The Laplacian Matrices of Graphs

Daniel A. Spielman - Yale Institute For

Network Science
ISIT, July 12, 2016

Outline

Laplacians
Interpolation on graphs
Resistor networks
Spring networks
Graph drawing
Clustering
Linear programming
Sparsification
Solving Laplacian Equations
Best results
The simplest algorithm

Interpolation on Graphs

Interpolate values of a function at all vertices from given values at a few vertices.

Minimize $\quad \sum(x(a)-x(b))^{2}$

$$
(a, b) \in E
$$

Subject to given values

Interpolation on Graphs

Interpolate values of a function at all vertices from given values at a few vertices.

Minimize $\quad \sum(x(a)-x(b))^{2}$

$$
(a, b) \in E
$$

Subject to given values

Interpolation on Graphs

Interpolate values of a function at all vertices from given values at a few vertices.

Minimize $\quad \sum(x(a)-x(b))^{2}=x^{T} L x$

$$
(a, b) \in E
$$

Subject to given values

Interpolation on Graphs

Interpolate values of a function at all vertices from given values at a few vertices.

Minimize $\quad \sum(x(a)-x(b))^{2}=x^{T} L x$

$$
(a, b) \in E
$$

Subject to given values

Take derivatives. Minimize by solving Laplacian

The Laplacian Quadratic Form of $G=(V, E)$

$$
x: V \rightarrow \mathbb{R} \quad \sum_{(a, b) \in E}(x(a)-x(b))^{2}
$$

The Laplacian Quadratic Form of $G=(V, E)$

$$
x: V \rightarrow \mathbb{R} \quad \sum_{(a, b) \in E}(x(a)-x(b))^{2}
$$

Graphs with positive edge weights

$$
\sum_{(a, b) \in E} w_{a, b}(x(a)-x(b))^{2}=x^{T} L_{G} x
$$

Resistor Networks

View edges as resistors connecting vertices
Apply voltages at some vertices. Measure induced voltages and current flow.

Resistor Networks

Induced voltages minimize subject to constraints.

$$
\sum(x(a)-x(b))^{2}
$$

$$
(a, \bar{b}) \in E
$$

Resistor Networks

Induced voltages minimize subject to constraints.

$$
\sum(x(a)-x(b))^{2}
$$

$$
(a, b) \in E
$$

Resistor Networks

Induced voltages minimize subject to constraints.

$$
\sum(x(a)-x(b))^{2}
$$

$$
(\overline{a, b) \in E}
$$

Resistor Networks

Induced voltages minimize subject to constraints.

$$
\sum_{(a, b) \in E}(x(a)-x(b))^{2}
$$

Effective resistance $=1 /($ current flow at one volt)

Spring Networks

View edges as rubber bands or ideal linear springs
Nail down some vertices, let rest settle

When stretched to length ℓ
potential energy is $\ell^{2} / 2$

Spring Networks

Nail down some vertices, let rest settle

Physics: position minimizes total potential energy

$$
\frac{1}{2} \sum_{(a, b) \in E}(x(a)-x(b))^{2}
$$

subject to boundary constraints (nails)

Drawing by Spring Networks
 (Tutte ’63)

Drawing by Spring Networks

(Tutte ’63)

Drawing by Spring Networks

(Tutte ’63)

Drawing by Spring Netuferks
(Tutte '63)

Drawing by Spring Netuferks
(Tutte '63)

Drawing by Spring Netuprerks
(Tutte '63)
If the graph is planar, then the spring drawing has no crossing edges!

Drawing by Spring Netūिrks
(Tutte '63)

Drawing by Spring Networks
(Tutte '63)

Spectral Graph Theory

A n-by- n symmetric matrix has n real eigenvalues $\lambda_{1} \leq \lambda_{2} \cdots \leq \lambda_{n}$ and eigenvectors v_{1}, \ldots, v_{n} such that

$$
L v_{i}=\lambda_{i} v_{i}
$$

These eigenvalues and eigenvectors tell us a lot about a graph!

