations that count are involutions
Proof that $\mathbb{E}_s [\chi_{A_s}(x)] = \mu_G(x)$

Expand $\mathbb{E}_s [\det(xI - A_s)]$ using permutations

Only permutations that count are involutions

Correspond to matchings
The matching polynomial
(Heilmann-Lieb ‘72)

\[\mu_G(x) = \sum_{i \geq 0} x^{n-2i} (-1)^i m_i \]

Theorem (Heilmann-Lieb)
all the roots are real
The matching polynomial
(Heilmann-Lieb ‘72)

\[\mu_G(x) = \sum_{i \geq 0} x^{n-2i} (-1)^i m_i \]

Theorem (Heilmann-Lieb)
all the roots are real
and have absolute value at most \(2\sqrt{d - 1}\)
The matching polynomial
(Heilmann-Lieb ’72)

\[\mu_G(x) = \sum_{i \geq 0} x^{n-2i} (-1)^i m_i \]

Theorem (Heilmann-Lieb)
all the roots are real
and have absolute value at most \(\sqrt{d-1} \)

Implies max-root \(\left(\mathbb{E} [\chi_{A_s}(x)] \right) \leq 2\sqrt{d-1} \)
Interlacing

Polynomial $p(x) = \prod_{i=1}^{d} (x - \alpha_i)$

interlaces $q(x) = \prod_{i=1}^{d-1} (x - \beta_i)$

if $\alpha_1 \leq \beta_1 \leq \alpha_2 \leq \cdots \alpha_{d-1} \leq \beta_{d-1} \leq \alpha_d$
$p_1(x)$ and $p_2(x)$ have a common interlacing if can partition the line into intervals so that each interval contains one root from each poly
Common Interlacing

$p_1(x)$ and $p_2(x)$ have a common interlacing if can partition the line into intervals so that each interval contains one root from each poly
Common Interlacing

If p_1 and p_2 have a common interlacing,
\[
\max\text{-root} \left(p_i \right) \leq \max\text{-root} \left(\mathbb{E}_i \left[p_i \right] \right)
\]
for some i.

Largest root of average
If p_1 and p_2 have a common interlacing,
\[\text{max-root} \left(p_i \right) \leq \text{max-root} \left(\mathbb{E}_i \left[p_i \right] \right) \]
for some i.

Common Interlacing

Largest root of average
Interlacing Family of Polynomials

$$\{p_s\}_{s \in \{\pm 1\}^m} \text{ is an interlacing family}$$

If the polynomials can be placed on the leaves of a tree so that when put average of descendants at nodes siblings have common interlacings
Interlacing Family of Polynomials

\[\{ p_s \}_{s \in \{ \pm 1 \}^m} \text{ is an interlacing family} \]

If the polynomials can be placed on the leaves of a tree so that when put average of descendants at nodes siblings have common interlacings
Interlacing Family of Polynomials

Theorem:

There is an s so that

$$\max\text{-root}(p_s(x)) \leq \max\text{-root}\left(\mathbb{E}_s[p_s(x)]\right)$$
An interlacing family

Theorem:
Let \(p_s(x) = \chi A_s(x) \)

\(\{p_s\}_{s \in \{\pm 1\}^m} \) is an interlacing family
Interlacing

\(p_1(x) \) and \(p_2(x) \) have a common interlacing iff

\[\lambda p_1(x) + (1 - \lambda)p_2(x) \] is real rooted for all \(0 \leq \lambda \leq 1 \)
To prove interlacing family

Let \(p_{s_1, \ldots, s_k}(x) = \mathbb{E}_{s_{k+1}, \ldots, s_m} \left[p_{s_1, \ldots, s_m}(x) \right] \)
To prove interlacing family

Let \(p_{s_1, \ldots, s_k}(x) = \mathbb{E}_{s_{k+1}, \ldots, s_m} \left[p_{s_1, \ldots, s_m}(x) \right] \)

Need to prove that for all \(s_1, \ldots, s_k, \lambda \in [0, 1] \)

\[
\lambda p_{s_1, \ldots, s_k, 1}(x) + (1 - \lambda)p_{s_1, \ldots, s_k, -1}(x)
\]

is real rooted
To prove interlacing family

Let \(p_{s_1, \ldots, s_k}(x) = \mathbb{E}_{s_{k+1}, \ldots, s_m} \left[p_{s_1, \ldots, s_m}(x) \right] \)