Spectral Graph Theory

A n-by- n symmetric matrix has n real eigenvalues $\lambda_{1} \leq \lambda_{2} \cdots \leq \lambda_{n}$ and eigenvectors v_{1}, \ldots, v_{n} such that

$$
L v_{i}=\lambda_{i} v_{i}
$$

These eigenvalues and eigenvectors tell us a lot about a graph!
(excluding $\lambda_{1}=0, v_{2}=\mathbb{1}$)

Spectral Graph Drawing

Original
Drawing

Spectral Graph Drawing
Plot vertex a at $\left(v_{2}(a), v_{3}(a)\right)$ draw edges as straight lines

Original
Drawing

Spectral
Drawing

Spectral Graph Drawing

Original
Drawing

Spectral
Drawing

Spectral Graph Drawing

Original
Drawing

Spectral
Drawing

Dodecahedron

Best embedded by first three eigenvectors

Erdos's co-authorship graph

When there is a "nice" drawing
Most edges are short
Vertices are spread out and don't clump too much
λ_{2} is close to 0

When λ_{2} is big, say $>10 /|V|^{1 / 2}$
there is no nice picture of the graph

Measuring boundaries of sets
Boundary: edges leaving a set

Measuring boundaries of sets

Boundary: edges leaving a set
Characteristic Vector of S :

$$
x(a)= \begin{cases}1 & a \text { in } S \\ 0 & a \text { not in } S\end{cases}
$$

Measuring boundaries of sets

Boundary: edges leaving a set
Characteristic Vector of S :

$$
\begin{gathered}
x(a)= \begin{cases}1 & a \text { in } S \\
0 & a \operatorname{not} \text { in } S\end{cases} \\
\sum_{(a, b) \in E}(x(a)-x(b))^{2} \\
=\mid \text { boundary }(S) \mid
\end{gathered}
$$

Spectral Clustering and Partitioning

Find large sets of small boundary

Heuristic to find
x with $x^{T} L_{G} x$ small
Compute eigenvector

$$
L_{G} v_{2}=\lambda_{2} v_{2}
$$

Consider the level sets

Spectral Partitioning

(Donath-Hoffman '72, Barnes '82, Hagen-Kahng '92)

$S=\left\{a: v_{2}(a) \leq t\right\}$ for some t
Cheeger's inequality implies good approximation

Spectral Partitioning

(Donath-Hoffman '72, Barnes '82, Hagen-Kahng '92)

$S=\left\{a: v_{2}(a) \leq t\right\}$ for some t
Cheeger's inequality implies good approximation

The Laplacian Matrix of a Graph

$\left(\begin{array}{rrrrrr}3 & -1 & -1 & -1 & 0 & 0 \\ -1 & 2 & 0 & 0 & 0 & -1 \\ -1 & 0 & 3 & -1 & -1 & 0 \\ -1 & 0 & -1 & 4 & -1 & -1 \\ 0 & 0 & -1 & -1 & 3 & -1 \\ 0 & -1 & 0 & -1 & -1 & 3\end{array}\right) \quad \begin{aligned} & \text { Symmetric } \\ & \\ & \\ & \text { Non-positive } \\ & \text { off-diagonals } \\ & \\ & \text { Diagonally dominant }\end{aligned}$

The Laplacian Matrix of a Graph

$$
\begin{aligned}
x^{T} L_{G} x & =\sum_{(a, b) \in E} w_{a, b}(x(a)-x(b))^{2} \\
L_{G} & =\sum_{(a, b) \in E} w_{a, b} L_{a, b} \\
L_{1,2} & =\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) \\
& =\binom{1}{-1}\left(\begin{array}{ll}
1 & -1
\end{array}\right)
\end{aligned}
$$

Quickly Solving Laplacian Equations

S, Teng '04: Using low-stretch trees and sparsifiers

$$
O\left(m \log ^{c} n \log \epsilon^{-1}\right)
$$

Where m is number of non-zeros and n is dimension

Quickly Solving Laplacian Equations

S,Teng '04: Using low-stretch trees and sparsifiers

$$
O\left(m \log ^{c} n \log \epsilon^{-1}\right)
$$

Koutis, Miller, Peng '11: Low-stretch trees and sampling

$$
\widetilde{O}\left(m \log n \log \epsilon^{-1}\right)
$$

Where m is number of non-zeros and n is dimension

Quickly Solving Laplacian Equations
S,Teng '04: Using low-stretch trees and sparsifiers

$$
O\left(m \log ^{c} n \log \epsilon^{-1}\right)
$$

Koutis, Miller, Peng '11: Low-stretch trees and sampling

$$
\widetilde{O}\left(m \log n \log \epsilon^{-1}\right)
$$

Cohen, Kyng, Pachocki, Peng, Rao '14:

$$
\widetilde{O}\left(m \log ^{1 / 2} n \log \epsilon^{-1}\right)
$$

Quickly Solving Laplacian Equations
S,Teng '04: Using low-stretch trees and sparsifiers

$$
O\left(m \log ^{c} n \log \epsilon^{-1}\right)
$$

Koutis, Miller, Peng '11: Low-stretch trees and sampling

$$
\widetilde{O}\left(m \log n \log \epsilon^{-1}\right)
$$

Cohen, Kyng, Pachocki, Peng, Rao '14:

$$
\widetilde{O}\left(m \log ^{1 / 2} n \log \epsilon^{-1}\right)
$$

Good code:
LAMG (lean algebraic multigrid) - Livne-Brandt
CMG (combinatorial multigrid) - Koutis

Quickly Solving Laplacian Equations

S, Teng '04: Using low-stretch trees and sparsifiers

$$
O\left(m \log ^{c} n \log \epsilon^{-1}\right)
$$

An ϵ-accurate solution to $L_{G} x=b$ is an \widetilde{x} satisfying

$$
\|\widetilde{x}-x\|_{L_{G}} \leq \epsilon\|x\|_{L_{G}}
$$

where $\|v\|_{L_{G}}=\sqrt{v^{T} L_{G} v}=\left\|L_{G}^{1 / 2} v\right\|$

Quickly Solving Laplacian Equations
S,Teng '04: Using low-stretch trees and sparsifiers

$$
O\left(m \log ^{c} n \log \epsilon^{-1}\right)
$$

An ϵ-accurate solution to $L_{G} x=b$
is an \widetilde{x} satisfying

$$
\|\widetilde{x}-x\|_{L_{G}} \leq \epsilon\|x\|_{L_{G}}
$$

Allows fast computation of eigenvectors corresponding to small eigenvalues.

Laplacians in Linear Programming

Laplacians appear when solving Linear Programs on on graphs by Interior Point Methods

Maximum and Min-Cost Flow
(Daitch, S ’08, Mądry ‘13)

Shortest Paths

Isotonic Regression
(Cohen, Mądry, Sankowski, Vladu '16)
(Kyng, Rao, Sachdeva '15)

Lipschitz Learning : regularized interpolation on graphs (Kyng, Rao, Sachdeva, S ‘15)

Interior Point Method for Maximum s-t Flow

maximize $f^{o u t}(s)$
subject to $\quad f^{o u t}(a)=f^{i n}(a), \quad \forall a \notin\{s, t\}$

$$
0 \leq f(a, b) \leq c(a, b), \quad \forall(a, b) \in E
$$

Interior Point Method for Maximum s-t Flow

maximize $f^{o u t}(s)$
subject to $\quad f^{o u t}(a)=f^{i n}(a), \quad \forall a \notin\{s, t\}$

$$
0 \leq f(a, b) \leq c(a, b), \quad \forall(a, b) \in E
$$

Interior Point Method for Maximum s-t Flow

maximize $f^{\text {out }}(s)$
subject to $\quad f^{o u t}(a)=f^{i n}(a), \quad \forall a \notin\{s, t\}$

$$
0 \leq f(a, b) \leq c(a, b), \quad \forall(a, b) \in E
$$

Multiple calls with varying weights $w_{a, b}$
maximize $f^{\text {out }}(s)$
subject to $\quad f^{\text {out }}(a)=f^{\text {in }}(a), \quad \forall a \notin\{s, t\}$