Need to prove that for all \(s_1, \ldots, s_k, \lambda \in [0, 1] \)
\[
\lambda p_{s_1, \ldots, s_k, 1}(x) + (1 - \lambda)p_{s_1, \ldots, s_k, -1}(x)
\]
is real rooted

\(s_1, \ldots, s_k \) are fixed
\(s_{k+1} \) is 1 with probability \(\lambda \), -1 with probability \(1 - \lambda \)
\(s_{k+2}, \ldots, s_m \) are uniformly \(\pm 1 \)
Generalization of Heilmann-Lieb

We prove

$$\mathbb{E}_{s \in \{\pm 1\}^m} \left[p_s(x) \right]$$

is real rooted for every independent distribution on the entries of s.
Generalization of Heilmann-Lieb

We prove

$$\mathbb{E}_{s \in \{\pm 1\}^m} \left[p_s(x) \right]$$

is real rooted

for every independent distribution on the entries of s
Mixed Characteristic Polynomials

For a_1, \ldots, a_n independently chosen random vectors

$$
\mathbb{E} \left[\text{poly} \left(\sum_i a_i a_i^T \right) \right] = \mu(A_1, \ldots, A_n)
$$

is their mixed characteristic polynomial.

Theorem: Mixed characteristic polynomials are real rooted.

Mixed Characteristic Polynomials

For a_1, \ldots, a_n independently chosen random vectors

$$E \left[\text{poly} \left(\sum_i a_i a_i^T \right) \right] = \mu(A_1, \ldots, A_n)$$

is their mixed characteristic polynomial.

Obstacle: our matrix is a sum of random rank-2 matrices

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$
Mixed Characteristic Polynomials

For a_1, \ldots, a_n independently chosen random vectors

$$E \left[\text{poly}(\sum_i a_i a_i^T) \right] = \mu(A_1, \ldots, A_n)$$

is their mixed characteristic polynomial.

Solution: add to the diagonal

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
Generalization of Heilmann-Lieb

We prove

$$\mathbb{E}_{s \in \{\pm 1\}^m} \left[p_s(x) \right] \text{ is real rooted}$$

for every independent distribution on the entries of s

Implies $\chi_{A_s}(x)$ is an interlacing family
Generalization of Heilmann-Lieb

We prove

\[\mathbb{E}_{s \in \{\pm 1\}^m} \left[p_s(x) \right] \text{ is real rooted} \]

for every independent distribution on the entries of \(s \)

Implies \(\chi_{A_s}(x) \) is an interlacing family

Conclude there is an \(s \) so that

\[\text{max-root} \left(\chi_{A_s}(x) \right) \leq 2\sqrt{d - 1} \]
Universal Covers

The universal cover of a graph G is a tree T of which G is a quotient.
- vertices map to vertices
- edges map to edges
- homomorphism on neighborhoods

Is the tree of non-backtracking walks in G.

The universal cover of a d-regular graph is the infinite d-regular tree.
Quotients of Trees

d-regular Ramanujan as quotient of infinite d-ary tree

Spectral radius and norm of inf d-ary tree are

$$2\sqrt{d - 1}$$
Godsil’s Proof of Heilmann-Lieb

\[T(G,\nu) : \text{the path tree of } G \text{ at } \nu \]
vertices are paths in \(G \) starting at \(\nu \)
edges to paths differing in one step
Godsil’s Proof of Heilmann-Lieb
Godsil’s Proof of Heilmann-Lieb

\(T(G,v) \): the path tree of \(G \) at \(v \)
vertices are paths in \(G \) starting at \(v \)
edges to paths differing in one step

Theorem:
The matching polynomial divides
the characteristic polynomial of \(T(G,v) \)
Godsil’s Proof of Heilmann-Lieb

\[T(G,v) : \text{the path tree of } G \text{ at } v \]
vertices are paths in \(G \) starting at \(v \)
edges to paths differing in one step

Theorem:
The matching polynomial divides
the characteristic polynomial of \(T(G,v) \)

Is a subgraph of infinite tree,
so has smaller spectral radius
Quotients of Trees

(c,d)-biregular bipartite Ramanujan as quotient of infinite (c,d)-ary tree

Spectral radius \(\sqrt{d-1} + \sqrt{c-1} \)

For (c,d)-regular bipartite Ramanujan graphs

\(\sqrt{d-1} + \sqrt{c-1} \)
Questions

Non-bipartite Ramanujan Graphs of every degree?

Efficient constructions?

Explicit constructions?