$$
\sum_{(a, b) \in E} w_{a, b} f(a, b)^{2} \leq C
$$

Spectral Sparsification

Every graph can be approximated by a sparse graph with a similar Laplacian

Approximating Graphs

A graph H is an ϵ-approximation of G if
for all $x \quad \frac{1}{1+\epsilon} \leq \frac{x^{T} L_{H} x}{x^{T} L_{G} x} \leq 1+\epsilon$

$$
L_{H} \approx_{\epsilon} L_{G}
$$

Approximating Graphs

A graph H is an ϵ-approximation of G if
for all $x \quad \frac{1}{1+\epsilon} \leq \frac{x^{T} L_{H} x}{x^{T} L_{G} x} \leq 1+\epsilon$
Preserves boundaries of every set

Approximating Graphs

A graph H is an ϵ-approximation of G if
for all $x \quad \frac{1}{1+\epsilon} \leq \frac{x^{T} L_{H} x}{x^{T} L_{G} x} \leq 1+\epsilon$
Solutions to linear equations are similar

$$
L_{H} \approx_{\epsilon} L_{G} \Longleftrightarrow L_{H}^{-1} \approx_{\epsilon} L_{G}^{-1}
$$

As are effective resistances

Expanders Sparsify Complete Graphs

Yield good LDPC codes
Every set of vertices has large boundary
λ_{2} is large

Random regular graphs are usually expanders

Sparsification by Random Sampling

Assign a probability $p_{a, b}$ to each edge (a, b)
Include edge (a, b) in H with probability $p_{a, b}$.
If include edge (a, b), give it weight $w_{a, b} / p_{a, b}$

$$
\mathbb{E}\left[L_{H}\right]=\sum_{(a, b) \in E} p_{a, b}\left(w_{a, b} / p_{a, b}\right) L_{a, b}=L_{G}
$$

Sparsification by Random Sampling

Choose $p_{a, b}$ to be $w_{a, b}$ times the effective resistance between a and b.

Low resistance between a and b means there are many alternate routes for current to flow and that the edge is not critical.

Proof by random matrix concentration bounds (Rudelson, Ahlswede-Winter, Tropp, etc.)

Only need $O\left(n \log n / \epsilon^{2}\right)$ edges
(S, Srivastava ‘08)

Optimal Graph Sparsification?

For every $G=(V, E, w)$, there is a $H=(V, F, z)$ s.t.

$$
L_{G} \approx_{\epsilon} L_{H} \quad \text { and } \quad|F| \leq(2+\epsilon)^{2} n / \epsilon^{2}
$$

Is within a factor of 2 of how well
Ramanujan expanders approximate complete graphs
(Batson, S, Srivastava ‘09)

Approximate Gaussian Elimination

(Kyng \& Sachdeva ‘16)

Gaussian Elimination:
compute upper triangular U so that

$$
L_{G}=U^{T} U
$$

Approximate Gaussian Elimination: compute sparse upper triangular U so that

$$
L_{G} \approx U^{T} U
$$

Additive view of Gaussian Elimination

Find U, upper triangular matrix, s.t $U^{\top} U=A$

$$
A=\left(\begin{array}{cccc}
16 & -4 & -8 & -4 \\
-4 & 5 & 0 & -1 \\
-8 & 0 & 14 & 0 \\
-4 & -1 & 0 & 7
\end{array}\right)
$$

Additive view of Gaussian Elimination

$$
\left(\begin{array}{cccc}
16 & -4 & -8 & -4 \\
-4 & 5 & 0 & -1 \\
-8 & 0 & 14 & 0 \\
-4 & -1 & 0 & 7
\end{array}\right)
$$

Find the rank-1 matrix that agrees on the first row and column.

$$
\left(\begin{array}{cccc}
16 & -4 & -8 & -4 \\
-4 & 1 & 2 & 1 \\
-8 & 2 & 4 & 2 \\
-4 & 1 & 2 & 1
\end{array}\right)=\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)^{\top}
$$

Additive view of Gaussian Elimination

$$
\left(\begin{array}{cccc}
16 & -4 & -8 & -4 \\
-4 & 5 & 0 & -1 \\
-8 & 0 & 14 & 0 \\
-4 & -1 & 0 & 7
\end{array}\right)-
$$

Subtract the rank 1 matrix. We have eliminated the/first variable. $\left.-4 \begin{array}{cccc} \\ -4 & 1 & 2 & 1 \\ -8 & 2 & 4 & 2 \\ -4 & 1 & 2 & 1\end{array}\right)$

Additive view of Gaussian Elimination

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 4 & -2 & -2 \\
0 & -2 & 10 & -2 \\
0 & -2 & -2 & 6
\end{array}\right)
$$

Additive view of Gaussian Elimination

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 4 & -2 & -2 \\
0 & -2 & 10 & -2 \\
0 & -2 & -2 & 6
\end{array}\right)
$$

Find the rank-1 matrix that agrees on the next row and column.

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 4 & -2 & -2 \\
0 & -2 & 1 & 1 \\
0 & -2 & 1 & 1
\end{array}\right)=\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)^{\top}
$$

Additive view of Gaussian Elimination

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 4 & -2 & -2 \\
0 & -2 & 10 & -2 \\
0 & -2 & -2 & 6
\end{array}\right)-\quad=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 9 & -3 \\
0 & 0 & -3 & 5
\end{array}\right)
$$

Subtract the rank 1 matrix. We have eliminated the secqnd variable.
$\left.\qquad \begin{array}{cccc}\mathbf{y} \\ 0 & 4 & -2 & -2 \\ 0 & -2 & 1 & 1 \\ 0 & -2 & 1 & 1\end{array}\right)$.

Additive view of Gaussian Elimination

$$
\begin{aligned}
A & =\left(\begin{array}{cccc}
16 & -4 & -8 & -4 \\
-4 & 5 & 0 & -1 \\
-8 & 0 & 14 & 0 \\
-4 & -1 & 0 & 7
\end{array}\right) \\
& =\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)^{\top}+\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)^{\top}+\left(\begin{array}{c}
0 \\
0 \\
3 \\
-1
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
3 \\
-1
\end{array}\right)^{\top}+\left(\begin{array}{l}
0 \\
0 \\
0 \\
2
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0 \\
2
\end{array}\right)^{\top}
\end{aligned}
$$

Running time proportional to sum of squares of number of non-zeros in these vectors.

Additive view of Gaussian Elimination

$$
\begin{aligned}
A & =\left(\begin{array}{cccc}
16 & -4 & -8 & -4 \\
-4 & 5 & 0 & -1 \\
-8 & 0 & 14 & 0 \\
-4 & -1 & 0 & 7
\end{array}\right) \\
& =\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)^{\top}+\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)^{\top}+\left(\begin{array}{c}
0 \\
0 \\
3 \\
-1
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
3 \\
-1
\end{array}\right)^{\top}+\left(\begin{array}{l}
0 \\
0 \\
0 \\
2
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0 \\
2
\end{array}\right)^{\top} \\
& =\left(\begin{array}{cccc}
4 & 0 & 0 & 0 \\
-1 & 2 & 0 & 0 \\
-2 & -1 & 3 & 0 \\
-1 & -1 & -1 & 2
\end{array}\right)\left(\begin{array}{cccc}
4 & -1 & -2 & -1 \\
0 & 2 & -1 & -1 \\
0 & 0 & 3 & -1 \\
0 & 0 & 0 & 2
\end{array}\right)
\end{aligned}
$$

Additive view of Gaussian Elimination

$$
\begin{aligned}
A & =\left(\begin{array}{cccc}
16 & -4 & -8 & -4 \\
-4 & 5 & 0 & -1 \\
-8 & 0 & 14 & 0 \\
-4 & -1 & 0 & 7
\end{array}\right) \\
& =\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)^{\top}+\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)^{\top}+\left(\begin{array}{c}
0 \\
0 \\
3 \\
-1
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
3 \\
-1
\end{array}\right)^{\top}+\left(\begin{array}{l}
0 \\
0 \\
0 \\
2
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0 \\
2
\end{array}\right)^{\top} \\
& =\left(\begin{array}{cccc}
4 & -1 & -2 & -1 \\
0 & 2 & -1 & -1 \\
0 & 0 & 3 & -1 \\
0 & 0 & 0 & 2
\end{array}\right)^{\top}\left(\begin{array}{cccc}
4 & -1 & -2 & -1 \\
0 & 2 & -1 & -1 \\
0 & 0 & 3 & -1 \\
0 & 0 & 0 & 2
\end{array}\right)=U^{\top} U
\end{aligned}
$$

Gaussian Elimination of Laplacians

If this is a Laplacian,
then so is this
$\left(\begin{array}{cccc}16 & -4 & -8 & -4 \\ -4 & 5 & 0 & -1 \\ -8 & 0 & 14 & 0 \\ -4 & -1 & 0 & 7\end{array}\right)-\left(\begin{array}{c}4 \\ -1 \\ -2 \\ -1\end{array}\right)\left(\begin{array}{c}4 \\ -1 \\ -2 \\ -1\end{array}\right)^{T}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 4 & -2 & -2 \\ 0 & -2 & 10 & -2 \\ 0 & -2 & -2 & 6\end{array}\right)$

Gaussian Elimination of Laplacians

If this is a Laplacian, then so is this
$\left(\begin{array}{cccc}16 & -4 & -8 & -4 \\ -4 & 5 & 0 & -1 \\ -8 & 0 & 14 & 0 \\ -4 & -1 & 0 & 7\end{array}\right)-\left(\begin{array}{c}4 \\ -1 \\ -2 \\ -1\end{array}\right)\left(\begin{array}{c}4 \\ -1 \\ -2 \\ -1\end{array}\right)^{T}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 4 & -2 & -2 \\ 0 & -2 & 10 & -2 \\ 0 & -2 & -2 & 6\end{array}\right)$

When eliminate a node, add a clique on its neighbors

Approximate Gaussian Elimination

(Kyng \& Sachdeva ‘16)

1. when eliminate a node, add a clique on its neighbors

2. Sparsify that clique, without ever constructing it

Approximate Gaussian Elimination

(Kyng \& Sachdeva ‘16)

1. When eliminate a node of degree d,
add d edges at random between its neighbors, sampled with probability proportional to the weight of the edge to the eliminated node

Approximate Gaussian Elimination

(Kyng \& Sachdeva ‘16)

0 . Initialize by randomly permuting vertices, and making $O\left(\log ^{2} n\right)$ copies of every edge

1. When eliminate a node of degree d,
add d edges at random between its neighbors, sampled with probability proportional to the weight of the edge to the eliminated node

Total time is $O\left(m \log ^{3} n\right)$

Approximate Gaussian Elimination

(Kyng \& Sachdeva ‘16)

0 . Initialize by randomly permuting vertices, and making $O\left(\log ^{2} n\right)$ copies of every edge

1. When eliminate a node of degree d,
add d edges at random between its neighbors, sampled with probability proportional to the weight of the edge to the eliminated node

Total time is $O\left(m \log ^{3} n\right)$
Can be improved by sacrificing some simplicity

Approximate Gaussian Elimination

(Kyng \& Sachdeva ‘16)

Analysis by Random Matrix Theory:

Write $U^{T} U$ as a sum of random matrices.
$\mathbb{E}\left[U^{T} U\right]=L_{G}$
Random permutation and copying control the variances of the random matrices

Apply Matrix Freedman inequality (Tropp '11)

Recent Developments

Other families of linear systems (Kyng, Lee, Peng, Sachdeva, S ‘16)
complex-weighted Laplacians $\left(\begin{array}{cc}1 & e^{i \theta} \\ e^{-i \theta} & 1\end{array}\right)$
connection Laplacians

$$
\left(\begin{array}{cc}
I & Q \\
Q^{T} & I
\end{array}\right)
$$

Laplacians.jl

My web page on:
Laplacian linear equations, sparsification, local graph clustering, low-stretch spanning trees, and so on.

My class notes from
"Graphs and Networks" and "Spectral Graph Theory"
$L x=b$, by Nisheeth Vishnoi

